1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
48 |
|
|
49 |
|
#include <algorithm> |
50 |
|
#include <set> |
51 |
+ |
#include <map> |
52 |
|
|
53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
+ |
#include "primitives/StuntDouble.hpp" |
57 |
|
#include "UseTheForce/doForces_interface.h" |
58 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
58 |
> |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
59 |
|
#include "utils/MemoryUtils.hpp" |
60 |
|
#include "utils/simError.h" |
61 |
+ |
#include "selection/SelectionManager.hpp" |
62 |
+ |
#include "io/ForceFieldOptions.hpp" |
63 |
+ |
#include "UseTheForce/ForceField.hpp" |
64 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
65 |
|
|
66 |
|
#ifdef IS_MPI |
67 |
|
#include "UseTheForce/mpiComponentPlan.h" |
68 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
69 |
|
#endif |
70 |
|
|
71 |
< |
namespace oopse { |
72 |
< |
|
73 |
< |
SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
74 |
< |
ForceField* ff, Globals* simParams) : |
75 |
< |
forceField_(ff), simParams_(simParams), |
76 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
77 |
< |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
78 |
< |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
79 |
< |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
80 |
< |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
81 |
< |
sman_(NULL), fortranInitialized_(false) { |
82 |
< |
|
83 |
< |
|
78 |
< |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
71 |
> |
using namespace std; |
72 |
> |
namespace OpenMD { |
73 |
> |
|
74 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
75 |
> |
forceField_(ff), simParams_(simParams), |
76 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
77 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
78 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
79 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
80 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
81 |
> |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
82 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
83 |
> |
|
84 |
|
MoleculeStamp* molStamp; |
85 |
|
int nMolWithSameStamp; |
86 |
|
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
87 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
87 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
88 |
|
CutoffGroupStamp* cgStamp; |
89 |
|
RigidBodyStamp* rbStamp; |
90 |
|
int nRigidAtoms = 0; |
91 |
|
|
92 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
93 |
< |
molStamp = i->first; |
94 |
< |
nMolWithSameStamp = i->second; |
95 |
< |
|
96 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
97 |
< |
|
98 |
< |
//calculate atoms in molecules |
99 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
100 |
< |
|
101 |
< |
|
102 |
< |
//calculate atoms in cutoff groups |
103 |
< |
int nAtomsInGroups = 0; |
104 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
105 |
< |
|
106 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
107 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
108 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
109 |
< |
} |
110 |
< |
|
111 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
112 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
113 |
< |
|
114 |
< |
//calculate atoms in rigid bodies |
115 |
< |
int nAtomsInRigidBodies = 0; |
116 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
117 |
< |
|
118 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
119 |
< |
rbStamp = molStamp->getRigidBody(j); |
120 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
121 |
< |
} |
122 |
< |
|
123 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
124 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
125 |
< |
|
92 |
> |
vector<Component*> components = simParams->getComponents(); |
93 |
> |
|
94 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
95 |
> |
molStamp = (*i)->getMoleculeStamp(); |
96 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
97 |
> |
|
98 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
99 |
> |
|
100 |
> |
//calculate atoms in molecules |
101 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
102 |
> |
|
103 |
> |
//calculate atoms in cutoff groups |
104 |
> |
int nAtomsInGroups = 0; |
105 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
106 |
> |
|
107 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
108 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
109 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
110 |
> |
} |
111 |
> |
|
112 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
113 |
> |
|
114 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
115 |
> |
|
116 |
> |
//calculate atoms in rigid bodies |
117 |
> |
int nAtomsInRigidBodies = 0; |
118 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
119 |
> |
|
120 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
121 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
122 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
123 |
> |
} |
124 |
> |
|
125 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
126 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
127 |
> |
|
128 |
|
} |
129 |
< |
|
130 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
131 |
< |
//therefore the total number of cutoff groups in the system is equal to |
132 |
< |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
133 |
< |
//file plus the number of cutoff groups defined in meta-data file |
129 |
> |
|
130 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
131 |
> |
//group therefore the total number of cutoff groups in the system is |
132 |
> |
//equal to the total number of atoms minus number of atoms belong to |
133 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
134 |
> |
//groups defined in meta-data file |
135 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
128 |
– |
|
129 |
– |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
130 |
– |
//therefore the total number of integrable objects in the system is equal to |
131 |
– |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
132 |
– |
//file plus the number of rigid bodies defined in meta-data file |
133 |
– |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
134 |
– |
|
135 |
– |
nGlobalMols_ = molStampIds_.size(); |
136 |
– |
|
137 |
– |
#ifdef IS_MPI |
138 |
– |
molToProcMap_.resize(nGlobalMols_); |
139 |
– |
#endif |
136 |
|
|
137 |
< |
} |
138 |
< |
|
139 |
< |
SimInfo::~SimInfo() { |
140 |
< |
//MemoryUtils::deleteVectorOfPointer(molecules_); |
141 |
< |
|
142 |
< |
MemoryUtils::deleteVectorOfPointer(moleculeStamps_); |
137 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
138 |
> |
//integrable object therefore the total number of integrable objects |
139 |
> |
//in the system is equal to the total number of atoms minus number of |
140 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
141 |
> |
//of rigid bodies defined in meta-data file |
142 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
143 |
> |
+ nGlobalRigidBodies_; |
144 |
|
|
145 |
+ |
nGlobalMols_ = molStampIds_.size(); |
146 |
+ |
molToProcMap_.resize(nGlobalMols_); |
147 |
+ |
} |
148 |
+ |
|
149 |
+ |
SimInfo::~SimInfo() { |
150 |
+ |
map<int, Molecule*>::iterator i; |
151 |
+ |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
152 |
+ |
delete i->second; |
153 |
+ |
} |
154 |
+ |
molecules_.clear(); |
155 |
+ |
|
156 |
|
delete sman_; |
157 |
|
delete simParams_; |
158 |
|
delete forceField_; |
159 |
+ |
} |
160 |
|
|
152 |
– |
} |
161 |
|
|
162 |
< |
int SimInfo::getNGlobalConstraints() { |
155 |
< |
int nGlobalConstraints; |
156 |
< |
#ifdef IS_MPI |
157 |
< |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
158 |
< |
MPI_COMM_WORLD); |
159 |
< |
#else |
160 |
< |
nGlobalConstraints = nConstraints_; |
161 |
< |
#endif |
162 |
< |
return nGlobalConstraints; |
163 |
< |
} |
164 |
< |
|
165 |
< |
bool SimInfo::addMolecule(Molecule* mol) { |
162 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
163 |
|
MoleculeIterator i; |
164 |
< |
|
164 |
> |
|
165 |
|
i = molecules_.find(mol->getGlobalIndex()); |
166 |
|
if (i == molecules_.end() ) { |
167 |
< |
|
168 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
169 |
< |
|
170 |
< |
nAtoms_ += mol->getNAtoms(); |
171 |
< |
nBonds_ += mol->getNBonds(); |
172 |
< |
nBends_ += mol->getNBends(); |
173 |
< |
nTorsions_ += mol->getNTorsions(); |
174 |
< |
nRigidBodies_ += mol->getNRigidBodies(); |
175 |
< |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
176 |
< |
nCutoffGroups_ += mol->getNCutoffGroups(); |
177 |
< |
nConstraints_ += mol->getNConstraintPairs(); |
178 |
< |
|
179 |
< |
addExcludePairs(mol); |
180 |
< |
|
181 |
< |
return true; |
167 |
> |
|
168 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
169 |
> |
|
170 |
> |
nAtoms_ += mol->getNAtoms(); |
171 |
> |
nBonds_ += mol->getNBonds(); |
172 |
> |
nBends_ += mol->getNBends(); |
173 |
> |
nTorsions_ += mol->getNTorsions(); |
174 |
> |
nInversions_ += mol->getNInversions(); |
175 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
176 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
177 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
178 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
179 |
> |
|
180 |
> |
addInteractionPairs(mol); |
181 |
> |
|
182 |
> |
return true; |
183 |
|
} else { |
184 |
< |
return false; |
184 |
> |
return false; |
185 |
|
} |
186 |
< |
} |
187 |
< |
|
188 |
< |
bool SimInfo::removeMolecule(Molecule* mol) { |
186 |
> |
} |
187 |
> |
|
188 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
189 |
|
MoleculeIterator i; |
190 |
|
i = molecules_.find(mol->getGlobalIndex()); |
191 |
|
|
192 |
|
if (i != molecules_.end() ) { |
193 |
|
|
194 |
< |
assert(mol == i->second); |
194 |
> |
assert(mol == i->second); |
195 |
|
|
196 |
< |
nAtoms_ -= mol->getNAtoms(); |
197 |
< |
nBonds_ -= mol->getNBonds(); |
198 |
< |
nBends_ -= mol->getNBends(); |
199 |
< |
nTorsions_ -= mol->getNTorsions(); |
200 |
< |
nRigidBodies_ -= mol->getNRigidBodies(); |
201 |
< |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
202 |
< |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
203 |
< |
nConstraints_ -= mol->getNConstraintPairs(); |
196 |
> |
nAtoms_ -= mol->getNAtoms(); |
197 |
> |
nBonds_ -= mol->getNBonds(); |
198 |
> |
nBends_ -= mol->getNBends(); |
199 |
> |
nTorsions_ -= mol->getNTorsions(); |
200 |
> |
nInversions_ -= mol->getNInversions(); |
201 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
202 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
203 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
204 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
205 |
|
|
206 |
< |
removeExcludePairs(mol); |
207 |
< |
molecules_.erase(mol->getGlobalIndex()); |
206 |
> |
removeInteractionPairs(mol); |
207 |
> |
molecules_.erase(mol->getGlobalIndex()); |
208 |
|
|
209 |
< |
delete mol; |
209 |
> |
delete mol; |
210 |
|
|
211 |
< |
return true; |
211 |
> |
return true; |
212 |
|
} else { |
213 |
< |
return false; |
213 |
> |
return false; |
214 |
|
} |
215 |
+ |
} |
216 |
|
|
217 |
– |
|
218 |
– |
} |
219 |
– |
|
217 |
|
|
218 |
< |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
218 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
219 |
|
i = molecules_.begin(); |
220 |
|
return i == molecules_.end() ? NULL : i->second; |
221 |
< |
} |
221 |
> |
} |
222 |
|
|
223 |
< |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
223 |
> |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
224 |
|
++i; |
225 |
|
return i == molecules_.end() ? NULL : i->second; |
226 |
< |
} |
226 |
> |
} |
227 |
|
|
228 |
|
|
229 |
< |
void SimInfo::calcNdf() { |
229 |
> |
void SimInfo::calcNdf() { |
230 |
|
int ndf_local; |
231 |
|
MoleculeIterator i; |
232 |
< |
std::vector<StuntDouble*>::iterator j; |
232 |
> |
vector<StuntDouble*>::iterator j; |
233 |
|
Molecule* mol; |
234 |
|
StuntDouble* integrableObject; |
235 |
|
|
236 |
|
ndf_local = 0; |
237 |
|
|
238 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
239 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
240 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
239 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
240 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
241 |
|
|
242 |
< |
ndf_local += 3; |
242 |
> |
ndf_local += 3; |
243 |
|
|
244 |
< |
if (integrableObject->isDirectional()) { |
245 |
< |
if (integrableObject->isLinear()) { |
246 |
< |
ndf_local += 2; |
247 |
< |
} else { |
248 |
< |
ndf_local += 3; |
249 |
< |
} |
250 |
< |
} |
244 |
> |
if (integrableObject->isDirectional()) { |
245 |
> |
if (integrableObject->isLinear()) { |
246 |
> |
ndf_local += 2; |
247 |
> |
} else { |
248 |
> |
ndf_local += 3; |
249 |
> |
} |
250 |
> |
} |
251 |
|
|
252 |
< |
}//end for (integrableObject) |
253 |
< |
}// end for (mol) |
252 |
> |
} |
253 |
> |
} |
254 |
|
|
255 |
|
// n_constraints is local, so subtract them on each processor |
256 |
|
ndf_local -= nConstraints_; |
265 |
|
// entire system: |
266 |
|
ndf_ = ndf_ - 3 - nZconstraint_; |
267 |
|
|
268 |
< |
} |
268 |
> |
} |
269 |
|
|
270 |
< |
void SimInfo::calcNdfRaw() { |
270 |
> |
int SimInfo::getFdf() { |
271 |
> |
#ifdef IS_MPI |
272 |
> |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
273 |
> |
#else |
274 |
> |
fdf_ = fdf_local; |
275 |
> |
#endif |
276 |
> |
return fdf_; |
277 |
> |
} |
278 |
> |
|
279 |
> |
void SimInfo::calcNdfRaw() { |
280 |
|
int ndfRaw_local; |
281 |
|
|
282 |
|
MoleculeIterator i; |
283 |
< |
std::vector<StuntDouble*>::iterator j; |
283 |
> |
vector<StuntDouble*>::iterator j; |
284 |
|
Molecule* mol; |
285 |
|
StuntDouble* integrableObject; |
286 |
|
|
288 |
|
ndfRaw_local = 0; |
289 |
|
|
290 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
291 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
292 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
291 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
292 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
293 |
|
|
294 |
< |
ndfRaw_local += 3; |
294 |
> |
ndfRaw_local += 3; |
295 |
|
|
296 |
< |
if (integrableObject->isDirectional()) { |
297 |
< |
if (integrableObject->isLinear()) { |
298 |
< |
ndfRaw_local += 2; |
299 |
< |
} else { |
300 |
< |
ndfRaw_local += 3; |
301 |
< |
} |
302 |
< |
} |
296 |
> |
if (integrableObject->isDirectional()) { |
297 |
> |
if (integrableObject->isLinear()) { |
298 |
> |
ndfRaw_local += 2; |
299 |
> |
} else { |
300 |
> |
ndfRaw_local += 3; |
301 |
> |
} |
302 |
> |
} |
303 |
|
|
304 |
< |
} |
304 |
> |
} |
305 |
|
} |
306 |
|
|
307 |
|
#ifdef IS_MPI |
309 |
|
#else |
310 |
|
ndfRaw_ = ndfRaw_local; |
311 |
|
#endif |
312 |
< |
} |
312 |
> |
} |
313 |
|
|
314 |
< |
void SimInfo::calcNdfTrans() { |
314 |
> |
void SimInfo::calcNdfTrans() { |
315 |
|
int ndfTrans_local; |
316 |
|
|
317 |
|
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
325 |
|
|
326 |
|
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
327 |
|
|
328 |
< |
} |
328 |
> |
} |
329 |
|
|
330 |
< |
void SimInfo::addExcludePairs(Molecule* mol) { |
331 |
< |
std::vector<Bond*>::iterator bondIter; |
332 |
< |
std::vector<Bend*>::iterator bendIter; |
333 |
< |
std::vector<Torsion*>::iterator torsionIter; |
330 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
331 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
332 |
> |
vector<Bond*>::iterator bondIter; |
333 |
> |
vector<Bend*>::iterator bendIter; |
334 |
> |
vector<Torsion*>::iterator torsionIter; |
335 |
> |
vector<Inversion*>::iterator inversionIter; |
336 |
|
Bond* bond; |
337 |
|
Bend* bend; |
338 |
|
Torsion* torsion; |
339 |
+ |
Inversion* inversion; |
340 |
|
int a; |
341 |
|
int b; |
342 |
|
int c; |
343 |
|
int d; |
335 |
– |
|
336 |
– |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
337 |
– |
a = bond->getAtomA()->getGlobalIndex(); |
338 |
– |
b = bond->getAtomB()->getGlobalIndex(); |
339 |
– |
exclude_.addPair(a, b); |
340 |
– |
} |
344 |
|
|
345 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
346 |
< |
a = bend->getAtomA()->getGlobalIndex(); |
347 |
< |
b = bend->getAtomB()->getGlobalIndex(); |
348 |
< |
c = bend->getAtomC()->getGlobalIndex(); |
345 |
> |
// atomGroups can be used to add special interaction maps between |
346 |
> |
// groups of atoms that are in two separate rigid bodies. |
347 |
> |
// However, most site-site interactions between two rigid bodies |
348 |
> |
// are probably not special, just the ones between the physically |
349 |
> |
// bonded atoms. Interactions *within* a single rigid body should |
350 |
> |
// always be excluded. These are done at the bottom of this |
351 |
> |
// function. |
352 |
|
|
353 |
< |
exclude_.addPair(a, b); |
354 |
< |
exclude_.addPair(a, c); |
355 |
< |
exclude_.addPair(b, c); |
353 |
> |
map<int, set<int> > atomGroups; |
354 |
> |
Molecule::RigidBodyIterator rbIter; |
355 |
> |
RigidBody* rb; |
356 |
> |
Molecule::IntegrableObjectIterator ii; |
357 |
> |
StuntDouble* integrableObject; |
358 |
> |
|
359 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
360 |
> |
integrableObject != NULL; |
361 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
362 |
> |
|
363 |
> |
if (integrableObject->isRigidBody()) { |
364 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
365 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
366 |
> |
set<int> rigidAtoms; |
367 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
368 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
369 |
> |
} |
370 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
371 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
372 |
> |
} |
373 |
> |
} else { |
374 |
> |
set<int> oneAtomSet; |
375 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
376 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
377 |
> |
} |
378 |
> |
} |
379 |
> |
|
380 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
381 |
> |
bond = mol->nextBond(bondIter)) { |
382 |
> |
|
383 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
384 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
385 |
> |
|
386 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
387 |
> |
oneTwoInteractions_.addPair(a, b); |
388 |
> |
} else { |
389 |
> |
excludedInteractions_.addPair(a, b); |
390 |
> |
} |
391 |
|
} |
392 |
|
|
393 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
394 |
< |
a = torsion->getAtomA()->getGlobalIndex(); |
354 |
< |
b = torsion->getAtomB()->getGlobalIndex(); |
355 |
< |
c = torsion->getAtomC()->getGlobalIndex(); |
356 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
393 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
394 |
> |
bend = mol->nextBend(bendIter)) { |
395 |
|
|
396 |
< |
exclude_.addPair(a, b); |
397 |
< |
exclude_.addPair(a, c); |
398 |
< |
exclude_.addPair(a, d); |
399 |
< |
exclude_.addPair(b, c); |
400 |
< |
exclude_.addPair(b, d); |
401 |
< |
exclude_.addPair(c, d); |
396 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
397 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
398 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
399 |
> |
|
400 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
401 |
> |
oneTwoInteractions_.addPair(a, b); |
402 |
> |
oneTwoInteractions_.addPair(b, c); |
403 |
> |
} else { |
404 |
> |
excludedInteractions_.addPair(a, b); |
405 |
> |
excludedInteractions_.addPair(b, c); |
406 |
> |
} |
407 |
> |
|
408 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
409 |
> |
oneThreeInteractions_.addPair(a, c); |
410 |
> |
} else { |
411 |
> |
excludedInteractions_.addPair(a, c); |
412 |
> |
} |
413 |
|
} |
414 |
|
|
415 |
< |
|
416 |
< |
} |
415 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
416 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
417 |
|
|
418 |
< |
void SimInfo::removeExcludePairs(Molecule* mol) { |
419 |
< |
std::vector<Bond*>::iterator bondIter; |
420 |
< |
std::vector<Bend*>::iterator bendIter; |
421 |
< |
std::vector<Torsion*>::iterator torsionIter; |
418 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
419 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
420 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
421 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
422 |
> |
|
423 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
424 |
> |
oneTwoInteractions_.addPair(a, b); |
425 |
> |
oneTwoInteractions_.addPair(b, c); |
426 |
> |
oneTwoInteractions_.addPair(c, d); |
427 |
> |
} else { |
428 |
> |
excludedInteractions_.addPair(a, b); |
429 |
> |
excludedInteractions_.addPair(b, c); |
430 |
> |
excludedInteractions_.addPair(c, d); |
431 |
> |
} |
432 |
> |
|
433 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
434 |
> |
oneThreeInteractions_.addPair(a, c); |
435 |
> |
oneThreeInteractions_.addPair(b, d); |
436 |
> |
} else { |
437 |
> |
excludedInteractions_.addPair(a, c); |
438 |
> |
excludedInteractions_.addPair(b, d); |
439 |
> |
} |
440 |
> |
|
441 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
442 |
> |
oneFourInteractions_.addPair(a, d); |
443 |
> |
} else { |
444 |
> |
excludedInteractions_.addPair(a, d); |
445 |
> |
} |
446 |
> |
} |
447 |
> |
|
448 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
449 |
> |
inversion = mol->nextInversion(inversionIter)) { |
450 |
> |
|
451 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
452 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
453 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
454 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
455 |
> |
|
456 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
457 |
> |
oneTwoInteractions_.addPair(a, b); |
458 |
> |
oneTwoInteractions_.addPair(a, c); |
459 |
> |
oneTwoInteractions_.addPair(a, d); |
460 |
> |
} else { |
461 |
> |
excludedInteractions_.addPair(a, b); |
462 |
> |
excludedInteractions_.addPair(a, c); |
463 |
> |
excludedInteractions_.addPair(a, d); |
464 |
> |
} |
465 |
> |
|
466 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
467 |
> |
oneThreeInteractions_.addPair(b, c); |
468 |
> |
oneThreeInteractions_.addPair(b, d); |
469 |
> |
oneThreeInteractions_.addPair(c, d); |
470 |
> |
} else { |
471 |
> |
excludedInteractions_.addPair(b, c); |
472 |
> |
excludedInteractions_.addPair(b, d); |
473 |
> |
excludedInteractions_.addPair(c, d); |
474 |
> |
} |
475 |
> |
} |
476 |
> |
|
477 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
478 |
> |
rb = mol->nextRigidBody(rbIter)) { |
479 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
480 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
481 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
482 |
> |
a = atoms[i]->getGlobalIndex(); |
483 |
> |
b = atoms[j]->getGlobalIndex(); |
484 |
> |
excludedInteractions_.addPair(a, b); |
485 |
> |
} |
486 |
> |
} |
487 |
> |
} |
488 |
> |
|
489 |
> |
} |
490 |
> |
|
491 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
492 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
493 |
> |
vector<Bond*>::iterator bondIter; |
494 |
> |
vector<Bend*>::iterator bendIter; |
495 |
> |
vector<Torsion*>::iterator torsionIter; |
496 |
> |
vector<Inversion*>::iterator inversionIter; |
497 |
|
Bond* bond; |
498 |
|
Bend* bend; |
499 |
|
Torsion* torsion; |
500 |
+ |
Inversion* inversion; |
501 |
|
int a; |
502 |
|
int b; |
503 |
|
int c; |
504 |
|
int d; |
505 |
+ |
|
506 |
+ |
map<int, set<int> > atomGroups; |
507 |
+ |
Molecule::RigidBodyIterator rbIter; |
508 |
+ |
RigidBody* rb; |
509 |
+ |
Molecule::IntegrableObjectIterator ii; |
510 |
+ |
StuntDouble* integrableObject; |
511 |
|
|
512 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
513 |
< |
a = bond->getAtomA()->getGlobalIndex(); |
514 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
515 |
< |
exclude_.removePair(a, b); |
512 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
513 |
> |
integrableObject != NULL; |
514 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
515 |
> |
|
516 |
> |
if (integrableObject->isRigidBody()) { |
517 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
518 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
519 |
> |
set<int> rigidAtoms; |
520 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
521 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
522 |
> |
} |
523 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
524 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
525 |
> |
} |
526 |
> |
} else { |
527 |
> |
set<int> oneAtomSet; |
528 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
529 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
530 |
> |
} |
531 |
> |
} |
532 |
> |
|
533 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
534 |
> |
bond = mol->nextBond(bondIter)) { |
535 |
> |
|
536 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
537 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
538 |
> |
|
539 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
540 |
> |
oneTwoInteractions_.removePair(a, b); |
541 |
> |
} else { |
542 |
> |
excludedInteractions_.removePair(a, b); |
543 |
> |
} |
544 |
|
} |
545 |
|
|
546 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
547 |
< |
a = bend->getAtomA()->getGlobalIndex(); |
389 |
< |
b = bend->getAtomB()->getGlobalIndex(); |
390 |
< |
c = bend->getAtomC()->getGlobalIndex(); |
546 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
547 |
> |
bend = mol->nextBend(bendIter)) { |
548 |
|
|
549 |
< |
exclude_.removePair(a, b); |
550 |
< |
exclude_.removePair(a, c); |
551 |
< |
exclude_.removePair(b, c); |
549 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
550 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
551 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
552 |
> |
|
553 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
554 |
> |
oneTwoInteractions_.removePair(a, b); |
555 |
> |
oneTwoInteractions_.removePair(b, c); |
556 |
> |
} else { |
557 |
> |
excludedInteractions_.removePair(a, b); |
558 |
> |
excludedInteractions_.removePair(b, c); |
559 |
> |
} |
560 |
> |
|
561 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
562 |
> |
oneThreeInteractions_.removePair(a, c); |
563 |
> |
} else { |
564 |
> |
excludedInteractions_.removePair(a, c); |
565 |
> |
} |
566 |
|
} |
567 |
|
|
568 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
569 |
< |
a = torsion->getAtomA()->getGlobalIndex(); |
399 |
< |
b = torsion->getAtomB()->getGlobalIndex(); |
400 |
< |
c = torsion->getAtomC()->getGlobalIndex(); |
401 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
568 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
569 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
570 |
|
|
571 |
< |
exclude_.removePair(a, b); |
572 |
< |
exclude_.removePair(a, c); |
573 |
< |
exclude_.removePair(a, d); |
574 |
< |
exclude_.removePair(b, c); |
575 |
< |
exclude_.removePair(b, d); |
576 |
< |
exclude_.removePair(c, d); |
571 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
572 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
573 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
574 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
575 |
> |
|
576 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
577 |
> |
oneTwoInteractions_.removePair(a, b); |
578 |
> |
oneTwoInteractions_.removePair(b, c); |
579 |
> |
oneTwoInteractions_.removePair(c, d); |
580 |
> |
} else { |
581 |
> |
excludedInteractions_.removePair(a, b); |
582 |
> |
excludedInteractions_.removePair(b, c); |
583 |
> |
excludedInteractions_.removePair(c, d); |
584 |
> |
} |
585 |
> |
|
586 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
587 |
> |
oneThreeInteractions_.removePair(a, c); |
588 |
> |
oneThreeInteractions_.removePair(b, d); |
589 |
> |
} else { |
590 |
> |
excludedInteractions_.removePair(a, c); |
591 |
> |
excludedInteractions_.removePair(b, d); |
592 |
> |
} |
593 |
> |
|
594 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
595 |
> |
oneFourInteractions_.removePair(a, d); |
596 |
> |
} else { |
597 |
> |
excludedInteractions_.removePair(a, d); |
598 |
> |
} |
599 |
|
} |
600 |
|
|
601 |
< |
} |
601 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
602 |
> |
inversion = mol->nextInversion(inversionIter)) { |
603 |
|
|
604 |
+ |
a = inversion->getAtomA()->getGlobalIndex(); |
605 |
+ |
b = inversion->getAtomB()->getGlobalIndex(); |
606 |
+ |
c = inversion->getAtomC()->getGlobalIndex(); |
607 |
+ |
d = inversion->getAtomD()->getGlobalIndex(); |
608 |
|
|
609 |
< |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
610 |
< |
int curStampId; |
609 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
610 |
> |
oneTwoInteractions_.removePair(a, b); |
611 |
> |
oneTwoInteractions_.removePair(a, c); |
612 |
> |
oneTwoInteractions_.removePair(a, d); |
613 |
> |
} else { |
614 |
> |
excludedInteractions_.removePair(a, b); |
615 |
> |
excludedInteractions_.removePair(a, c); |
616 |
> |
excludedInteractions_.removePair(a, d); |
617 |
> |
} |
618 |
|
|
619 |
+ |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
620 |
+ |
oneThreeInteractions_.removePair(b, c); |
621 |
+ |
oneThreeInteractions_.removePair(b, d); |
622 |
+ |
oneThreeInteractions_.removePair(c, d); |
623 |
+ |
} else { |
624 |
+ |
excludedInteractions_.removePair(b, c); |
625 |
+ |
excludedInteractions_.removePair(b, d); |
626 |
+ |
excludedInteractions_.removePair(c, d); |
627 |
+ |
} |
628 |
+ |
} |
629 |
+ |
|
630 |
+ |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
631 |
+ |
rb = mol->nextRigidBody(rbIter)) { |
632 |
+ |
vector<Atom*> atoms = rb->getAtoms(); |
633 |
+ |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
634 |
+ |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
635 |
+ |
a = atoms[i]->getGlobalIndex(); |
636 |
+ |
b = atoms[j]->getGlobalIndex(); |
637 |
+ |
excludedInteractions_.removePair(a, b); |
638 |
+ |
} |
639 |
+ |
} |
640 |
+ |
} |
641 |
+ |
|
642 |
+ |
} |
643 |
+ |
|
644 |
+ |
|
645 |
+ |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
646 |
+ |
int curStampId; |
647 |
+ |
|
648 |
|
//index from 0 |
649 |
|
curStampId = moleculeStamps_.size(); |
650 |
|
|
651 |
|
moleculeStamps_.push_back(molStamp); |
652 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
653 |
< |
} |
653 |
> |
} |
654 |
|
|
424 |
– |
void SimInfo::update() { |
655 |
|
|
656 |
< |
setupSimType(); |
656 |
> |
/** |
657 |
> |
* update |
658 |
> |
* |
659 |
> |
* Performs the global checks and variable settings after the objects have been |
660 |
> |
* created. |
661 |
> |
* |
662 |
> |
*/ |
663 |
> |
void SimInfo::update() { |
664 |
> |
|
665 |
> |
setupSimVariables(); |
666 |
> |
setupCutoffs(); |
667 |
> |
setupSwitching(); |
668 |
> |
setupElectrostatics(); |
669 |
> |
setupNeighborlists(); |
670 |
|
|
671 |
|
#ifdef IS_MPI |
672 |
|
setupFortranParallel(); |
673 |
|
#endif |
431 |
– |
|
674 |
|
setupFortranSim(); |
675 |
+ |
fortranInitialized_ = true; |
676 |
|
|
434 |
– |
//setup fortran force field |
435 |
– |
/** @deprecate */ |
436 |
– |
int isError = 0; |
437 |
– |
initFortranFF( &fInfo_.SIM_uses_RF , &isError ); |
438 |
– |
if(isError){ |
439 |
– |
sprintf( painCave.errMsg, |
440 |
– |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
441 |
– |
painCave.isFatal = 1; |
442 |
– |
simError(); |
443 |
– |
} |
444 |
– |
|
445 |
– |
|
446 |
– |
setupCutoff(); |
447 |
– |
|
677 |
|
calcNdf(); |
678 |
|
calcNdfRaw(); |
679 |
|
calcNdfTrans(); |
680 |
< |
|
681 |
< |
fortranInitialized_ = true; |
682 |
< |
} |
454 |
< |
|
455 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
680 |
> |
} |
681 |
> |
|
682 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
683 |
|
SimInfo::MoleculeIterator mi; |
684 |
|
Molecule* mol; |
685 |
|
Molecule::AtomIterator ai; |
686 |
|
Atom* atom; |
687 |
< |
std::set<AtomType*> atomTypes; |
688 |
< |
|
689 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
690 |
< |
|
691 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
692 |
< |
atomTypes.insert(atom->getAtomType()); |
693 |
< |
} |
467 |
< |
|
468 |
< |
} |
469 |
< |
|
687 |
> |
set<AtomType*> atomTypes; |
688 |
> |
|
689 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
690 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
691 |
> |
atomTypes.insert(atom->getAtomType()); |
692 |
> |
} |
693 |
> |
} |
694 |
|
return atomTypes; |
695 |
< |
} |
695 |
> |
} |
696 |
|
|
697 |
< |
void SimInfo::setupSimType() { |
698 |
< |
std::set<AtomType*>::iterator i; |
699 |
< |
std::set<AtomType*> atomTypes; |
700 |
< |
atomTypes = getUniqueAtomTypes(); |
697 |
> |
/** |
698 |
> |
* setupCutoffs |
699 |
> |
* |
700 |
> |
* Sets the values of cutoffRadius and cutoffMethod |
701 |
> |
* |
702 |
> |
* cutoffRadius : realType |
703 |
> |
* If the cutoffRadius was explicitly set, use that value. |
704 |
> |
* If the cutoffRadius was not explicitly set: |
705 |
> |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
706 |
> |
* No electrostatic atoms? Poll the atom types present in the |
707 |
> |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
708 |
> |
* Use the maximum suggested value that was found. |
709 |
> |
* |
710 |
> |
* cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL) |
711 |
> |
* If cutoffMethod was explicitly set, use that choice. |
712 |
> |
* If cutoffMethod was not explicitly set, use SHIFTED_FORCE |
713 |
> |
*/ |
714 |
> |
void SimInfo::setupCutoffs() { |
715 |
|
|
716 |
< |
int useLennardJones = 0; |
717 |
< |
int useElectrostatic = 0; |
718 |
< |
int useEAM = 0; |
719 |
< |
int useCharge = 0; |
720 |
< |
int useDirectional = 0; |
721 |
< |
int useDipole = 0; |
722 |
< |
int useGayBerne = 0; |
723 |
< |
int useSticky = 0; |
724 |
< |
int useShape = 0; |
725 |
< |
int useFLARB = 0; //it is not in AtomType yet |
726 |
< |
int useDirectionalAtom = 0; |
727 |
< |
int useElectrostatics = 0; |
728 |
< |
//usePBC and useRF are from simParams |
729 |
< |
int usePBC = simParams_->getPBC(); |
730 |
< |
int useRF = simParams_->getUseRF(); |
731 |
< |
|
732 |
< |
//loop over all of the atom types |
733 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
734 |
< |
useLennardJones |= (*i)->isLennardJones(); |
735 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
736 |
< |
useEAM |= (*i)->isEAM(); |
737 |
< |
useCharge |= (*i)->isCharge(); |
738 |
< |
useDirectional |= (*i)->isDirectional(); |
739 |
< |
useDipole |= (*i)->isDipole(); |
740 |
< |
useGayBerne |= (*i)->isGayBerne(); |
741 |
< |
useSticky |= (*i)->isSticky(); |
742 |
< |
useShape |= (*i)->isShape(); |
716 |
> |
if (simParams_->haveCutoffRadius()) { |
717 |
> |
cutoffRadius_ = simParams_->getCutoffRadius(); |
718 |
> |
} else { |
719 |
> |
if (usesElectrostaticAtoms_) { |
720 |
> |
sprintf(painCave.errMsg, |
721 |
> |
"SimInfo: No value was set for the cutoffRadius.\n" |
722 |
> |
"\tOpenMD will use a default value of 12.0 angstroms" |
723 |
> |
"\tfor the cutoffRadius.\n"); |
724 |
> |
painCave.isFatal = 0; |
725 |
> |
painCave.severity = OPENMD_INFO; |
726 |
> |
simError(); |
727 |
> |
cutoffRadius_ = 12.0; |
728 |
> |
} else { |
729 |
> |
RealType thisCut; |
730 |
> |
set<AtomType*>::iterator i; |
731 |
> |
set<AtomType*> atomTypes; |
732 |
> |
atomTypes = getSimulatedAtomTypes(); |
733 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
734 |
> |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
735 |
> |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
736 |
> |
} |
737 |
> |
sprintf(painCave.errMsg, |
738 |
> |
"SimInfo: No value was set for the cutoffRadius.\n" |
739 |
> |
"\tOpenMD will use %lf angstroms.\n", |
740 |
> |
cutoffRadius_); |
741 |
> |
painCave.isFatal = 0; |
742 |
> |
painCave.severity = OPENMD_INFO; |
743 |
> |
simError(); |
744 |
> |
} |
745 |
|
} |
746 |
|
|
747 |
< |
if (useSticky || useDipole || useGayBerne || useShape) { |
748 |
< |
useDirectionalAtom = 1; |
747 |
> |
map<string, CutoffMethod> stringToCutoffMethod; |
748 |
> |
stringToCutoffMethod["HARD"] = HARD; |
749 |
> |
stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION; |
750 |
> |
stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL; |
751 |
> |
stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE; |
752 |
> |
|
753 |
> |
if (simParams_->haveCutoffMethod()) { |
754 |
> |
string cutMeth = toUpperCopy(simParams_->getCutoffMethod()); |
755 |
> |
map<string, CutoffMethod>::iterator i; |
756 |
> |
i = stringToCutoffMethod.find(cutMeth); |
757 |
> |
if (i == stringToCutoffMethod.end()) { |
758 |
> |
sprintf(painCave.errMsg, |
759 |
> |
"SimInfo: Could not find chosen cutoffMethod %s\n" |
760 |
> |
"\tShould be one of: " |
761 |
> |
"HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n", |
762 |
> |
cutMeth.c_str()); |
763 |
> |
painCave.isFatal = 1; |
764 |
> |
painCave.severity = OPENMD_ERROR; |
765 |
> |
simError(); |
766 |
> |
} else { |
767 |
> |
cutoffMethod_ = i->second; |
768 |
> |
} |
769 |
> |
} else { |
770 |
> |
sprintf(painCave.errMsg, |
771 |
> |
"SimInfo: No value was set for the cutoffMethod.\n" |
772 |
> |
"\tOpenMD will use SHIFTED_FORCE.\n"); |
773 |
> |
painCave.isFatal = 0; |
774 |
> |
painCave.severity = OPENMD_INFO; |
775 |
> |
simError(); |
776 |
> |
cutoffMethod_ = SHIFTED_FORCE; |
777 |
|
} |
778 |
+ |
} |
779 |
+ |
|
780 |
+ |
/** |
781 |
+ |
* setupSwitching |
782 |
+ |
* |
783 |
+ |
* Sets the values of switchingRadius and |
784 |
+ |
* If the switchingRadius was explicitly set, use that value (but check it) |
785 |
+ |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
786 |
+ |
*/ |
787 |
+ |
void SimInfo::setupSwitching() { |
788 |
+ |
|
789 |
+ |
if (simParams_->haveSwitchingRadius()) { |
790 |
+ |
switchingRadius_ = simParams_->getSwitchingRadius(); |
791 |
+ |
if (switchingRadius_ > cutoffRadius_) { |
792 |
+ |
sprintf(painCave.errMsg, |
793 |
+ |
"SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
794 |
+ |
switchingRadius_, cutoffRadius_); |
795 |
+ |
painCave.isFatal = 1; |
796 |
+ |
painCave.severity = OPENMD_ERROR; |
797 |
+ |
simError(); |
798 |
+ |
} |
799 |
+ |
} else { |
800 |
+ |
switchingRadius_ = 0.85 * cutoffRadius_; |
801 |
+ |
sprintf(painCave.errMsg, |
802 |
+ |
"SimInfo: No value was set for the switchingRadius.\n" |
803 |
+ |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
804 |
+ |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
805 |
+ |
painCave.isFatal = 0; |
806 |
+ |
painCave.severity = OPENMD_WARNING; |
807 |
+ |
simError(); |
808 |
+ |
} |
809 |
+ |
|
810 |
+ |
if (simParams_->haveSwitchingFunctionType()) { |
811 |
+ |
string funcType = simParams_->getSwitchingFunctionType(); |
812 |
+ |
toUpper(funcType); |
813 |
+ |
if (funcType == "CUBIC") { |
814 |
+ |
sft_ = cubic; |
815 |
+ |
} else { |
816 |
+ |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
817 |
+ |
sft_ = fifth_order_poly; |
818 |
+ |
} else { |
819 |
+ |
// throw error |
820 |
+ |
sprintf( painCave.errMsg, |
821 |
+ |
"SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n" |
822 |
+ |
"\tswitchingFunctionType must be one of: " |
823 |
+ |
"\"cubic\" or \"fifth_order_polynomial\".", |
824 |
+ |
funcType.c_str() ); |
825 |
+ |
painCave.isFatal = 1; |
826 |
+ |
painCave.severity = OPENMD_ERROR; |
827 |
+ |
simError(); |
828 |
+ |
} |
829 |
+ |
} |
830 |
+ |
} |
831 |
+ |
} |
832 |
|
|
833 |
< |
if (useCharge || useDipole) { |
834 |
< |
useElectrostatics = 1; |
833 |
> |
/** |
834 |
> |
* setupNeighborlists |
835 |
> |
* |
836 |
> |
* If the skinThickness was explicitly set, use that value (but check it) |
837 |
> |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
838 |
> |
*/ |
839 |
> |
void SimInfo::setupNeighborlists() { |
840 |
> |
if (simParams_->haveSkinThickness()) { |
841 |
> |
skinThickness_ = simParams_->getSkinThickness(); |
842 |
> |
} else { |
843 |
> |
skinThickness_ = 1.0; |
844 |
> |
sprintf(painCave.errMsg, |
845 |
> |
"SimInfo: No value was set for the skinThickness.\n" |
846 |
> |
"\tOpenMD will use a default value of %f Angstroms\n" |
847 |
> |
"\tfor this simulation\n", skinThickness_); |
848 |
> |
painCave.severity = OPENMD_INFO; |
849 |
> |
painCave.isFatal = 0; |
850 |
> |
simError(); |
851 |
> |
} |
852 |
> |
} |
853 |
> |
|
854 |
> |
void SimInfo::setupSimVariables() { |
855 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
856 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
857 |
> |
calcBoxDipole_ = false; |
858 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
859 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
860 |
> |
calcBoxDipole_ = true; |
861 |
> |
} |
862 |
> |
|
863 |
> |
set<AtomType*>::iterator i; |
864 |
> |
set<AtomType*> atomTypes; |
865 |
> |
atomTypes = getSimulatedAtomTypes(); |
866 |
> |
int usesElectrostatic = 0; |
867 |
> |
int usesMetallic = 0; |
868 |
> |
int usesDirectional = 0; |
869 |
> |
//loop over all of the atom types |
870 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
871 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
872 |
> |
usesMetallic |= (*i)->isMetal(); |
873 |
> |
usesDirectional |= (*i)->isDirectional(); |
874 |
|
} |
875 |
|
|
876 |
|
#ifdef IS_MPI |
877 |
|
int temp; |
878 |
+ |
temp = usesDirectional; |
879 |
+ |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
880 |
|
|
881 |
< |
temp = usePBC; |
882 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
881 |
> |
temp = usesMetallic; |
882 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
883 |
|
|
884 |
< |
temp = useDirectionalAtom; |
885 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
523 |
< |
|
524 |
< |
temp = useLennardJones; |
525 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
526 |
< |
|
527 |
< |
temp = useElectrostatics; |
528 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
529 |
< |
|
530 |
< |
temp = useCharge; |
531 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
532 |
< |
|
533 |
< |
temp = useDipole; |
534 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
535 |
< |
|
536 |
< |
temp = useSticky; |
537 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
538 |
< |
|
539 |
< |
temp = useGayBerne; |
540 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
541 |
< |
|
542 |
< |
temp = useEAM; |
543 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
544 |
< |
|
545 |
< |
temp = useShape; |
546 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
547 |
< |
|
548 |
< |
temp = useFLARB; |
549 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
550 |
< |
|
551 |
< |
temp = useRF; |
552 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
553 |
< |
|
884 |
> |
temp = usesElectrostatic; |
885 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
886 |
|
#endif |
887 |
+ |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
888 |
+ |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
889 |
+ |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
890 |
+ |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
891 |
+ |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
892 |
+ |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
893 |
+ |
} |
894 |
|
|
895 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
896 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
897 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
898 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
899 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
900 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
562 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
563 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
564 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
565 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
566 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
567 |
< |
fInfo_.SIM_uses_RF = useRF; |
568 |
< |
|
569 |
< |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
895 |
> |
void SimInfo::setupFortranSim() { |
896 |
> |
int isError; |
897 |
> |
int nExclude, nOneTwo, nOneThree, nOneFour; |
898 |
> |
vector<int> fortranGlobalGroupMembership; |
899 |
> |
|
900 |
> |
notifyFortranSkinThickness(&skinThickness_); |
901 |
|
|
902 |
< |
if (simParams_->haveDielectric()) { |
903 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
904 |
< |
} else { |
574 |
< |
sprintf(painCave.errMsg, |
575 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
576 |
< |
"\tYou are trying to use Reaction Field without" |
577 |
< |
"\tsetting a dielectric constant!\n"); |
578 |
< |
painCave.isFatal = 1; |
579 |
< |
simError(); |
580 |
< |
} |
581 |
< |
|
582 |
< |
} else { |
583 |
< |
fInfo_.dielect = 0.0; |
584 |
< |
} |
902 |
> |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
903 |
> |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
904 |
> |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
905 |
|
|
586 |
– |
} |
587 |
– |
|
588 |
– |
void SimInfo::setupFortranSim() { |
589 |
– |
int isError; |
590 |
– |
int nExclude; |
591 |
– |
std::vector<int> fortranGlobalGroupMembership; |
592 |
– |
|
593 |
– |
nExclude = exclude_.getSize(); |
906 |
|
isError = 0; |
907 |
|
|
908 |
|
//globalGroupMembership_ is filled by SimCreator |
909 |
|
for (int i = 0; i < nGlobalAtoms_; i++) { |
910 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
910 |
> |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
911 |
|
} |
912 |
|
|
913 |
|
//calculate mass ratio of cutoff group |
914 |
< |
std::vector<double> mfact; |
914 |
> |
vector<RealType> mfact; |
915 |
|
SimInfo::MoleculeIterator mi; |
916 |
|
Molecule* mol; |
917 |
|
Molecule::CutoffGroupIterator ci; |
918 |
|
CutoffGroup* cg; |
919 |
|
Molecule::AtomIterator ai; |
920 |
|
Atom* atom; |
921 |
< |
double totalMass; |
921 |
> |
RealType totalMass; |
922 |
|
|
923 |
|
//to avoid memory reallocation, reserve enough space for mfact |
924 |
|
mfact.reserve(getNCutoffGroups()); |
925 |
|
|
926 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
927 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
927 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
928 |
|
|
929 |
< |
totalMass = cg->getMass(); |
930 |
< |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
931 |
< |
mfact.push_back(atom->getMass()/totalMass); |
932 |
< |
} |
933 |
< |
|
934 |
< |
} |
929 |
> |
totalMass = cg->getMass(); |
930 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
931 |
> |
// Check for massless groups - set mfact to 1 if true |
932 |
> |
if (totalMass != 0) |
933 |
> |
mfact.push_back(atom->getMass()/totalMass); |
934 |
> |
else |
935 |
> |
mfact.push_back( 1.0 ); |
936 |
> |
} |
937 |
> |
} |
938 |
|
} |
939 |
|
|
940 |
|
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
941 |
< |
std::vector<int> identArray; |
941 |
> |
vector<int> identArray; |
942 |
|
|
943 |
|
//to avoid memory reallocation, reserve enough space identArray |
944 |
|
identArray.reserve(getNAtoms()); |
945 |
|
|
946 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
947 |
< |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
948 |
< |
identArray.push_back(atom->getIdent()); |
949 |
< |
} |
947 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
948 |
> |
identArray.push_back(atom->getIdent()); |
949 |
> |
} |
950 |
|
} |
951 |
|
|
952 |
|
//fill molMembershipArray |
953 |
|
//molMembershipArray is filled by SimCreator |
954 |
< |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
954 |
> |
vector<int> molMembershipArray(nGlobalAtoms_); |
955 |
|
for (int i = 0; i < nGlobalAtoms_; i++) { |
956 |
< |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
956 |
> |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
957 |
|
} |
958 |
|
|
959 |
|
//setup fortran simulation |
645 |
– |
//gloalExcludes and molMembershipArray should go away (They are never used) |
646 |
– |
//why the hell fortran need to know molecule? |
647 |
– |
//OOPSE = Object-Obfuscated Parallel Simulation Engine |
648 |
– |
int nGlobalExcludes = 0; |
649 |
– |
int* globalExcludes = NULL; |
650 |
– |
int* excludeList = exclude_.getExcludeList(); |
651 |
– |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
652 |
– |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
653 |
– |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
960 |
|
|
961 |
< |
if( isError ){ |
961 |
> |
nExclude = excludedInteractions_.getSize(); |
962 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
963 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
964 |
> |
nOneFour = oneFourInteractions_.getSize(); |
965 |
|
|
966 |
< |
sprintf( painCave.errMsg, |
967 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
968 |
< |
painCave.isFatal = 1; |
969 |
< |
painCave.severity = OOPSE_ERROR; |
661 |
< |
simError(); |
662 |
< |
} |
966 |
> |
int* excludeList = excludedInteractions_.getPairList(); |
967 |
> |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
968 |
> |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
969 |
> |
int* oneFourList = oneFourInteractions_.getPairList(); |
970 |
|
|
971 |
< |
#ifdef IS_MPI |
971 |
> |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
972 |
> |
&nExclude, excludeList, |
973 |
> |
&nOneTwo, oneTwoList, |
974 |
> |
&nOneThree, oneThreeList, |
975 |
> |
&nOneFour, oneFourList, |
976 |
> |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
977 |
> |
&fortranGlobalGroupMembership[0], &isError); |
978 |
> |
|
979 |
> |
if( isError ){ |
980 |
> |
|
981 |
> |
sprintf( painCave.errMsg, |
982 |
> |
"There was an error setting the simulation information in fortran.\n" ); |
983 |
> |
painCave.isFatal = 1; |
984 |
> |
painCave.severity = OPENMD_ERROR; |
985 |
> |
simError(); |
986 |
> |
} |
987 |
> |
|
988 |
> |
|
989 |
|
sprintf( checkPointMsg, |
990 |
< |
"succesfully sent the simulation information to fortran.\n"); |
991 |
< |
MPIcheckPoint(); |
992 |
< |
#endif // is_mpi |
993 |
< |
} |
990 |
> |
"succesfully sent the simulation information to fortran.\n"); |
991 |
> |
|
992 |
> |
errorCheckPoint(); |
993 |
> |
|
994 |
> |
// Setup number of neighbors in neighbor list if present |
995 |
> |
if (simParams_->haveNeighborListNeighbors()) { |
996 |
> |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
997 |
> |
setNeighbors(&nlistNeighbors); |
998 |
> |
} |
999 |
> |
|
1000 |
|
|
1001 |
+ |
} |
1002 |
|
|
1003 |
< |
#ifdef IS_MPI |
1004 |
< |
void SimInfo::setupFortranParallel() { |
1005 |
< |
|
1003 |
> |
|
1004 |
> |
void SimInfo::setupFortranParallel() { |
1005 |
> |
#ifdef IS_MPI |
1006 |
|
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
1007 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1008 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
1007 |
> |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
1008 |
> |
vector<int> localToGlobalCutoffGroupIndex; |
1009 |
|
SimInfo::MoleculeIterator mi; |
1010 |
|
Molecule::AtomIterator ai; |
1011 |
|
Molecule::CutoffGroupIterator ci; |
1017 |
|
|
1018 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1019 |
|
|
1020 |
< |
//local index(index in DataStorge) of atom is important |
1021 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1022 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1023 |
< |
} |
1020 |
> |
//local index(index in DataStorge) of atom is important |
1021 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1022 |
> |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1023 |
> |
} |
1024 |
|
|
1025 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1026 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1027 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1028 |
< |
} |
1025 |
> |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1026 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1027 |
> |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1028 |
> |
} |
1029 |
|
|
1030 |
|
} |
1031 |
|
|
1045 |
|
&localToGlobalCutoffGroupIndex[0], &isError); |
1046 |
|
|
1047 |
|
if (isError) { |
1048 |
< |
sprintf(painCave.errMsg, |
1049 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1050 |
< |
painCave.isFatal = 1; |
1051 |
< |
simError(); |
1048 |
> |
sprintf(painCave.errMsg, |
1049 |
> |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
1050 |
> |
painCave.isFatal = 1; |
1051 |
> |
simError(); |
1052 |
|
} |
1053 |
|
|
1054 |
|
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1055 |
< |
MPIcheckPoint(); |
1055 |
> |
errorCheckPoint(); |
1056 |
|
|
726 |
– |
|
727 |
– |
} |
728 |
– |
|
1057 |
|
#endif |
1058 |
+ |
} |
1059 |
|
|
731 |
– |
double SimInfo::calcMaxCutoffRadius() { |
1060 |
|
|
1061 |
+ |
void SimInfo::setupAccumulateBoxDipole() { |
1062 |
|
|
734 |
– |
std::set<AtomType*> atomTypes; |
735 |
– |
std::set<AtomType*>::iterator i; |
736 |
– |
std::vector<double> cutoffRadius; |
1063 |
|
|
1064 |
< |
//get the unique atom types |
739 |
< |
atomTypes = getUniqueAtomTypes(); |
1064 |
> |
} |
1065 |
|
|
1066 |
< |
//query the max cutoff radius among these atom types |
1067 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
1068 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
744 |
< |
} |
1066 |
> |
void SimInfo::addProperty(GenericData* genData) { |
1067 |
> |
properties_.addProperty(genData); |
1068 |
> |
} |
1069 |
|
|
1070 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
1071 |
< |
#ifdef IS_MPI |
1072 |
< |
//pick the max cutoff radius among the processors |
749 |
< |
#endif |
1070 |
> |
void SimInfo::removeProperty(const string& propName) { |
1071 |
> |
properties_.removeProperty(propName); |
1072 |
> |
} |
1073 |
|
|
1074 |
< |
return maxCutoffRadius; |
752 |
< |
} |
753 |
< |
|
754 |
< |
void SimInfo::setupCutoff() { |
755 |
< |
double rcut_; //cutoff radius |
756 |
< |
double rsw_; //switching radius |
757 |
< |
|
758 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
759 |
< |
|
760 |
< |
if (!simParams_->haveRcut()){ |
761 |
< |
sprintf(painCave.errMsg, |
762 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
763 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
764 |
< |
"\tfor the cutoffRadius.\n"); |
765 |
< |
painCave.isFatal = 0; |
766 |
< |
simError(); |
767 |
< |
rcut_ = 15.0; |
768 |
< |
} else{ |
769 |
< |
rcut_ = simParams_->getRcut(); |
770 |
< |
} |
771 |
< |
|
772 |
< |
if (!simParams_->haveRsw()){ |
773 |
< |
sprintf(painCave.errMsg, |
774 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
775 |
< |
"\tOOPSE will use a default value of\n" |
776 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
777 |
< |
painCave.isFatal = 0; |
778 |
< |
simError(); |
779 |
< |
rsw_ = 0.95 * rcut_; |
780 |
< |
} else{ |
781 |
< |
rsw_ = simParams_->getRsw(); |
782 |
< |
} |
783 |
< |
|
784 |
< |
} else { |
785 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
786 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
787 |
< |
|
788 |
< |
if (simParams_->haveRcut()) { |
789 |
< |
rcut_ = simParams_->getRcut(); |
790 |
< |
} else { |
791 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
792 |
< |
rcut_ = calcMaxCutoffRadius(); |
793 |
< |
} |
794 |
< |
|
795 |
< |
if (simParams_->haveRsw()) { |
796 |
< |
rsw_ = simParams_->getRsw(); |
797 |
< |
} else { |
798 |
< |
rsw_ = rcut_; |
799 |
< |
} |
800 |
< |
|
801 |
< |
} |
802 |
< |
|
803 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
804 |
< |
|
805 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
806 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); |
807 |
< |
} |
808 |
< |
|
809 |
< |
void SimInfo::addProperty(GenericData* genData) { |
810 |
< |
properties_.addProperty(genData); |
811 |
< |
} |
812 |
< |
|
813 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
814 |
< |
properties_.removeProperty(propName); |
815 |
< |
} |
816 |
< |
|
817 |
< |
void SimInfo::clearProperties() { |
1074 |
> |
void SimInfo::clearProperties() { |
1075 |
|
properties_.clearProperties(); |
1076 |
< |
} |
1076 |
> |
} |
1077 |
|
|
1078 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
1078 |
> |
vector<string> SimInfo::getPropertyNames() { |
1079 |
|
return properties_.getPropertyNames(); |
1080 |
< |
} |
1080 |
> |
} |
1081 |
|
|
1082 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
1082 |
> |
vector<GenericData*> SimInfo::getProperties() { |
1083 |
|
return properties_.getProperties(); |
1084 |
< |
} |
1084 |
> |
} |
1085 |
|
|
1086 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
1086 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1087 |
|
return properties_.getPropertyByName(propName); |
1088 |
< |
} |
1088 |
> |
} |
1089 |
|
|
1090 |
< |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1090 |
> |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1091 |
> |
if (sman_ == sman) { |
1092 |
> |
return; |
1093 |
> |
} |
1094 |
> |
delete sman_; |
1095 |
|
sman_ = sman; |
1096 |
|
|
1097 |
|
Molecule* mol; |
1103 |
|
|
1104 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1105 |
|
|
1106 |
< |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1107 |
< |
atom->setSnapshotManager(sman_); |
1108 |
< |
} |
1106 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1107 |
> |
atom->setSnapshotManager(sman_); |
1108 |
> |
} |
1109 |
|
|
1110 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1111 |
< |
rb->setSnapshotManager(sman_); |
1112 |
< |
} |
1110 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1111 |
> |
rb->setSnapshotManager(sman_); |
1112 |
> |
} |
1113 |
|
} |
1114 |
|
|
1115 |
< |
} |
1115 |
> |
} |
1116 |
|
|
1117 |
< |
Vector3d SimInfo::getComVel(){ |
1117 |
> |
Vector3d SimInfo::getComVel(){ |
1118 |
|
SimInfo::MoleculeIterator i; |
1119 |
|
Molecule* mol; |
1120 |
|
|
1121 |
|
Vector3d comVel(0.0); |
1122 |
< |
double totalMass = 0.0; |
1122 |
> |
RealType totalMass = 0.0; |
1123 |
|
|
1124 |
|
|
1125 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1126 |
< |
double mass = mol->getMass(); |
1127 |
< |
totalMass += mass; |
1128 |
< |
comVel += mass * mol->getComVel(); |
1126 |
> |
RealType mass = mol->getMass(); |
1127 |
> |
totalMass += mass; |
1128 |
> |
comVel += mass * mol->getComVel(); |
1129 |
|
} |
1130 |
|
|
1131 |
|
#ifdef IS_MPI |
1132 |
< |
double tmpMass = totalMass; |
1132 |
> |
RealType tmpMass = totalMass; |
1133 |
|
Vector3d tmpComVel(comVel); |
1134 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1135 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1134 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1135 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1136 |
|
#endif |
1137 |
|
|
1138 |
|
comVel /= totalMass; |
1139 |
|
|
1140 |
|
return comVel; |
1141 |
< |
} |
1141 |
> |
} |
1142 |
|
|
1143 |
< |
Vector3d SimInfo::getCom(){ |
1143 |
> |
Vector3d SimInfo::getCom(){ |
1144 |
|
SimInfo::MoleculeIterator i; |
1145 |
|
Molecule* mol; |
1146 |
|
|
1147 |
|
Vector3d com(0.0); |
1148 |
< |
double totalMass = 0.0; |
1148 |
> |
RealType totalMass = 0.0; |
1149 |
|
|
1150 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1151 |
< |
double mass = mol->getMass(); |
1152 |
< |
totalMass += mass; |
1153 |
< |
com += mass * mol->getCom(); |
1151 |
> |
RealType mass = mol->getMass(); |
1152 |
> |
totalMass += mass; |
1153 |
> |
com += mass * mol->getCom(); |
1154 |
|
} |
1155 |
|
|
1156 |
|
#ifdef IS_MPI |
1157 |
< |
double tmpMass = totalMass; |
1157 |
> |
RealType tmpMass = totalMass; |
1158 |
|
Vector3d tmpCom(com); |
1159 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1160 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1159 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1160 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1161 |
|
#endif |
1162 |
|
|
1163 |
|
com /= totalMass; |
1164 |
|
|
1165 |
|
return com; |
1166 |
|
|
1167 |
< |
} |
1167 |
> |
} |
1168 |
|
|
1169 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1169 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1170 |
|
|
1171 |
|
return o; |
1172 |
< |
} |
1172 |
> |
} |
1173 |
> |
|
1174 |
> |
|
1175 |
> |
/* |
1176 |
> |
Returns center of mass and center of mass velocity in one function call. |
1177 |
> |
*/ |
1178 |
> |
|
1179 |
> |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1180 |
> |
SimInfo::MoleculeIterator i; |
1181 |
> |
Molecule* mol; |
1182 |
> |
|
1183 |
> |
|
1184 |
> |
RealType totalMass = 0.0; |
1185 |
> |
|
1186 |
|
|
1187 |
< |
}//end namespace oopse |
1187 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1188 |
> |
RealType mass = mol->getMass(); |
1189 |
> |
totalMass += mass; |
1190 |
> |
com += mass * mol->getCom(); |
1191 |
> |
comVel += mass * mol->getComVel(); |
1192 |
> |
} |
1193 |
> |
|
1194 |
> |
#ifdef IS_MPI |
1195 |
> |
RealType tmpMass = totalMass; |
1196 |
> |
Vector3d tmpCom(com); |
1197 |
> |
Vector3d tmpComVel(comVel); |
1198 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1199 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1200 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1201 |
> |
#endif |
1202 |
> |
|
1203 |
> |
com /= totalMass; |
1204 |
> |
comVel /= totalMass; |
1205 |
> |
} |
1206 |
> |
|
1207 |
> |
/* |
1208 |
> |
Return intertia tensor for entire system and angular momentum Vector. |
1209 |
|
|
1210 |
+ |
|
1211 |
+ |
[ Ixx -Ixy -Ixz ] |
1212 |
+ |
J =| -Iyx Iyy -Iyz | |
1213 |
+ |
[ -Izx -Iyz Izz ] |
1214 |
+ |
*/ |
1215 |
+ |
|
1216 |
+ |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1217 |
+ |
|
1218 |
+ |
|
1219 |
+ |
RealType xx = 0.0; |
1220 |
+ |
RealType yy = 0.0; |
1221 |
+ |
RealType zz = 0.0; |
1222 |
+ |
RealType xy = 0.0; |
1223 |
+ |
RealType xz = 0.0; |
1224 |
+ |
RealType yz = 0.0; |
1225 |
+ |
Vector3d com(0.0); |
1226 |
+ |
Vector3d comVel(0.0); |
1227 |
+ |
|
1228 |
+ |
getComAll(com, comVel); |
1229 |
+ |
|
1230 |
+ |
SimInfo::MoleculeIterator i; |
1231 |
+ |
Molecule* mol; |
1232 |
+ |
|
1233 |
+ |
Vector3d thisq(0.0); |
1234 |
+ |
Vector3d thisv(0.0); |
1235 |
+ |
|
1236 |
+ |
RealType thisMass = 0.0; |
1237 |
+ |
|
1238 |
+ |
|
1239 |
+ |
|
1240 |
+ |
|
1241 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1242 |
+ |
|
1243 |
+ |
thisq = mol->getCom()-com; |
1244 |
+ |
thisv = mol->getComVel()-comVel; |
1245 |
+ |
thisMass = mol->getMass(); |
1246 |
+ |
// Compute moment of intertia coefficients. |
1247 |
+ |
xx += thisq[0]*thisq[0]*thisMass; |
1248 |
+ |
yy += thisq[1]*thisq[1]*thisMass; |
1249 |
+ |
zz += thisq[2]*thisq[2]*thisMass; |
1250 |
+ |
|
1251 |
+ |
// compute products of intertia |
1252 |
+ |
xy += thisq[0]*thisq[1]*thisMass; |
1253 |
+ |
xz += thisq[0]*thisq[2]*thisMass; |
1254 |
+ |
yz += thisq[1]*thisq[2]*thisMass; |
1255 |
+ |
|
1256 |
+ |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1257 |
+ |
|
1258 |
+ |
} |
1259 |
+ |
|
1260 |
+ |
|
1261 |
+ |
inertiaTensor(0,0) = yy + zz; |
1262 |
+ |
inertiaTensor(0,1) = -xy; |
1263 |
+ |
inertiaTensor(0,2) = -xz; |
1264 |
+ |
inertiaTensor(1,0) = -xy; |
1265 |
+ |
inertiaTensor(1,1) = xx + zz; |
1266 |
+ |
inertiaTensor(1,2) = -yz; |
1267 |
+ |
inertiaTensor(2,0) = -xz; |
1268 |
+ |
inertiaTensor(2,1) = -yz; |
1269 |
+ |
inertiaTensor(2,2) = xx + yy; |
1270 |
+ |
|
1271 |
+ |
#ifdef IS_MPI |
1272 |
+ |
Mat3x3d tmpI(inertiaTensor); |
1273 |
+ |
Vector3d tmpAngMom; |
1274 |
+ |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1275 |
+ |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1276 |
+ |
#endif |
1277 |
+ |
|
1278 |
+ |
return; |
1279 |
+ |
} |
1280 |
+ |
|
1281 |
+ |
//Returns the angular momentum of the system |
1282 |
+ |
Vector3d SimInfo::getAngularMomentum(){ |
1283 |
+ |
|
1284 |
+ |
Vector3d com(0.0); |
1285 |
+ |
Vector3d comVel(0.0); |
1286 |
+ |
Vector3d angularMomentum(0.0); |
1287 |
+ |
|
1288 |
+ |
getComAll(com,comVel); |
1289 |
+ |
|
1290 |
+ |
SimInfo::MoleculeIterator i; |
1291 |
+ |
Molecule* mol; |
1292 |
+ |
|
1293 |
+ |
Vector3d thisr(0.0); |
1294 |
+ |
Vector3d thisp(0.0); |
1295 |
+ |
|
1296 |
+ |
RealType thisMass; |
1297 |
+ |
|
1298 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1299 |
+ |
thisMass = mol->getMass(); |
1300 |
+ |
thisr = mol->getCom()-com; |
1301 |
+ |
thisp = (mol->getComVel()-comVel)*thisMass; |
1302 |
+ |
|
1303 |
+ |
angularMomentum += cross( thisr, thisp ); |
1304 |
+ |
|
1305 |
+ |
} |
1306 |
+ |
|
1307 |
+ |
#ifdef IS_MPI |
1308 |
+ |
Vector3d tmpAngMom; |
1309 |
+ |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1310 |
+ |
#endif |
1311 |
+ |
|
1312 |
+ |
return angularMomentum; |
1313 |
+ |
} |
1314 |
+ |
|
1315 |
+ |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1316 |
+ |
return IOIndexToIntegrableObject.at(index); |
1317 |
+ |
} |
1318 |
+ |
|
1319 |
+ |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1320 |
+ |
IOIndexToIntegrableObject= v; |
1321 |
+ |
} |
1322 |
+ |
|
1323 |
+ |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1324 |
+ |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1325 |
+ |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1326 |
+ |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1327 |
+ |
*/ |
1328 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1329 |
+ |
Mat3x3d intTensor; |
1330 |
+ |
RealType det; |
1331 |
+ |
Vector3d dummyAngMom; |
1332 |
+ |
RealType sysconstants; |
1333 |
+ |
RealType geomCnst; |
1334 |
+ |
|
1335 |
+ |
geomCnst = 3.0/2.0; |
1336 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1337 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1338 |
+ |
|
1339 |
+ |
det = intTensor.determinant(); |
1340 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1341 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1342 |
+ |
return; |
1343 |
+ |
} |
1344 |
+ |
|
1345 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1346 |
+ |
Mat3x3d intTensor; |
1347 |
+ |
Vector3d dummyAngMom; |
1348 |
+ |
RealType sysconstants; |
1349 |
+ |
RealType geomCnst; |
1350 |
+ |
|
1351 |
+ |
geomCnst = 3.0/2.0; |
1352 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1353 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1354 |
+ |
|
1355 |
+ |
detI = intTensor.determinant(); |
1356 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1357 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1358 |
+ |
return; |
1359 |
+ |
} |
1360 |
+ |
/* |
1361 |
+ |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1362 |
+ |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1363 |
+ |
sdByGlobalIndex_ = v; |
1364 |
+ |
} |
1365 |
+ |
|
1366 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1367 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1368 |
+ |
return sdByGlobalIndex_.at(index); |
1369 |
+ |
} |
1370 |
+ |
*/ |
1371 |
+ |
int SimInfo::getNGlobalConstraints() { |
1372 |
+ |
int nGlobalConstraints; |
1373 |
+ |
#ifdef IS_MPI |
1374 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1375 |
+ |
MPI_COMM_WORLD); |
1376 |
+ |
#else |
1377 |
+ |
nGlobalConstraints = nConstraints_; |
1378 |
+ |
#endif |
1379 |
+ |
return nGlobalConstraints; |
1380 |
+ |
} |
1381 |
+ |
|
1382 |
+ |
}//end namespace OpenMD |
1383 |
+ |
|