ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1569 by gezelter, Thu May 26 13:55:04 2011 UTC vs.
Revision 1597 by gezelter, Tue Jul 26 15:49:24 2011 UTC

# Line 125 | Line 125 | namespace OpenMD {
125      //equal to the total number of atoms minus number of atoms belong to
126      //cutoff group defined in meta-data file plus the number of cutoff
127      //groups defined in meta-data file
128    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130    std::cerr << "nG = " << nGroups << "\n";
128  
129      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133
134    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
130      
131      //every free atom (atom does not belong to rigid bodies) is an
132      //integrable object therefore the total number of integrable objects
# Line 274 | Line 269 | namespace OpenMD {
269   #endif
270      return fdf_;
271    }
272 +  
273 +  unsigned int SimInfo::getNLocalCutoffGroups(){
274 +    int nLocalCutoffAtoms = 0;
275 +    Molecule* mol;
276 +    MoleculeIterator mi;
277 +    CutoffGroup* cg;
278 +    Molecule::CutoffGroupIterator ci;
279      
280 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 +      
282 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 +           cg = mol->nextCutoffGroup(ci)) {
284 +        nLocalCutoffAtoms += cg->getNumAtom();
285 +        
286 +      }        
287 +    }
288 +    
289 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 +  }
291 +    
292    void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
# Line 680 | Line 694 | namespace OpenMD {
694      Atom* atom;
695      set<AtomType*> atomTypes;
696      
697 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
698 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
697 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 >      for(atom = mol->beginAtom(ai); atom != NULL;
699 >          atom = mol->nextAtom(ai)) {
700          atomTypes.insert(atom->getAtomType());
701        }      
702      }    
703 <
703 >    
704   #ifdef IS_MPI
705  
706      // loop over the found atom types on this processor, and add their
707      // numerical idents to a vector:
708 <
708 >    
709      vector<int> foundTypes;
710      set<AtomType*>::iterator i;
711      for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
# Line 699 | Line 714 | namespace OpenMD {
714      // count_local holds the number of found types on this processor
715      int count_local = foundTypes.size();
716  
717 <    // count holds the total number of found types on all processors
703 <    // (some will be redundant with the ones found locally):
704 <    int count;
705 <    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
717 >    int nproc = MPI::COMM_WORLD.Get_size();
718  
719 <    // create a vector to hold the globally found types, and resize it:
720 <    vector<int> ftGlobal;
721 <    ftGlobal.resize(count);
722 <    vector<int> counts;
719 >    // we need arrays to hold the counts and displacement vectors for
720 >    // all processors
721 >    vector<int> counts(nproc, 0);
722 >    vector<int> disps(nproc, 0);
723  
724 <    int nproc = MPI::COMM_WORLD.Get_size();
725 <    counts.resize(nproc);
726 <    vector<int> disps;
727 <    disps.resize(nproc);
724 >    // fill the counts array
725 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 >                              1, MPI::INT);
727 >  
728 >    // use the processor counts to compute the displacement array
729 >    disps[0] = 0;    
730 >    int totalCount = counts[0];
731 >    for (int iproc = 1; iproc < nproc; iproc++) {
732 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 >      totalCount += counts[iproc];
734 >    }
735  
736 <    // now spray out the foundTypes to all the other processors:
736 >    // we need a (possibly redundant) set of all found types:
737 >    vector<int> ftGlobal(totalCount);
738      
739 +    // now spray out the foundTypes to all the other processors:    
740      MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 <                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
741 >                               &ftGlobal[0], &counts[0], &disps[0],
742 >                               MPI::INT);
743  
744 +    vector<int>::iterator j;
745 +
746      // foundIdents is a stl set, so inserting an already found ident
747      // will have no effect.
