ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1540 by gezelter, Mon Jan 17 21:34:36 2011 UTC vs.
Revision 1597 by gezelter, Tue Jul 26 15:49:24 2011 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 #include "UseTheForce/doForces_interface.h"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
# Line 63 | Line 61
61   #include "UseTheForce/ForceField.hpp"
62   #include "nonbonded/SwitchingFunction.hpp"
63  
66 #ifdef IS_MPI
67 #include "UseTheForce/mpiComponentPlan.h"
68 #include "UseTheForce/DarkSide/simParallel_interface.h"
69 #endif
70
64   using namespace std;
65   namespace OpenMD {
66    
# Line 78 | Line 71 | namespace OpenMD {
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75      calcBoxDipole_(false), useAtomicVirial_(true) {    
76      
77      MoleculeStamp* molStamp;
# Line 132 | Line 125 | namespace OpenMD {
125      //equal to the total number of atoms minus number of atoms belong to
126      //cutoff group defined in meta-data file plus the number of cutoff
127      //groups defined in meta-data file
135    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137    std::cerr << "nG = " << nGroups << "\n";
128  
129      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140
141    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
130      
131      //every free atom (atom does not belong to rigid bodies) is an
132      //integrable object therefore the total number of integrable objects
# Line 281 | Line 269 | namespace OpenMD {
269   #endif
270      return fdf_;
271    }
272 +  
273 +  unsigned int SimInfo::getNLocalCutoffGroups(){
274 +    int nLocalCutoffAtoms = 0;
275 +    Molecule* mol;
276 +    MoleculeIterator mi;
277 +    CutoffGroup* cg;
278 +    Molecule::CutoffGroupIterator ci;
279      
280 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 +      
282 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 +           cg = mol->nextCutoffGroup(ci)) {
284 +        nLocalCutoffAtoms += cg->getNumAtom();
285 +        
286 +      }        
287 +    }
288 +    
289 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 +  }
291 +    
292    void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
# Line 687 | Line 694 | namespace OpenMD {
694      Atom* atom;
695      set<AtomType*> atomTypes;
696      
697 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
698 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
697 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 >      for(atom = mol->beginAtom(ai); atom != NULL;
699 >          atom = mol->nextAtom(ai)) {
700          atomTypes.insert(atom->getAtomType());
701        }      
702      }    
703 <
703 >    
704   #ifdef IS_MPI
705  
706      // loop over the found atom types on this processor, and add their
707      // numerical idents to a vector:
708 <
708 >    
709      vector<int> foundTypes;
710      set<AtomType*>::iterator i;
711      for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
# Line 706 | Line 714 | namespace OpenMD {
714      // count_local holds the number of found types on this processor
715      int count_local = foundTypes.size();
716  
717 <    // count holds the total number of found types on all processors
710 <    // (some will be redundant with the ones found locally):
711 <    int count;
712 <    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
717 >    int nproc = MPI::COMM_WORLD.Get_size();
718  
719 <    // create a vector to hold the globally found types, and resize it:
720 <    vector<int> ftGlobal;
721 <    ftGlobal.resize(count);
722 <    vector<int> counts;
719 >    // we need arrays to hold the counts and displacement vectors for
720 >    // all processors
721 >    vector<int> counts(nproc, 0);
722 >    vector<int> disps(nproc, 0);
723  
724 <    int nproc = MPI::COMM_WORLD.Get_size();
725 <    counts.resize(nproc);
726 <    vector<int> disps;
727 <    disps.resize(nproc);
724 >    // fill the counts array
725 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 >                              1, MPI::INT);
727 >  
728 >    // use the processor counts to compute the displacement array
729 >    disps[0] = 0;    
730 >    int totalCount = counts[0];
731 >    for (int iproc = 1; iproc < nproc; iproc++) {
732 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 >      totalCount += counts[iproc];
734 >    }
735  
736 <    // now spray out the foundTypes to all the other processors:
736 >    // we need a (possibly redundant) set of all found types:
737 >    vector<int> ftGlobal(totalCount);
738      
739 +    // now spray out the foundTypes to all the other processors:    
740      MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 <                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
741 >                               &ftGlobal[0], &counts[0], &disps[0],
742 >                               MPI::INT);
743  
744 +    vector<int>::iterator j;
745 +
746      // foundIdents is a stl set, so inserting an already found ident
747      // will have no effect.
748      set<int> foundIdents;
749 <    vector<int>::iterator j;
749 >
750      for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751        foundIdents.insert((*j));
752      
753      // now iterate over the foundIdents and get the actual atom types
754      // that correspond to these:
755      set<int>::iterator it;
756 <    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
756 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757        atomTypes.insert( forceField_->getAtomType((*it)) );
758  
759   #endif
760 <    
760 >
761      return atomTypes;        
762    }
763  
# Line 752 | Line 769 | namespace OpenMD {
769        if ( simParams_->getAccumulateBoxDipole() ) {
770          calcBoxDipole_ = true;      
771        }
772 <
772 >    
773      set<AtomType*>::iterator i;
774      set<AtomType*> atomTypes;
775      atomTypes = getSimulatedAtomTypes();    
# Line 765 | Line 782 | namespace OpenMD {
782        usesMetallic |= (*i)->isMetal();
783        usesDirectional |= (*i)->isDirectional();
784      }
785 <
785 >    
786   #ifdef IS_MPI    
787      int temp;
788      temp = usesDirectional;
789      MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 <
790 >    
791      temp = usesMetallic;
792      MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 <
793 >    
794      temp = usesElectrostatic;
795      MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 + #else
797 +
798 +    usesDirectionalAtoms_ = usesDirectional;
799 +    usesMetallicAtoms_ = usesMetallic;
800 +    usesElectrostaticAtoms_ = usesElectrostatic;
801 +
802   #endif
803 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
804 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
805 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
806 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
803 >    
804 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
807    }
808  
809 <  void SimInfo::setupFortran() {
810 <    int isError;
811 <    int nExclude, nOneTwo, nOneThree, nOneFour;
812 <    vector<int> fortranGlobalGroupMembership;
809 >
810 >  vector<int> SimInfo::getGlobalAtomIndices() {
811 >    SimInfo::MoleculeIterator mi;
812 >    Molecule* mol;
813 >    Molecule::AtomIterator ai;
814 >    Atom* atom;
815 >
816 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
817      
818 <    isError = 0;
818 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
819 >      
820 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 >        cerr << "LI = " << atom->getLocalIndex() << "GAI = " << GlobalAtomIndices[atom->getLocalIndex()] << "\n";
823 >      }
824 >    }
825 >    return GlobalAtomIndices;
826 >  }
827  
828 <    //globalGroupMembership_ is filled by SimCreator    
829 <    for (int i = 0; i < nGlobalAtoms_; i++) {
830 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
828 >
829 >  vector<int> SimInfo::getGlobalGroupIndices() {
830 >    SimInfo::MoleculeIterator mi;
831 >    Molecule* mol;
832 >    Molecule::CutoffGroupIterator ci;
833 >    CutoffGroup* cg;
834 >
835 >    vector<int> GlobalGroupIndices;
836 >    
837 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
838 >      
839 >      //local index of cutoff group is trivial, it only depends on the
840 >      //order of travesing
841 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
842 >           cg = mol->nextCutoffGroup(ci)) {
843 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
844 >        cerr << "LI, GGI = " << GlobalGroupIndices.size() << " " << cg->getGlobalIndex() << "\n";
845 >      }        
846      }
847 +    return GlobalGroupIndices;
848 +  }
849  
850 +
851 +  void SimInfo::prepareTopology() {
852 +    int nExclude, nOneTwo, nOneThree, nOneFour;
853 +
854      //calculate mass ratio of cutoff group
801    vector<RealType> mfact;
855      SimInfo::MoleculeIterator mi;
856      Molecule* mol;
857      Molecule::CutoffGroupIterator ci;
# Line 807 | Line 860 | namespace OpenMD {
860      Atom* atom;
861      RealType totalMass;
862  
863 <    //to avoid memory reallocation, reserve enough space for mfact
864 <    mfact.reserve(getNCutoffGroups());
863 >    /**
864 >     * The mass factor is the relative mass of an atom to the total
865 >     * mass of the cutoff group it belongs to.  By default, all atoms
866 >     * are their own cutoff groups, and therefore have mass factors of
867 >     * 1.  We need some special handling for massless atoms, which
868 >     * will be treated as carrying the entire mass of the cutoff
869 >     * group.
870 >     */
871 >    massFactors_.clear();
872 >    massFactors_.resize(getNAtoms(), 1.0);
873      
874      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
875 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
875 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
876 >           cg = mol->nextCutoffGroup(ci)) {
877  
878          totalMass = cg->getMass();
879          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
880            // Check for massless groups - set mfact to 1 if true
881 <          if (totalMass != 0)
882 <            mfact.push_back(atom->getMass()/totalMass);
881 >          if (totalMass != 0)
882 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
883            else
884 <            mfact.push_back( 1.0 );
884 >            massFactors_[atom->getLocalIndex()] = 1.0;
885          }
886        }      
887      }
888  
889 <    //fill ident array of local atoms (it is actually ident of
828 <    //AtomType, it is so confusing !!!)
829 <    vector<int> identArray;
889 >    // Build the identArray_
890  
891 <    //to avoid memory reallocation, reserve enough space identArray
892 <    identArray.reserve(getNAtoms());
833 <    
891 >    identArray_.clear();
892 >    identArray_.reserve(getNAtoms());    
893      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
894        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
895 <        identArray.push_back(atom->getIdent());
895 >        identArray_.push_back(atom->getIdent());
896        }
897      }    
839
840    //fill molMembershipArray
841    //molMembershipArray is filled by SimCreator    
842    vector<int> molMembershipArray(nGlobalAtoms_);
843    for (int i = 0; i < nGlobalAtoms_; i++) {
844      molMembershipArray[i] = globalMolMembership_[i] + 1;
845    }
898      
899 <    //setup fortran simulation
899 >    //scan topology
900  
901      nExclude = excludedInteractions_.getSize();
902      nOneTwo = oneTwoInteractions_.getSize();
# Line 856 | Line 908 | namespace OpenMD {
908      int* oneThreeList = oneThreeInteractions_.getPairList();
909      int* oneFourList = oneFourInteractions_.getPairList();
910  
911 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 <                   &nExclude, excludeList,
861 <                   &nOneTwo, oneTwoList,
862 <                   &nOneThree, oneThreeList,
863 <                   &nOneFour, oneFourList,
864 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
865 <                   &fortranGlobalGroupMembership[0], &isError);
866 <    
867 <    if( isError ){
868 <      
869 <      sprintf( painCave.errMsg,
870 <               "There was an error setting the simulation information in fortran.\n" );
871 <      painCave.isFatal = 1;
872 <      painCave.severity = OPENMD_ERROR;
873 <      simError();
874 <    }
875 <    
876 <    
877 <    sprintf( checkPointMsg,
878 <             "succesfully sent the simulation information to fortran.\n");
879 <    
880 <    errorCheckPoint();
881 <    
882 <    // Setup number of neighbors in neighbor list if present
883 <    if (simParams_->haveNeighborListNeighbors()) {
884 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 <      setNeighbors(&nlistNeighbors);
886 <    }
887 <  
888 < #ifdef IS_MPI    
889 <    //SimInfo is responsible for creating localToGlobalAtomIndex and
890 <    //localToGlobalGroupIndex
891 <    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
892 <    vector<int> localToGlobalCutoffGroupIndex;
893 <    mpiSimData parallelData;
894 <
895 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
896 <
897 <      //local index(index in DataStorge) of atom is important
898 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
899 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
900 <      }
901 <
902 <      //local index of cutoff group is trivial, it only depends on the order of travesing
903 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
904 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
905 <      }        
906 <        
907 <    }
908 <
909 <    //fill up mpiSimData struct
910 <    parallelData.nMolGlobal = getNGlobalMolecules();
911 <    parallelData.nMolLocal = getNMolecules();
912 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
913 <    parallelData.nAtomsLocal = getNAtoms();
914 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
915 <    parallelData.nGroupsLocal = getNCutoffGroups();
916 <    parallelData.myNode = worldRank;
917 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
918 <
919 <    //pass mpiSimData struct and index arrays to fortran
920 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
921 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
922 <                    &localToGlobalCutoffGroupIndex[0], &isError);
923 <
924 <    if (isError) {
925 <      sprintf(painCave.errMsg,
926 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
927 <      painCave.isFatal = 1;
928 <      simError();
929 <    }
930 <
931 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
932 <    errorCheckPoint();
933 < #endif
934 <
935 <    initFortranFF(&isError);
936 <    if (isError) {
937 <      sprintf(painCave.errMsg,
938 <              "initFortranFF errror: fortran didn't like something we gave it.\n");
939 <      painCave.isFatal = 1;
940 <      simError();
941 <    }
942 <    fortranInitialized_ = true;
911 >    topologyDone_ = true;
912    }
913  
914    void SimInfo::addProperty(GenericData* genData) {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines