ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 878 by chrisfen, Wed Feb 1 20:54:46 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
59 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
60 < #include "UseTheForce/doForces_interface.h"
61 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60   #include "io/ForceFieldOptions.hpp"
61   #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
71 < #include "UseTheForce/DarkSide/simParallel_interface.h"
72 < #endif
73 <
74 < namespace oopse {
75 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 <    std::map<int, std::set<int> >::iterator i = container.find(index);
77 <    std::set<int> result;
78 <    if (i != container.end()) {
79 <        result = i->second;
80 <    }
81 <
82 <    return result;
83 <  }
64 > using namespace std;
65 > namespace OpenMD {
66    
67    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68      forceField_(ff), simParams_(simParams),
69 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
73 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
74 <    sman_(NULL), fortranInitialized_(false) {
75 <
76 <      MoleculeStamp* molStamp;
77 <      int nMolWithSameStamp;
78 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
79 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
80 <      CutoffGroupStamp* cgStamp;    
81 <      RigidBodyStamp* rbStamp;
82 <      int nRigidAtoms = 0;
83 <      std::vector<Component*> components = simParams->getComponents();
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90        
91 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 <        molStamp = (*i)->getMoleculeStamp();
93 <        nMolWithSameStamp = (*i)->getNMol();
94 <        
95 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
96 <
97 <        //calculate atoms in molecules
98 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 <
100 <        //calculate atoms in cutoff groups
101 <        int nAtomsInGroups = 0;
102 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 <        
116 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <          cgStamp = molStamp->getCutoffGroupStamp(j);
118 <          nAtomsInGroups += cgStamp->getNMembers();
119 <        }
120 <
121 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 <
123 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124 <
125 <        //calculate atoms in rigid bodies
126 <        int nAtomsInRigidBodies = 0;
127 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 <        
129 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBodyStamp(j);
131 <          nAtomsInRigidBodies += rbStamp->getNMembers();
132 <        }
133 <
134 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 <        
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 +      
105 +      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 +      
107 +      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 +      
109 +      //calculate atoms in rigid bodies
110 +      int nAtomsInRigidBodies = 0;
111 +      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 +      
113 +      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 +        rbStamp = molStamp->getRigidBodyStamp(j);
115 +        nAtomsInRigidBodies += rbStamp->getNMembers();
116 +      }
117 +      
118 +      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 +      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 +      
121 +    }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130 +    std::cerr << "nG = " << nGroups << "\n";
131  
132 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
140 <      //group therefore the total number of cutoff groups in the system is
141 <      //equal to the total number of atoms minus number of atoms belong to
142 <      //cutoff group defined in meta-data file plus the number of cutoff
143 <      //groups defined in meta-data file
144 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
132 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133  
134 <      //every free atom (atom does not belong to rigid bodies) is an
135 <      //integrable object therefore the total number of integrable objects
136 <      //in the system is equal to the total number of atoms minus number of
137 <      //atoms belong to rigid body defined in meta-data file plus the number
138 <      //of rigid bodies defined in meta-data file
139 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
140 <                                                + nGlobalRigidBodies_;
134 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147    
154      nGlobalMols_ = molStampIds_.size();
155
156 #ifdef IS_MPI    
157      molToProcMap_.resize(nGlobalMols_);
158 #endif
159
160    }
161
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 171 | Line 157 | namespace oopse {
157      delete forceField_;
158    }
159  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 233 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
236
237
214    }    
215  
216          
# Line 252 | Line 228 | namespace oopse {
228    void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
# Line 290 | Line 266 | namespace oopse {
266  
267    }
268  
269 +  int SimInfo::getFdf() {
270 + #ifdef IS_MPI
271 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 + #else
273 +    fdf_ = fdf_local;
274 + #endif
275 +    return fdf_;
276 +  }
277 +    
278    void SimInfo::calcNdfRaw() {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 341 | Line 326 | namespace oopse {
326  
327    }
328  
329 <  void SimInfo::addExcludePairs(Molecule* mol) {
330 <    std::vector<Bond*>::iterator bondIter;
331 <    std::vector<Bend*>::iterator bendIter;
332 <    std::vector<Torsion*>::iterator torsionIter;
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
338 +    Inversion* inversion;
339      int a;
340      int b;
341      int c;
342      int d;
343  
344 <    std::map<int, std::set<int> > atomGroups;
344 >    // atomGroups can be used to add special interaction maps between
345 >    // groups of atoms that are in two separate rigid bodies.
346 >    // However, most site-site interactions between two rigid bodies
347 >    // are probably not special, just the ones between the physically
348 >    // bonded atoms.  Interactions *within* a single rigid body should
349 >    // always be excluded.  These are done at the bottom of this
350 >    // function.