748      set<int> foundIdents;
749 <    vector<int>::iterator j;
749 >
750      for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751        foundIdents.insert((*j));
752      
753      // now iterate over the foundIdents and get the actual atom types
754      // that correspond to these:
755      set<int>::iterator it;
756 <    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
756 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757        atomTypes.insert( forceField_->getAtomType((*it)) );
758  
759   #endif
760 <    
760 >
761      return atomTypes;        
762    }
763  
# Line 745 | Line 769 | namespace OpenMD {
769        if ( simParams_->getAccumulateBoxDipole() ) {
770          calcBoxDipole_ = true;      
771        }
772 <
772 >    
773      set<AtomType*>::iterator i;
774      set<AtomType*> atomTypes;
775      atomTypes = getSimulatedAtomTypes();    
# Line 758 | Line 782 | namespace OpenMD {
782        usesMetallic |= (*i)->isMetal();
783        usesDirectional |= (*i)->isDirectional();
784      }
785 <
785 >    
786   #ifdef IS_MPI    
787      int temp;
788      temp = usesDirectional;
789      MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 <
790 >    
791      temp = usesMetallic;
792      MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 <
793 >    
794      temp = usesElectrostatic;
795      MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 + #else
797 +
798 +    usesDirectionalAtoms_ = usesDirectional;
799 +    usesMetallicAtoms_ = usesMetallic;
800 +    usesElectrostaticAtoms_ = usesElectrostatic;
801 +
802   #endif
803 +    
804 +    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 +    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 +    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
807    }
808  
809  
# Line 785 | Line 819 | namespace OpenMD {
819        
820        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821          GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 +        cerr << "LI = " << atom->getLocalIndex() << "GAI = " << GlobalAtomIndices[atom->getLocalIndex()] << "\n";
823        }
824      }
825      return GlobalAtomIndices;
# Line 806 | Line 841 | namespace OpenMD {
841        for (cg = mol->beginCutoffGroup(ci); cg != NULL;
842             cg = mol->nextCutoffGroup(ci)) {
843          GlobalGroupIndices.push_back(cg->getGlobalIndex());
844 +        cerr << "LI, GGI = " << GlobalGroupIndices.size() << " " << cg->getGlobalIndex() << "\n";
845        }        
846      }
847      return GlobalGroupIndices;
# Line 824 | Line 860 | namespace OpenMD {
860      Atom* atom;
861      RealType totalMass;
862  
863 <    //to avoid memory reallocation, reserve enough space for massFactors_
863 >    /**
864 >     * The mass factor is the relative mass of an atom to the total
865 >     * mass of the cutoff group it belongs to.  By default, all atoms
866 >     * are their own cutoff groups, and therefore have mass factors of
867 >     * 1.  We need some special handling for massless atoms, which
868 >     * will be treated as carrying the entire mass of the cutoff
869 >     * group.
870 >     */
871      massFactors_.clear();
872 <    massFactors_.reserve(getNCutoffGroups());
872 >    massFactors_.resize(getNAtoms(), 1.0);
873      
874      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
875        for (cg = mol->beginCutoffGroup(ci); cg != NULL;
# Line 835 | Line 878 | namespace OpenMD {
878          totalMass = cg->getMass();
879          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
880            // Check for massless groups - set mfact to 1 if true
881 <          if (totalMass != 0)
882 <            massFactors_.push_back(atom->getMass()/totalMass);
881 >          if (totalMass != 0)
882 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
883            else
884 <            massFactors_.push_back( 1.0 );
884 >            massFactors_[atom->getLocalIndex()] = 1.0;
885          }
886        }      
887      }
# Line 865 | Line 908 | namespace OpenMD {
908      int* oneThreeList = oneThreeInteractions_.getPairList();
909      int* oneFourList = oneFourInteractions_.getPairList();
910  
868    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
869    //               &nExclude, excludeList,
870    //               &nOneTwo, oneTwoList,
871    //               &nOneThree, oneThreeList,
872    //               &nOneFour, oneFourList,
873    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
874    //               &fortranGlobalGroupMembership[0], &isError);
875    
911      topologyDone_ = true;
912    }
913  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines