125 |
|
//equal to the total number of atoms minus number of atoms belong to |
126 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
|
//groups defined in meta-data file |
128 |
– |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 |
– |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 |
– |
std::cerr << "nG = " << nGroups << "\n"; |
128 |
|
|
129 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
– |
|
134 |
– |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
130 |
|
|
131 |
|
//every free atom (atom does not belong to rigid bodies) is an |
132 |
|
//integrable object therefore the total number of integrable objects |
269 |
|
#endif |
270 |
|
return fdf_; |
271 |
|
} |
272 |
+ |
|
273 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
274 |
+ |
int nLocalCutoffAtoms = 0; |
275 |
+ |
Molecule* mol; |
276 |
+ |
MoleculeIterator mi; |
277 |
+ |
CutoffGroup* cg; |
278 |
+ |
Molecule::CutoffGroupIterator ci; |
279 |
|
|
280 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
281 |
+ |
|
282 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
283 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
284 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
285 |
+ |
|
286 |
+ |
} |
287 |
+ |
} |
288 |
+ |
|
289 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
290 |
+ |
} |
291 |
+ |
|
292 |
|
void SimInfo::calcNdfRaw() { |
293 |
|
int ndfRaw_local; |
294 |
|
|
694 |
|
Atom* atom; |
695 |
|
set<AtomType*> atomTypes; |
696 |
|
|
697 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
698 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
697 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
698 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
699 |
> |
atom = mol->nextAtom(ai)) { |
700 |
|
atomTypes.insert(atom->getAtomType()); |
701 |
|
} |
702 |
|
} |
703 |
< |
|
703 |
> |
|
704 |
|
#ifdef IS_MPI |
705 |
|
|
706 |
|
// loop over the found atom types on this processor, and add their |
707 |
|
// numerical idents to a vector: |
708 |
< |
|
708 |
> |
|
709 |
|
vector<int> foundTypes; |
710 |
|
set<AtomType*>::iterator i; |
711 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
714 |
|
// count_local holds the number of found types on this processor |
715 |
|
int count_local = foundTypes.size(); |
716 |
|
|
717 |
< |
// count holds the total number of found types on all processors |
703 |
< |
// (some will be redundant with the ones found locally): |
704 |
< |
int count; |
705 |
< |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
717 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
718 |
|
|
719 |
< |
// create a vector to hold the globally found types, and resize it: |
720 |
< |
vector<int> ftGlobal; |
721 |
< |
ftGlobal.resize(count); |
722 |
< |
vector<int> counts; |
719 |
> |
// we need arrays to hold the counts and displacement vectors for |
720 |
> |
// all processors |
721 |
> |
vector<int> counts(nproc, 0); |
722 |
> |
vector<int> disps(nproc, 0); |
723 |
|
|
724 |
< |
int nproc = MPI::COMM_WORLD.Get_size(); |
725 |
< |
counts.resize(nproc); |
726 |
< |
vector<int> disps; |
727 |
< |
disps.resize(nproc); |
724 |
> |
// fill the counts array |
725 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
726 |
> |
1, MPI::INT); |
727 |
> |
|
728 |
> |
// use the processor counts to compute the displacement array |
729 |
> |
disps[0] = 0; |
730 |
> |
int totalCount = counts[0]; |
731 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
732 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
733 |
> |
totalCount += counts[iproc]; |
734 |
> |
} |
735 |
|
|
736 |
< |
// now spray out the foundTypes to all the other processors: |
736 |
> |
// we need a (possibly redundant) set of all found types: |
737 |
> |
vector<int> ftGlobal(totalCount); |
738 |
|
|
739 |
+ |
// now spray out the foundTypes to all the other processors: |
740 |
|
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
741 |
< |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
741 |
> |
&ftGlobal[0], &counts[0], &disps[0], |
742 |
> |
MPI::INT); |
743 |
|
|
744 |
+ |
vector<int>::iterator j; |
745 |
+ |
|
746 |
|
// foundIdents is a stl set, so inserting an already found ident |
747 |
|
// will have no effect. |
748 |
|
set<int> foundIdents; |
749 |
< |
vector<int>::iterator j; |
749 |
> |
|
750 |
|
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
751 |
|
foundIdents.insert((*j)); |
752 |
|
|
753 |
|
// now iterate over the foundIdents and get the actual atom types |
754 |
|
// that correspond to these: |
755 |
|
set<int>::iterator it; |
756 |
< |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
756 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
757 |
|
atomTypes.insert( forceField_->getAtomType((*it)) ); |
758 |
|
|
759 |
|
#endif |
760 |
< |
|
760 |
> |
|
761 |
|
return atomTypes; |
762 |
|
} |
763 |
|
|
769 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
770 |
|
calcBoxDipole_ = true; |
771 |
|
} |
772 |
< |
|
772 |
> |
|
773 |
|
set<AtomType*>::iterator i; |
774 |
|
set<AtomType*> atomTypes; |
775 |
|
atomTypes = getSimulatedAtomTypes(); |
782 |
|
usesMetallic |= (*i)->isMetal(); |
783 |
|
usesDirectional |= (*i)->isDirectional(); |
784 |
|
} |
785 |
< |
|
785 |
> |
|
786 |
|
#ifdef IS_MPI |
787 |
|
int temp; |
788 |
|
temp = usesDirectional; |
789 |
|
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
790 |
< |
|
790 |
> |
|
791 |
|
temp = usesMetallic; |
792 |
|
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
793 |
< |
|
793 |
> |
|
794 |
|
temp = usesElectrostatic; |
795 |
|
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
796 |
+ |
#else |
797 |
+ |
|
798 |
+ |
usesDirectionalAtoms_ = usesDirectional; |
799 |
+ |
usesMetallicAtoms_ = usesMetallic; |
800 |
+ |
usesElectrostaticAtoms_ = usesElectrostatic; |
801 |
+ |
|
802 |
|
#endif |
803 |
+ |
|
804 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
805 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
806 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
807 |
|
} |
808 |
|
|
809 |
|
|
858 |
|
Atom* atom; |
859 |
|
RealType totalMass; |
860 |
|
|
861 |
< |
//to avoid memory reallocation, reserve enough space for massFactors_ |
861 |
> |
/** |
862 |
> |
* The mass factor is the relative mass of an atom to the total |
863 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
864 |
> |
* are their own cutoff groups, and therefore have mass factors of |
865 |
> |
* 1. We need some special handling for massless atoms, which |
866 |
> |
* will be treated as carrying the entire mass of the cutoff |
867 |
> |
* group. |
868 |
> |
*/ |
869 |
|
massFactors_.clear(); |
870 |
< |
massFactors_.reserve(getNCutoffGroups()); |
870 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
871 |
|
|
872 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
873 |
|
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
876 |
|
totalMass = cg->getMass(); |
877 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
878 |
|
// Check for massless groups - set mfact to 1 if true |
879 |
< |
if (totalMass != 0) |
880 |
< |
massFactors_.push_back(atom->getMass()/totalMass); |
879 |
> |
if (totalMass != 0) |
880 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
881 |
|
else |
882 |
< |
massFactors_.push_back( 1.0 ); |
882 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
883 |
|
} |
884 |
|
} |
885 |
|
} |
906 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
907 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
908 |
|
|
868 |
– |
//setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 |
– |
// &nExclude, excludeList, |
870 |
– |
// &nOneTwo, oneTwoList, |
871 |
– |
// &nOneThree, oneThreeList, |
872 |
– |
// &nOneFour, oneFourList, |
873 |
– |
// &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 |
– |
// &fortranGlobalGroupMembership[0], &isError); |
875 |
– |
|
909 |
|
topologyDone_ = true; |
910 |
|
} |
911 |
|
|