351  
352 +    map<int, set<int> > atomGroups;
353      Molecule::RigidBodyIterator rbIter;
354      RigidBody* rb;
355      Molecule::IntegrableObjectIterator ii;
356      StuntDouble* integrableObject;
357      
358 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
359 <           integrableObject = mol->nextIntegrableObject(ii)) {
360 <
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362        if (integrableObject->isRigidBody()) {
363 <          rb = static_cast<RigidBody*>(integrableObject);
364 <          std::vector<Atom*> atoms = rb->getAtoms();
365 <          std::set<int> rigidAtoms;
366 <          for (int i = 0; i < atoms.size(); ++i) {
367 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 <          }
369 <          for (int i = 0; i < atoms.size(); ++i) {
370 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 <          }      
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372        } else {
373 <        std::set<int> oneAtomSet;
373 >        set<int> oneAtomSet;
374          oneAtomSet.insert(integrableObject->getGlobalIndex());
375 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376        }
377      }  
378 +          
379 +    for (bond= mol->beginBond(bondIter); bond != NULL;
380 +         bond = mol->nextBond(bondIter)) {
381  
383    
384    
385    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
382        a = bond->getAtomA()->getGlobalIndex();
383 <      b = bond->getAtomB()->getGlobalIndex();        
384 <      exclude_.addPair(a, b);
383 >      b = bond->getAtomB()->getGlobalIndex();  
384 >    
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
391  
392 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394 >
395        a = bend->getAtomA()->getGlobalIndex();
396        b = bend->getAtomB()->getGlobalIndex();        
397        c = bend->getAtomC()->getGlobalIndex();
398 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
399 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
400 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
398 >      
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);      
401 >        oneTwoInteractions_.addPair(b, c);
402 >      } else {
403 >        excludedInteractions_.addPair(a, b);
404 >        excludedInteractions_.addPair(b, c);
405 >      }
406  
407 <      exclude_.addPairs(rigidSetA, rigidSetB);
408 <      exclude_.addPairs(rigidSetA, rigidSetC);
409 <      exclude_.addPairs(rigidSetB, rigidSetC);
410 <      
411 <      //exclude_.addPair(a, b);
404 <      //exclude_.addPair(a, c);
405 <      //exclude_.addPair(b, c);        
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412      }
413  
414 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416 >
417        a = torsion->getAtomA()->getGlobalIndex();
418        b = torsion->getAtomB()->getGlobalIndex();        
419        c = torsion->getAtomC()->getGlobalIndex();        
420 <      d = torsion->getAtomD()->getGlobalIndex();        
413 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
414 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
415 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
416 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421  
422 <      exclude_.addPairs(rigidSetA, rigidSetB);
423 <      exclude_.addPairs(rigidSetA, rigidSetC);
424 <      exclude_.addPairs(rigidSetA, rigidSetD);
425 <      exclude_.addPairs(rigidSetB, rigidSetC);
426 <      exclude_.addPairs(rigidSetB, rigidSetD);
427 <      exclude_.addPairs(rigidSetC, rigidSetD);
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431  
432 <      /*
433 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
434 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
435 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
436 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
437 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
438 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
439 <        
440 <      
441 <      exclude_.addPair(a, b);
442 <      exclude_.addPair(a, c);
443 <      exclude_.addPair(a, d);
444 <      exclude_.addPair(b, c);
438 <      exclude_.addPair(b, d);
439 <      exclude_.addPair(c, d);        
440 <      */
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >        oneThreeInteractions_.addPair(b, d);      
435 >      } else {
436 >        excludedInteractions_.addPair(a, c);
437 >        excludedInteractions_.addPair(b, d);
438 >      }
439 >
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445      }
446  
447 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
448 <      std::vector<Atom*> atoms = rb->getAtoms();
449 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
450 <        for (int j = i + 1; j < atoms.size(); ++j) {
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449 >
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(a, c);
458 >        oneTwoInteractions_.addPair(a, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(a, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475 >
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481            a = atoms[i]->getGlobalIndex();
482            b = atoms[j]->getGlobalIndex();
483 <          exclude_.addPair(a, b);
483 >          excludedInteractions_.addPair(a, b);
484          }
485        }
486      }        
487  
488    }
489  
490 <  void SimInfo::removeExcludePairs(Molecule* mol) {
491 <    std::vector<Bond*>::iterator bondIter;
492 <    std::vector<Bend*>::iterator bendIter;
493 <    std::vector<Torsion*>::iterator torsionIter;
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
499 +    Inversion* inversion;
500      int a;
501      int b;
502      int c;
503      int d;
504  
505 <    std::map<int, std::set<int> > atomGroups;
469 <
505 >    map<int, set<int> > atomGroups;
506      Molecule::RigidBodyIterator rbIter;
507      RigidBody* rb;
508      Molecule::IntegrableObjectIterator ii;
509      StuntDouble* integrableObject;
510      
511 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
512 <           integrableObject = mol->nextIntegrableObject(ii)) {
513 <
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515        if (integrableObject->isRigidBody()) {
516 <          rb = static_cast<RigidBody*>(integrableObject);
517 <          std::vector<Atom*> atoms = rb->getAtoms();
518 <          std::set<int> rigidAtoms;
519 <          for (int i = 0; i < atoms.size(); ++i) {
520 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 <          }
522 <          for (int i = 0; i < atoms.size(); ++i) {
523 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 <          }      
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525        } else {
526 <        std::set<int> oneAtomSet;
526 >        set<int> oneAtomSet;
527          oneAtomSet.insert(integrableObject->getGlobalIndex());
528 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529        }
530      }  
531  
532 <    
533 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535        a = bond->getAtomA()->getGlobalIndex();
536 <      b = bond->getAtomB()->getGlobalIndex();        
537 <      exclude_.removePair(a, b);
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543      }
544  
545 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547 >
548        a = bend->getAtomA()->getGlobalIndex();
549        b = bend->getAtomB()->getGlobalIndex();        
550        c = bend->getAtomC()->getGlobalIndex();
506
507      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
508      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
509      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
510
511      exclude_.removePairs(rigidSetA, rigidSetB);
512      exclude_.removePairs(rigidSetA, rigidSetC);
513      exclude_.removePairs(rigidSetB, rigidSetC);
551        
552 <      //exclude_.removePair(a, b);
553 <      //exclude_.removePair(a, c);
554 <      //exclude_.removePair(b, c);        
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);      
554 >        oneTwoInteractions_.removePair(b, c);
555 >      } else {
556 >        excludedInteractions_.removePair(a, b);
557 >        excludedInteractions_.removePair(b, c);
558 >      }
559 >
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565      }
566  
567 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569 >
570        a = torsion->getAtomA()->getGlobalIndex();
571        b = torsion->getAtomB()->getGlobalIndex();        
572        c = torsion->getAtomC()->getGlobalIndex();        
573 <      d = torsion->getAtomD()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574 >  
575 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 >        oneTwoInteractions_.removePair(a, b);      
577 >        oneTwoInteractions_.removePair(b, c);
578 >        oneTwoInteractions_.removePair(c, d);
579 >      } else {
580 >        excludedInteractions_.removePair(a, b);
581 >        excludedInteractions_.removePair(b, c);
582 >        excludedInteractions_.removePair(c, d);
583 >      }
584  
585 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
586 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
587 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
588 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592  
593 <      exclude_.removePairs(rigidSetA, rigidSetB);
594 <      exclude_.removePairs(rigidSetA, rigidSetC);
595 <      exclude_.removePairs(rigidSetA, rigidSetD);
596 <      exclude_.removePairs(rigidSetB, rigidSetC);
597 <      exclude_.removePairs(rigidSetB, rigidSetD);
598 <      exclude_.removePairs(rigidSetC, rigidSetD);
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598 >    }
599  
600 <      /*
601 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
540 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
541 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
542 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
600 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 >         inversion = mol->nextInversion(inversionIter)) {
602  
603 <      
604 <      exclude_.removePair(a, b);
605 <      exclude_.removePair(a, c);
606 <      exclude_.removePair(a, d);
607 <      exclude_.removePair(b, c);
608 <      exclude_.removePair(b, d);
609 <      exclude_.removePair(c, d);        
610 <      */
603 >      a = inversion->getAtomA()->getGlobalIndex();
604 >      b = inversion->getAtomB()->getGlobalIndex();        
605 >      c = inversion->getAtomC()->getGlobalIndex();        
606 >      d = inversion->getAtomD()->getGlobalIndex();        
607 >
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617 >
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(b, c);    
620 >        oneThreeInteractions_.removePair(b, d);    
621 >        oneThreeInteractions_.removePair(c, d);      
622 >      } else {
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(b, d);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627      }
628  
629 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
630 <      std::vector<Atom*> atoms = rb->getAtoms();
631 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
632 <        for (int j = i + 1; j < atoms.size(); ++j) {
629 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 >         rb = mol->nextRigidBody(rbIter)) {
631 >      vector<Atom*> atoms = rb->getAtoms();
632 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634            a = atoms[i]->getGlobalIndex();
635            b = atoms[j]->getGlobalIndex();
636 <          exclude_.removePair(a, b);
636 >          excludedInteractions_.removePair(a, b);
637          }
638        }
639      }        
640 <
640 >    
641    }
642 <
643 <
642 >  
643 >  
644    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645      int curStampId;
646 <
646 >    
647      //index from 0
648      curStampId = moleculeStamps_.size();
649  
# Line 577 | Line 651 | namespace oopse {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
580  void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
591 <    /** @deprecate */    
592 <    int isError = 0;
593 <    
594 <    setupElectrostaticSummationMethod( isError );
595 <    setupSwitchingFunction();
596 <
597 <    if(isError){
598 <      sprintf( painCave.errMsg,
599 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
600 <      painCave.isFatal = 1;
601 <      simError();
602 <    }
603 <  
604 <    
605 <    setupCutoff();
606 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
610
611    fortranInitialized_ = true;
667    }
668 <
669 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
682 <
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
622 <
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <        
627 <    }
686 >      }      
687 >    }    
688  
689 <    return atomTypes;        
630 <  }
689 > #ifdef IS_MPI
690  
691 <  void SimInfo::setupSimType() {
692 <    std::set<AtomType*>::iterator i;
634 <    std::set<AtomType*> atomTypes;
635 <    atomTypes = getUniqueAtomTypes();
636 <    
637 <    int useLennardJones = 0;
638 <    int useElectrostatic = 0;
639 <    int useEAM = 0;
640 <    int useSC = 0;
641 <    int useCharge = 0;
642 <    int useDirectional = 0;
643 <    int useDipole = 0;
644 <    int useGayBerne = 0;
645 <    int useSticky = 0;
646 <    int useStickyPower = 0;
647 <    int useShape = 0;
648 <    int useFLARB = 0; //it is not in AtomType yet
649 <    int useDirectionalAtom = 0;    
650 <    int useElectrostatics = 0;
651 <    //usePBC and useRF are from simParams
652 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
653 <    int useRF;
654 <    int useSF;
655 <    std::string myMethod;
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <    // set the useRF logical
695 <    useRF = 0;
696 <    useSF = 0;
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 +    // count_local holds the number of found types on this processor
700 +    int count_local = foundTypes.size();
701  
702 <    if (simParams_->haveElectrostaticSummationMethod()) {
703 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
704 <      toUpper(myMethod);
705 <      if (myMethod == "REACTION_FIELD") {
666 <        useRF=1;
667 <      } else {
668 <        if (myMethod == "SHIFTED_FORCE") {
669 <          useSF = 1;
670 <        }
671 <      }
672 <    }
702 >    // count holds the total number of found types on all processors
703 >    // (some will be redundant with the ones found locally):
704 >    int count;
705 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706  
707 +    // create a vector to hold the globally found types, and resize it:
708 +    vector<int> ftGlobal;
709 +    ftGlobal.resize(count);
710 +    vector<int> counts;
711 +
712 +    int nproc = MPI::COMM_WORLD.Get_size();
713 +    counts.resize(nproc);
714 +    vector<int> disps;
715 +    disps.resize(nproc);
716 +
717 +    // now spray out the foundTypes to all the other processors:
718 +    
719 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721 +
722 +    // foundIdents is a stl set, so inserting an already found ident
723 +    // will have no effect.
724 +    set<int> foundIdents;
725 +    vector<int>::iterator j;
726 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 +      foundIdents.insert((*j));
728 +    
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735 + #endif
736 +    
737 +    return atomTypes;        
738 +  }
739 +
740 +  void SimInfo::setupSimVariables() {
741 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 +    calcBoxDipole_ = false;
744 +    if ( simParams_->haveAccumulateBoxDipole() )
745 +      if ( simParams_->getAccumulateBoxDipole() ) {
746 +        calcBoxDipole_ = true;      
747 +      }
748 +
749 +    set<AtomType*>::iterator i;
750 +    set<AtomType*> atomTypes;
751 +    atomTypes = getSimulatedAtomTypes();    
752 +    int usesElectrostatic = 0;
753 +    int usesMetallic = 0;
754 +    int usesDirectional = 0;
755      //loop over all of the atom types
756      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 <      useLennardJones |= (*i)->isLennardJones();
758 <      useElectrostatic |= (*i)->isElectrostatic();
759 <      useEAM |= (*i)->isEAM();
679 <      useSC |= (*i)->isSC();
680 <      useCharge |= (*i)->isCharge();
681 <      useDirectional |= (*i)->isDirectional();
682 <      useDipole |= (*i)->isDipole();
683 <      useGayBerne |= (*i)->isGayBerne();
684 <      useSticky |= (*i)->isSticky();
685 <      useStickyPower |= (*i)->isStickyPower();
686 <      useShape |= (*i)->isShape();
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
689    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
690      useDirectionalAtom = 1;
691    }
692
693    if (useCharge || useDipole) {
694      useElectrostatics = 1;
695    }
696
762   #ifdef IS_MPI    
763      int temp;
764 +    temp = usesDirectional;
765 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = usePBC;
768 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 <    temp = useDirectionalAtom;
771 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 > #endif
773 >  }
774  
706    temp = useLennardJones;
707    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
775  
776 <    temp = useElectrostatics;
777 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776 >  vector<int> SimInfo::getGlobalAtomIndices() {
777 >    SimInfo::MoleculeIterator mi;
778 >    Molecule* mol;
779 >    Molecule::AtomIterator ai;
780 >    Atom* atom;
781  
782 <    temp = useCharge;
713 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
714 <
715 <    temp = useDipole;
716 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
717 <
718 <    temp = useSticky;
719 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
720 <
721 <    temp = useStickyPower;
722 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
782 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
783      
784 <    temp = useGayBerne;
785 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
784 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
785 >      
786 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
787 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
788 >      }
789 >    }
790 >    return GlobalAtomIndices;
791 >  }
792  
727    temp = useEAM;
728    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793  
794 <    temp = useSC;
795 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 <    
797 <    temp = useShape;
798 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
794 >  vector<int> SimInfo::getGlobalGroupIndices() {
795 >    SimInfo::MoleculeIterator mi;
796 >    Molecule* mol;
797 >    Molecule::CutoffGroupIterator ci;
798 >    CutoffGroup* cg;
799  
800 <    temp = useFLARB;
801 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 <
739 <    temp = useRF;
740 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
741 <
742 <    temp = useSF;
743 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
744 <
745 < #endif
746 <
747 <    fInfo_.SIM_uses_PBC = usePBC;    
748 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
749 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
750 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
751 <    fInfo_.SIM_uses_Charges = useCharge;
752 <    fInfo_.SIM_uses_Dipoles = useDipole;
753 <    fInfo_.SIM_uses_Sticky = useSticky;
754 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
755 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
756 <    fInfo_.SIM_uses_EAM = useEAM;
757 <    fInfo_.SIM_uses_SC = useSC;
758 <    fInfo_.SIM_uses_Shapes = useShape;
759 <    fInfo_.SIM_uses_FLARB = useFLARB;
760 <    fInfo_.SIM_uses_RF = useRF;
761 <    fInfo_.SIM_uses_SF = useSF;
762 <
763 <    if( myMethod == "REACTION_FIELD") {
800 >    vector<int> GlobalGroupIndices;
801 >    
802 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
803        
804 <      if (simParams_->haveDielectric()) {
805 <        fInfo_.dielect = simParams_->getDielectric();
806 <      } else {
807 <        sprintf(painCave.errMsg,
808 <                "SimSetup Error: No Dielectric constant was set.\n"
809 <                "\tYou are trying to use Reaction Field without"
771 <                "\tsetting a dielectric constant!\n");
772 <        painCave.isFatal = 1;
773 <        simError();
774 <      }      
804 >      //local index of cutoff group is trivial, it only depends on the
805 >      //order of travesing
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
807 >           cg = mol->nextCutoffGroup(ci)) {
808 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
809 >      }        
810      }
811 <
811 >    return GlobalGroupIndices;
812    }
813  
814 <  void SimInfo::setupFortranSim() {
814 >
815 >  void SimInfo::setupFortran() {
816      int isError;
817 <    int nExclude;
818 <    std::vector<int> fortranGlobalGroupMembership;
817 >    int nExclude, nOneTwo, nOneThree, nOneFour;
818 >    vector<int> fortranGlobalGroupMembership;
819      
784    nExclude = exclude_.getSize();
820      isError = 0;
821  
822      //globalGroupMembership_ is filled by SimCreator    
# Line 790 | Line 825 | namespace oopse {
825      }
826  
827      //calculate mass ratio of cutoff group
828 <    std::vector<double> mfact;
828 >    vector<RealType> mfact;
829      SimInfo::MoleculeIterator mi;
830      Molecule* mol;
831      Molecule::CutoffGroupIterator ci;
832      CutoffGroup* cg;
833      Molecule::AtomIterator ai;
834      Atom* atom;
835 <    double totalMass;
835 >    RealType totalMass;
836  
837      //to avoid memory reallocation, reserve enough space for mfact
838      mfact.reserve(getNCutoffGroups());
# Line 813 | Line 848 | namespace oopse {
848            else
849              mfact.push_back( 1.0 );
850          }
816
851        }      
852      }
853  
854 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 <    std::vector<int> identArray;
854 >    // Build the identArray_
855  
856 <    //to avoid memory reallocation, reserve enough space identArray
857 <    identArray.reserve(getNAtoms());
825 <    
856 >    identArray_.clear();
857 >    identArray_.reserve(getNAtoms());    
858      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
859        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
860 <        identArray.push_back(atom->getIdent());
860 >        identArray_.push_back(atom->getIdent());
861        }
862      }    
863  
864      //fill molMembershipArray
865      //molMembershipArray is filled by SimCreator    
866 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
866 >    vector<int> molMembershipArray(nGlobalAtoms_);
867      for (int i = 0; i < nGlobalAtoms_; i++) {
868        molMembershipArray[i] = globalMolMembership_[i] + 1;
869      }
870      
871      //setup fortran simulation
840    int nGlobalExcludes = 0;
841    int* globalExcludes = NULL;
842    int* excludeList = exclude_.getExcludeList();
843    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
844                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
845                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
872  
873 <    if( isError ){
873 >    nExclude = excludedInteractions_.getSize();
874 >    nOneTwo = oneTwoInteractions_.getSize();
875 >    nOneThree = oneThreeInteractions_.getSize();
876 >    nOneFour = oneFourInteractions_.getSize();
877  
878 <      sprintf( painCave.errMsg,
879 <               "There was an error setting the simulation information in fortran.\n" );
880 <      painCave.isFatal = 1;
881 <      painCave.severity = OOPSE_ERROR;
853 <      simError();
854 <    }
878 >    int* excludeList = excludedInteractions_.getPairList();
879 >    int* oneTwoList = oneTwoInteractions_.getPairList();
880 >    int* oneThreeList = oneThreeInteractions_.getPairList();
881 >    int* oneFourList = oneFourInteractions_.getPairList();
882  
883 < #ifdef IS_MPI
884 <    sprintf( checkPointMsg,
885 <             "succesfully sent the simulation information to fortran.\n");
886 <    MPIcheckPoint();
887 < #endif // is_mpi
888 <  }
889 <
863 <
864 < #ifdef IS_MPI
865 <  void SimInfo::setupFortranParallel() {
883 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
884 >    //               &nExclude, excludeList,
885 >    //               &nOneTwo, oneTwoList,
886 >    //               &nOneThree, oneThreeList,
887 >    //               &nOneFour, oneFourList,
888 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
889 >    //               &fortranGlobalGroupMembership[0], &isError);
890      
891 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 <    std::vector<int> localToGlobalCutoffGroupIndex;
894 <    SimInfo::MoleculeIterator mi;
895 <    Molecule::AtomIterator ai;
896 <    Molecule::CutoffGroupIterator ci;
897 <    Molecule* mol;
898 <    Atom* atom;
899 <    CutoffGroup* cg;
900 <    mpiSimData parallelData;
901 <    int isError;
891 >    // if( isError ){
892 >    //  
893 >    //  sprintf( painCave.errMsg,
894 >    //         "There was an error setting the simulation information in fortran.\n" );
895 >    //  painCave.isFatal = 1;
896 >    //  painCave.severity = OPENMD_ERROR;
897 >    //  simError();
898 >    //}
899 >    
900 >    
901 >    // sprintf( checkPointMsg,
902 >    //          "succesfully sent the simulation information to fortran.\n");
903 >    
904 >    // errorCheckPoint();
905 >    
906 >    // Setup number of neighbors in neighbor list if present
907 >    //if (simParams_->haveNeighborListNeighbors()) {
908 >    //  int nlistNeighbors = simParams_->getNeighborListNeighbors();
909 >    //  setNeighbors(&nlistNeighbors);
910 >    //}
911 >  
912 > #ifdef IS_MPI    
913 >    // mpiSimData parallelData;
914  
879    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
880
881      //local index(index in DataStorge) of atom is important
882      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
883        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
884      }
885
886      //local index of cutoff group is trivial, it only depends on the order of travesing
887      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
888        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
889      }        
890        
891    }
892
915      //fill up mpiSimData struct
916 <    parallelData.nMolGlobal = getNGlobalMolecules();
917 <    parallelData.nMolLocal = getNMolecules();
918 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
919 <    parallelData.nAtomsLocal = getNAtoms();
920 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
921 <    parallelData.nGroupsLocal = getNCutoffGroups();
922 <    parallelData.myNode = worldRank;
923 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
916 >    // parallelData.nMolGlobal = getNGlobalMolecules();
917 >    // parallelData.nMolLocal = getNMolecules();
918 >    // parallelData.nAtomsGlobal = getNGlobalAtoms();
919 >    // parallelData.nAtomsLocal = getNAtoms();
920 >    // parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
921 >    // parallelData.nGroupsLocal = getNCutoffGroups();
922 >    // parallelData.myNode = worldRank;
923 >    // MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
924  
925      //pass mpiSimData struct and index arrays to fortran
926 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
927 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
928 <                    &localToGlobalCutoffGroupIndex[0], &isError);
926 >    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
927 >    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
928 >    //                &localToGlobalCutoffGroupIndex[0], &isError);
929  
930 <    if (isError) {
931 <      sprintf(painCave.errMsg,
932 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
933 <      painCave.isFatal = 1;
934 <      simError();
935 <    }
930 >    // if (isError) {
931 >    //   sprintf(painCave.errMsg,
932 >    //           "mpiRefresh errror: fortran didn't like something we gave it.\n");
933 >    //   painCave.isFatal = 1;
934 >    //   simError();
935 >    // }
936  
937 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
938 <    MPIcheckPoint();
917 <
918 <
919 <  }
920 <
937 >    // sprintf(checkPointMsg, " mpiRefresh successful.\n");
938 >    // errorCheckPoint();
939   #endif
940  
941 <  void SimInfo::setupCutoff() {          
942 <    
943 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
944 <
945 <    // Check the cutoff policy
946 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
947 <
948 <    std::string myPolicy;
931 <    if (forceFieldOptions_.haveCutoffPolicy()){
932 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
933 <    }else if (simParams_->haveCutoffPolicy()) {
934 <      myPolicy = simParams_->getCutoffPolicy();
935 <    }
936 <
937 <    if (!myPolicy.empty()){
938 <      toUpper(myPolicy);
939 <      if (myPolicy == "MIX") {
940 <        cp = MIX_CUTOFF_POLICY;
941 <      } else {
942 <        if (myPolicy == "MAX") {
943 <          cp = MAX_CUTOFF_POLICY;
944 <        } else {
945 <          if (myPolicy == "TRADITIONAL") {            
946 <            cp = TRADITIONAL_CUTOFF_POLICY;
947 <          } else {
948 <            // throw error        
949 <            sprintf( painCave.errMsg,
950 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
951 <            painCave.isFatal = 1;
952 <            simError();
953 <          }    
954 <        }          
955 <      }
956 <    }          
957 <    notifyFortranCutoffPolicy(&cp);
958 <
959 <    // Check the Skin Thickness for neighborlists
960 <    double skin;
961 <    if (simParams_->haveSkinThickness()) {
962 <      skin = simParams_->getSkinThickness();
963 <      notifyFortranSkinThickness(&skin);
964 <    }            
965 <        
966 <    // Check if the cutoff was set explicitly:
967 <    if (simParams_->haveCutoffRadius()) {
968 <      rcut_ = simParams_->getCutoffRadius();
969 <      if (simParams_->haveSwitchingRadius()) {
970 <        rsw_  = simParams_->getSwitchingRadius();
971 <      } else {
972 <        if (fInfo_.SIM_uses_Charges |
973 <            fInfo_.SIM_uses_Dipoles |
974 <            fInfo_.SIM_uses_RF) {
975 <          
976 <          rsw_ = 0.85 * rcut_;
977 <          sprintf(painCave.errMsg,
978 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
979 <                  "\tOOPSE will use a default value of 85\% of the cutoffRadius"
980 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
981 <        painCave.isFatal = 0;
982 <        simError();
983 <        } else {
984 <          rsw_ = rcut_;
985 <          sprintf(painCave.errMsg,
986 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
987 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
988 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
989 <          painCave.isFatal = 0;
990 <          simError();
991 <        }
992 <          
993 <      notifyFortranCutoffs(&rcut_, &rsw_);
994 <      
995 <    } else {
996 <      
997 <      // For electrostatic atoms, we'll assume a large safe value:
998 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
999 <        sprintf(painCave.errMsg,
1000 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1001 <                "\tOOPSE will use a default value of 15.0 angstroms"
1002 <                "\tfor the cutoffRadius.\n");
1003 <        painCave.isFatal = 0;
1004 <        simError();
1005 <        rcut_ = 15.0;
1006 <      
1007 <        if (simParams_->haveElectrostaticSummationMethod()) {
1008 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1009 <          toUpper(myMethod);
1010 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1011 <            if (simParams_->haveSwitchingRadius()){
1012 <              sprintf(painCave.errMsg,
1013 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1014 <                      "\teven though the electrostaticSummationMethod was\n"
1015 <                      "\tset to %s\n", myMethod.c_str());
1016 <              painCave.isFatal = 1;
1017 <              simError();            
1018 <            }
1019 <          }
1020 <        }
1021 <      
1022 <        if (simParams_->haveSwitchingRadius()){
1023 <          rsw_ = simParams_->getSwitchingRadius();
1024 <        } else {        
1025 <          sprintf(painCave.errMsg,
1026 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1027 <                  "\tOOPSE will use a default value of\n"
1028 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1029 <          painCave.isFatal = 0;
1030 <          simError();
1031 <          rsw_ = 0.85 * rcut_;
1032 <        }
1033 <        notifyFortranCutoffs(&rcut_, &rsw_);
1034 <      } else {
1035 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1036 <        // We'll punt and let fortran figure out the cutoffs later.
1037 <        
1038 <        notifyFortranYouAreOnYourOwn();
1039 <
1040 <      }
1041 <    }
1042 <  }
1043 <
1044 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1045 <    
1046 <    int errorOut;
1047 <    int esm =  NONE;
1048 <    int sm = UNDAMPED;
1049 <    double alphaVal;
1050 <    double dielectric;
1051 <
1052 <    errorOut = isError;
1053 <    alphaVal = simParams_->getDampingAlpha();
1054 <    dielectric = simParams_->getDielectric();
1055 <
1056 <    if (simParams_->haveElectrostaticSummationMethod()) {
1057 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1058 <      toUpper(myMethod);
1059 <      if (myMethod == "NONE") {
1060 <        esm = NONE;
1061 <      } else {
1062 <        if (myMethod == "SWITCHING_FUNCTION") {
1063 <          esm = SWITCHING_FUNCTION;
1064 <        } else {
1065 <          if (myMethod == "SHIFTED_POTENTIAL") {
1066 <            esm = SHIFTED_POTENTIAL;
1067 <          } else {
1068 <            if (myMethod == "SHIFTED_FORCE") {            
1069 <              esm = SHIFTED_FORCE;
1070 <            } else {
1071 <              if (myMethod == "REACTION_FIELD") {            
1072 <                esm = REACTION_FIELD;
1073 <              } else {
1074 <                // throw error        
1075 <                sprintf( painCave.errMsg,
1076 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1077 <                         "\t(Input file specified %s .)\n"
1078 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1079 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1080 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1081 <                painCave.isFatal = 1;
1082 <                simError();
1083 <              }    
1084 <            }          
1085 <          }
1086 <        }
1087 <      }
1088 <    }
1089 <    
1090 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1091 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1092 <      toUpper(myScreen);
1093 <      if (myScreen == "UNDAMPED") {
1094 <        sm = UNDAMPED;
1095 <      } else {
1096 <        if (myScreen == "DAMPED") {
1097 <          sm = DAMPED;
1098 <          if (!simParams_->haveDampingAlpha()) {
1099 <            //throw error
1100 <            sprintf( painCave.errMsg,
1101 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1102 <                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1103 <            painCave.isFatal = 0;
1104 <            simError();
1105 <          }
1106 <        } else {
1107 <          // throw error        
1108 <          sprintf( painCave.errMsg,
1109 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1110 <                   "\t(Input file specified %s .)\n"
1111 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1112 <                   "or \"damped\".\n", myScreen.c_str() );
1113 <          painCave.isFatal = 1;
1114 <          simError();
1115 <        }
1116 <      }
1117 <    }
1118 <    
1119 <    // let's pass some summation method variables to fortran
1120 <    setElectrostaticSummationMethod( &esm );
1121 <    setFortranElectrostaticMethod( &esm );
1122 <    setScreeningMethod( &sm );
1123 <    setDampingAlpha( &alphaVal );
1124 <    setReactionFieldDielectric( &dielectric );
1125 <    initFortranFF( &errorOut );
1126 <  }
1127 <
1128 <  void SimInfo::setupSwitchingFunction() {    
1129 <    int ft = CUBIC;
1130 <
1131 <    if (simParams_->haveSwitchingFunctionType()) {
1132 <      std::string funcType = simParams_->getSwitchingFunctionType();
1133 <      toUpper(funcType);
1134 <      if (funcType == "CUBIC") {
1135 <        ft = CUBIC;
1136 <      } else {
1137 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1138 <          ft = FIFTH_ORDER_POLY;
1139 <        } else {
1140 <          // throw error        
1141 <          sprintf( painCave.errMsg,
1142 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1143 <          painCave.isFatal = 1;
1144 <          simError();
1145 <        }          
1146 <      }
1147 <    }
1148 <
1149 <    // send switching function notification to switcheroo
1150 <    setFunctionType(&ft);
1151 <
941 >    // initFortranFF(&isError);
942 >    // if (isError) {
943 >    //   sprintf(painCave.errMsg,
944 >    //           "initFortranFF errror: fortran didn't like something we gave it.\n");
945 >    //   painCave.isFatal = 1;
946 >    //   simError();
947 >    // }
948 >    // fortranInitialized_ = true;
949    }
950  
951    void SimInfo::addProperty(GenericData* genData) {
952      properties_.addProperty(genData);  
953    }
954  
955 <  void SimInfo::removeProperty(const std::string& propName) {
955 >  void SimInfo::removeProperty(const string& propName) {
956      properties_.removeProperty(propName);  
957    }
958  
# Line 1163 | Line 960 | namespace oopse {
960      properties_.clearProperties();
961    }
962  
963 <  std::vector<std::string> SimInfo::getPropertyNames() {
963 >  vector<string> SimInfo::getPropertyNames() {
964      return properties_.getPropertyNames();  
965    }
966        
967 <  std::vector<GenericData*> SimInfo::getProperties() {
967 >  vector<GenericData*> SimInfo::getProperties() {
968      return properties_.getProperties();
969    }
970  
971 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
971 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
972      return properties_.getPropertyByName(propName);
973    }
974  
# Line 1185 | Line 982 | namespace oopse {
982      Molecule* mol;
983      RigidBody* rb;
984      Atom* atom;
985 +    CutoffGroup* cg;
986      SimInfo::MoleculeIterator mi;
987      Molecule::RigidBodyIterator rbIter;
988 <    Molecule::AtomIterator atomIter;;
988 >    Molecule::AtomIterator atomIter;
989 >    Molecule::CutoffGroupIterator cgIter;
990  
991      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
992          
# Line 1198 | Line 997 | namespace oopse {
997        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
998          rb->setSnapshotManager(sman_);
999        }
1000 +
1001 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
1002 +        cg->setSnapshotManager(sman_);
1003 +      }
1004      }    
1005      
1006    }
# Line 1207 | Line 1010 | namespace oopse {
1010      Molecule* mol;
1011  
1012      Vector3d comVel(0.0);
1013 <    double totalMass = 0.0;
1013 >    RealType totalMass = 0.0;
1014      
1015  
1016      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017 <      double mass = mol->getMass();
1017 >      RealType mass = mol->getMass();
1018        totalMass += mass;
1019        comVel += mass * mol->getComVel();
1020      }  
1021  
1022   #ifdef IS_MPI
1023 <    double tmpMass = totalMass;
1023 >    RealType tmpMass = totalMass;
1024      Vector3d tmpComVel(comVel);    
1025 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1026 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1025 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1026 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1027   #endif
1028  
1029      comVel /= totalMass;
# Line 1233 | Line 1036 | namespace oopse {
1036      Molecule* mol;
1037  
1038      Vector3d com(0.0);
1039 <    double totalMass = 0.0;
1039 >    RealType totalMass = 0.0;
1040      
1041      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1042 <      double mass = mol->getMass();
1042 >      RealType mass = mol->getMass();
1043        totalMass += mass;
1044        com += mass * mol->getCom();
1045      }  
1046  
1047   #ifdef IS_MPI
1048 <    double tmpMass = totalMass;
1048 >    RealType tmpMass = totalMass;
1049      Vector3d tmpCom(com);    
1050 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1051 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1051 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1052   #endif
1053  
1054      com /= totalMass;
# Line 1254 | Line 1057 | namespace oopse {
1057  
1058    }        
1059  
1060 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1060 >  ostream& operator <<(ostream& o, SimInfo& info) {
1061  
1062      return o;
1063    }
# Line 1269 | Line 1072 | namespace oopse {
1072        Molecule* mol;
1073        
1074      
1075 <      double totalMass = 0.0;
1075 >      RealType totalMass = 0.0;
1076      
1077  
1078        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1079 <         double mass = mol->getMass();
1079 >         RealType mass = mol->getMass();
1080           totalMass += mass;
1081           com += mass * mol->getCom();
1082           comVel += mass * mol->getComVel();          
1083        }  
1084        
1085   #ifdef IS_MPI
1086 <      double tmpMass = totalMass;
1086 >      RealType tmpMass = totalMass;
1087        Vector3d tmpCom(com);  
1088        Vector3d tmpComVel(comVel);
1089 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1090 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1091 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1089 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1090 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1091 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1092   #endif
1093        
1094        com /= totalMass;
# Line 1297 | Line 1100 | namespace oopse {
1100  
1101  
1102         [  Ixx -Ixy  -Ixz ]
1103 <  J =| -Iyx  Iyy  -Iyz |
1103 >    J =| -Iyx  Iyy  -Iyz |
1104         [ -Izx -Iyz   Izz ]
1105      */
1106  
1107     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1108        
1109  
1110 <      double xx = 0.0;
1111 <      double yy = 0.0;
1112 <      double zz = 0.0;
1113 <      double xy = 0.0;
1114 <      double xz = 0.0;
1115 <      double yz = 0.0;
1110 >      RealType xx = 0.0;
1111 >      RealType yy = 0.0;
1112 >      RealType zz = 0.0;
1113 >      RealType xy = 0.0;
1114 >      RealType xz = 0.0;
1115 >      RealType yz = 0.0;
1116        Vector3d com(0.0);
1117        Vector3d comVel(0.0);
1118        
# Line 1321 | Line 1124 | namespace oopse {
1124        Vector3d thisq(0.0);
1125        Vector3d thisv(0.0);
1126  
1127 <      double thisMass = 0.0;
1127 >      RealType thisMass = 0.0;
1128      
1129        
1130        
# Line 1359 | Line 1162 | namespace oopse {
1162   #ifdef IS_MPI
1163        Mat3x3d tmpI(inertiaTensor);
1164        Vector3d tmpAngMom;
1165 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1166 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1165 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1166 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1167   #endif
1168                
1169        return;
# Line 1381 | Line 1184 | namespace oopse {
1184        Vector3d thisr(0.0);
1185        Vector3d thisp(0.0);
1186        
1187 <      double thisMass;
1187 >      RealType thisMass;
1188        
1189        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1190          thisMass = mol->getMass();
# Line 1394 | Line 1197 | namespace oopse {
1197        
1198   #ifdef IS_MPI
1199        Vector3d tmpAngMom;
1200 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1200 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1201   #endif
1202        
1203        return angularMomentum;
1204     }
1205    
1206 <  
1207 < }//end namespace oopse
1206 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1207 >    return IOIndexToIntegrableObject.at(index);
1208 >  }
1209 >  
1210 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1211 >    IOIndexToIntegrableObject= v;
1212 >  }
1213  
1214 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1215 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1216 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1217 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1218 +  */
1219 +  void SimInfo::getGyrationalVolume(RealType &volume){
1220 +    Mat3x3d intTensor;
1221 +    RealType det;
1222 +    Vector3d dummyAngMom;
1223 +    RealType sysconstants;
1224 +    RealType geomCnst;
1225 +
1226 +    geomCnst = 3.0/2.0;
1227 +    /* Get the inertial tensor and angular momentum for free*/
1228 +    getInertiaTensor(intTensor,dummyAngMom);
1229 +    
1230 +    det = intTensor.determinant();
1231 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1232 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1233 +    return;
1234 +  }
1235 +
1236 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1237 +    Mat3x3d intTensor;
1238 +    Vector3d dummyAngMom;
1239 +    RealType sysconstants;
1240 +    RealType geomCnst;
1241 +
1242 +    geomCnst = 3.0/2.0;
1243 +    /* Get the inertial tensor and angular momentum for free*/
1244 +    getInertiaTensor(intTensor,dummyAngMom);
1245 +    
1246 +    detI = intTensor.determinant();
1247 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1248 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1249 +    return;
1250 +  }
1251 + /*
1252 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1253 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1254 +      sdByGlobalIndex_ = v;
1255 +    }
1256 +
1257 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1258 +      //assert(index < nAtoms_ + nRigidBodies_);
1259 +      return sdByGlobalIndex_.at(index);
1260 +    }  
1261 + */  
1262 +  int SimInfo::getNGlobalConstraints() {
1263 +    int nGlobalConstraints;
1264 + #ifdef IS_MPI
1265 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1266 +                  MPI_COMM_WORLD);    
1267 + #else
1268 +    nGlobalConstraints =  nConstraints_;
1269 + #endif
1270 +    return nGlobalConstraints;
1271 +  }
1272 +
1273 + }//end namespace OpenMD
1274 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 878 by chrisfen, Wed Feb 1 20:54:46 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines