ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
57 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58   #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61   #include "UseTheForce/DarkSide/switcheroo_interface.h"
62   #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64   #include "selection/SelectionManager.hpp"
65 + #include "io/ForceFieldOptions.hpp"
66 + #include "UseTheForce/ForceField.hpp"
67 + #include "nonbonded/InteractionManager.hpp"
68  
69 +
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
72   #include "UseTheForce/DarkSide/simParallel_interface.h"
73   #endif
74  
75 < namespace oopse {
76 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
74 <    std::map<int, std::set<int> >::iterator i = container.find(index);
75 <    std::set<int> result;
76 <    if (i != container.end()) {
77 <        result = i->second;
78 <    }
79 <
80 <    return result;
81 <  }
75 > using namespace std;
76 > namespace OpenMD {
77    
78 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
79 <                   ForceField* ff, Globals* simParams) :
80 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79 >    forceField_(ff), simParams_(simParams),
80 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
84 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
85 <    sman_(NULL), fortranInitialized_(false) {
86 <
93 <            
94 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 <      MoleculeStamp* molStamp;
96 <      int nMolWithSameStamp;
97 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
98 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
99 <      CutoffGroupStamp* cgStamp;    
100 <      RigidBodyStamp* rbStamp;
101 <      int nRigidAtoms = 0;
83 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87      
88 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
89 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
91 <        
92 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
93 <
94 <        //calculate atoms in molecules
95 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
96 <
97 <
98 <        //calculate atoms in cutoff groups
99 <        int nAtomsInGroups = 0;
100 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
101 <        
102 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
103 <          cgStamp = molStamp->getCutoffGroup(j);
104 <          nAtomsInGroups += cgStamp->getNMembers();
105 <        }
106 <
107 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
108 <
109 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
110 <
111 <        //calculate atoms in rigid bodies
112 <        int nAtomsInRigidBodies = 0;
113 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBody(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
88 >    MoleculeStamp* molStamp;
89 >    int nMolWithSameStamp;
90 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92 >    CutoffGroupStamp* cgStamp;    
93 >    RigidBodyStamp* rbStamp;
94 >    int nRigidAtoms = 0;
95 >    
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101 >      
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114        }
115 <
116 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
117 <      //group therefore the total number of cutoff groups in the system is
118 <      //equal to the total number of atoms minus number of atoms belong to
119 <      //cutoff group defined in meta-data file plus the number of cutoff
120 <      //groups defined in meta-data file
121 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
122 <
123 <      //every free atom (atom does not belong to rigid bodies) is an
124 <      //integrable object therefore the total number of integrable objects
125 <      //in the system is equal to the total number of atoms minus number of
126 <      //atoms belong to rigid body defined in meta-data file plus the number
127 <      //of rigid bodies defined in meta-data file
128 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
129 <                                                + nGlobalRigidBodies_;
130 <  
131 <      nGlobalMols_ = molStampIds_.size();
156 <
157 < #ifdef IS_MPI    
158 <      molToProcMap_.resize(nGlobalMols_);
159 < #endif
160 <
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132      }
133 <
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149 >    nGlobalMols_ = molStampIds_.size();
150 >    molToProcMap_.resize(nGlobalMols_);
151 >  }
152 >  
153    SimInfo::~SimInfo() {
154 <    std::map<int, Molecule*>::iterator i;
154 >    map<int, Molecule*>::iterator i;
155      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156        delete i->second;
157      }
158      molecules_.clear();
159        
170    delete stamps_;
160      delete sman_;
161      delete simParams_;
162      delete forceField_;
163    }
164  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
165  
166    bool SimInfo::addMolecule(Molecule* mol) {
167      MoleculeIterator i;
168 <
168 >    
169      i = molecules_.find(mol->getGlobalIndex());
170      if (i == molecules_.end() ) {
171 <
172 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
173 <        
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174        nAtoms_ += mol->getNAtoms();
175        nBonds_ += mol->getNBonds();
176        nBends_ += mol->getNBends();
177        nTorsions_ += mol->getNTorsions();
178 +      nInversions_ += mol->getNInversions();
179        nRigidBodies_ += mol->getNRigidBodies();
180        nIntegrableObjects_ += mol->getNIntegrableObjects();
181        nCutoffGroups_ += mol->getNCutoffGroups();
182        nConstraints_ += mol->getNConstraintPairs();
183 <
184 <      addExcludePairs(mol);
185 <        
183 >      
184 >      addInteractionPairs(mol);
185 >      
186        return true;
187      } else {
188        return false;
189      }
190    }
191 <
191 >  
192    bool SimInfo::removeMolecule(Molecule* mol) {
193      MoleculeIterator i;
194      i = molecules_.find(mol->getGlobalIndex());
# Line 221 | Line 201 | namespace oopse {
201        nBonds_ -= mol->getNBonds();
202        nBends_ -= mol->getNBends();
203        nTorsions_ -= mol->getNTorsions();
204 +      nInversions_ -= mol->getNInversions();
205        nRigidBodies_ -= mol->getNRigidBodies();
206        nIntegrableObjects_ -= mol->getNIntegrableObjects();
207        nCutoffGroups_ -= mol->getNCutoffGroups();
208        nConstraints_ -= mol->getNConstraintPairs();
209  
210 <      removeExcludePairs(mol);
210 >      removeInteractionPairs(mol);
211        molecules_.erase(mol->getGlobalIndex());
212  
213        delete mol;
# Line 235 | Line 216 | namespace oopse {
216      } else {
217        return false;
218      }
238
239
219    }    
220  
221          
# Line 254 | Line 233 | namespace oopse {
233    void SimInfo::calcNdf() {
234      int ndf_local;
235      MoleculeIterator i;
236 <    std::vector<StuntDouble*>::iterator j;
236 >    vector<StuntDouble*>::iterator j;
237      Molecule* mol;
238      StuntDouble* integrableObject;
239  
# Line 274 | Line 253 | namespace oopse {
253            }
254          }
255              
256 <      }//end for (integrableObject)
257 <    }// end for (mol)
256 >      }
257 >    }
258      
259      // n_constraints is local, so subtract them on each processor
260      ndf_local -= nConstraints_;
# Line 292 | Line 271 | namespace oopse {
271  
272    }
273  
274 +  int SimInfo::getFdf() {
275 + #ifdef IS_MPI
276 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
277 + #else
278 +    fdf_ = fdf_local;
279 + #endif
280 +    return fdf_;
281 +  }
282 +    
283    void SimInfo::calcNdfRaw() {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
287 <    std::vector<StuntDouble*>::iterator j;
287 >    vector<StuntDouble*>::iterator j;
288      Molecule* mol;
289      StuntDouble* integrableObject;
290  
# Line 343 | Line 331 | namespace oopse {
331  
332    }
333  
334 <  void SimInfo::addExcludePairs(Molecule* mol) {
335 <    std::vector<Bond*>::iterator bondIter;
336 <    std::vector<Bend*>::iterator bendIter;
337 <    std::vector<Torsion*>::iterator torsionIter;
334 >  void SimInfo::addInteractionPairs(Molecule* mol) {
335 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340      Bond* bond;
341      Bend* bend;
342      Torsion* torsion;
343 +    Inversion* inversion;
344      int a;
345      int b;
346      int c;
347      int d;
348  
349 <    std::map<int, std::set<int> > atomGroups;
349 >    // atomGroups can be used to add special interaction maps between
350 >    // groups of atoms that are in two separate rigid bodies.
351 >    // However, most site-site interactions between two rigid bodies
352 >    // are probably not special, just the ones between the physically
353 >    // bonded atoms.  Interactions *within* a single rigid body should
354 >    // always be excluded.  These are done at the bottom of this
355 >    // function.
356  
357 +    map<int, set<int> > atomGroups;
358      Molecule::RigidBodyIterator rbIter;
359      RigidBody* rb;
360      Molecule::IntegrableObjectIterator ii;
361      StuntDouble* integrableObject;
362      
363 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364 <           integrableObject = mol->nextIntegrableObject(ii)) {
365 <
363 >    for (integrableObject = mol->beginIntegrableObject(ii);
364 >         integrableObject != NULL;
365 >         integrableObject = mol->nextIntegrableObject(ii)) {
366 >      
367        if (integrableObject->isRigidBody()) {
368 <          rb = static_cast<RigidBody*>(integrableObject);
369 <          std::vector<Atom*> atoms = rb->getAtoms();
370 <          std::set<int> rigidAtoms;
371 <          for (int i = 0; i < atoms.size(); ++i) {
372 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 <          }
374 <          for (int i = 0; i < atoms.size(); ++i) {
375 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 <          }      
368 >        rb = static_cast<RigidBody*>(integrableObject);
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 >        }
374 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 >        }      
377        } else {
378 <        std::set<int> oneAtomSet;
378 >        set<int> oneAtomSet;
379          oneAtomSet.insert(integrableObject->getGlobalIndex());
380 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381        }
382      }  
383 +          
384 +    for (bond= mol->beginBond(bondIter); bond != NULL;
385 +         bond = mol->nextBond(bondIter)) {
386  
385    
386    
387    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
387        a = bond->getAtomA()->getGlobalIndex();
388 <      b = bond->getAtomB()->getGlobalIndex();        
389 <      exclude_.addPair(a, b);
388 >      b = bond->getAtomB()->getGlobalIndex();  
389 >    
390 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
391 >        oneTwoInteractions_.addPair(a, b);
392 >      } else {
393 >        excludedInteractions_.addPair(a, b);
394 >      }
395      }
396  
397 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
397 >    for (bend= mol->beginBend(bendIter); bend != NULL;
398 >         bend = mol->nextBend(bendIter)) {
399 >
400        a = bend->getAtomA()->getGlobalIndex();
401        b = bend->getAtomB()->getGlobalIndex();        
402        c = bend->getAtomC()->getGlobalIndex();
397      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
398      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
399      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
400
401      exclude_.addPairs(rigidSetA, rigidSetB);
402      exclude_.addPairs(rigidSetA, rigidSetC);
403      exclude_.addPairs(rigidSetB, rigidSetC);
403        
404 <      //exclude_.addPair(a, b);
405 <      //exclude_.addPair(a, c);
406 <      //exclude_.addPair(b, c);        
404 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
405 >        oneTwoInteractions_.addPair(a, b);      
406 >        oneTwoInteractions_.addPair(b, c);
407 >      } else {
408 >        excludedInteractions_.addPair(a, b);
409 >        excludedInteractions_.addPair(b, c);
410 >      }
411 >
412 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
413 >        oneThreeInteractions_.addPair(a, c);      
414 >      } else {
415 >        excludedInteractions_.addPair(a, c);
416 >      }
417      }
418  
419 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
420 >         torsion = mol->nextTorsion(torsionIter)) {
421 >
422        a = torsion->getAtomA()->getGlobalIndex();
423        b = torsion->getAtomB()->getGlobalIndex();        
424        c = torsion->getAtomC()->getGlobalIndex();        
425 <      d = torsion->getAtomD()->getGlobalIndex();        
415 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
416 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
417 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
418 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
425 >      d = torsion->getAtomD()->getGlobalIndex();      
426  
427 <      exclude_.addPairs(rigidSetA, rigidSetB);
428 <      exclude_.addPairs(rigidSetA, rigidSetC);
429 <      exclude_.addPairs(rigidSetA, rigidSetD);
430 <      exclude_.addPairs(rigidSetB, rigidSetC);
431 <      exclude_.addPairs(rigidSetB, rigidSetD);
432 <      exclude_.addPairs(rigidSetC, rigidSetD);
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >        oneTwoInteractions_.addPair(c, d);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >        excludedInteractions_.addPair(c, d);
435 >      }
436  
437 <      /*
438 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444 <        
445 <      
446 <      exclude_.addPair(a, b);
447 <      exclude_.addPair(a, c);
448 <      exclude_.addPair(a, d);
449 <      exclude_.addPair(b, c);
440 <      exclude_.addPair(b, d);
441 <      exclude_.addPair(c, d);        
442 <      */
437 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
438 >        oneThreeInteractions_.addPair(a, c);      
439 >        oneThreeInteractions_.addPair(b, d);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >        excludedInteractions_.addPair(b, d);
443 >      }
444 >
445 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
446 >        oneFourInteractions_.addPair(a, d);      
447 >      } else {
448 >        excludedInteractions_.addPair(a, d);
449 >      }
450      }
451  
452 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 <      std::vector<Atom*> atoms = rb->getAtoms();
454 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 <        for (int j = i + 1; j < atoms.size(); ++j) {
452 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
453 >         inversion = mol->nextInversion(inversionIter)) {
454 >
455 >      a = inversion->getAtomA()->getGlobalIndex();
456 >      b = inversion->getAtomB()->getGlobalIndex();        
457 >      c = inversion->getAtomC()->getGlobalIndex();        
458 >      d = inversion->getAtomD()->getGlobalIndex();        
459 >
460 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
461 >        oneTwoInteractions_.addPair(a, b);      
462 >        oneTwoInteractions_.addPair(a, c);
463 >        oneTwoInteractions_.addPair(a, d);
464 >      } else {
465 >        excludedInteractions_.addPair(a, b);
466 >        excludedInteractions_.addPair(a, c);
467 >        excludedInteractions_.addPair(a, d);
468 >      }
469 >
470 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
471 >        oneThreeInteractions_.addPair(b, c);    
472 >        oneThreeInteractions_.addPair(b, d);    
473 >        oneThreeInteractions_.addPair(c, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(b, c);
476 >        excludedInteractions_.addPair(b, d);
477 >        excludedInteractions_.addPair(c, d);
478 >      }
479 >    }
480 >
481 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482 >         rb = mol->nextRigidBody(rbIter)) {
483 >      vector<Atom*> atoms = rb->getAtoms();
484 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486            a = atoms[i]->getGlobalIndex();
487            b = atoms[j]->getGlobalIndex();
488 <          exclude_.addPair(a, b);
488 >          excludedInteractions_.addPair(a, b);
489          }
490        }
491      }        
492  
493    }
494  
495 <  void SimInfo::removeExcludePairs(Molecule* mol) {
496 <    std::vector<Bond*>::iterator bondIter;
497 <    std::vector<Bend*>::iterator bendIter;
498 <    std::vector<Torsion*>::iterator torsionIter;
495 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
496 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 >    vector<Bond*>::iterator bondIter;
498 >    vector<Bend*>::iterator bendIter;
499 >    vector<Torsion*>::iterator torsionIter;
500 >    vector<Inversion*>::iterator inversionIter;
501      Bond* bond;
502      Bend* bend;
503      Torsion* torsion;
504 +    Inversion* inversion;
505      int a;
506      int b;
507      int c;
508      int d;
509  
510 <    std::map<int, std::set<int> > atomGroups;
471 <
510 >    map<int, set<int> > atomGroups;
511      Molecule::RigidBodyIterator rbIter;
512      RigidBody* rb;
513      Molecule::IntegrableObjectIterator ii;
514      StuntDouble* integrableObject;
515      
516 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
517 <           integrableObject = mol->nextIntegrableObject(ii)) {
518 <
516 >    for (integrableObject = mol->beginIntegrableObject(ii);
517 >         integrableObject != NULL;
518 >         integrableObject = mol->nextIntegrableObject(ii)) {
519 >      
520        if (integrableObject->isRigidBody()) {
521 <          rb = static_cast<RigidBody*>(integrableObject);
522 <          std::vector<Atom*> atoms = rb->getAtoms();
523 <          std::set<int> rigidAtoms;
524 <          for (int i = 0; i < atoms.size(); ++i) {
525 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 <          }
527 <          for (int i = 0; i < atoms.size(); ++i) {
528 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 <          }      
521 >        rb = static_cast<RigidBody*>(integrableObject);
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 >        }
527 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 >        }      
530        } else {
531 <        std::set<int> oneAtomSet;
531 >        set<int> oneAtomSet;
532          oneAtomSet.insert(integrableObject->getGlobalIndex());
533 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534        }
535      }  
536  
537 <    
538 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
537 >    for (bond= mol->beginBond(bondIter); bond != NULL;
538 >         bond = mol->nextBond(bondIter)) {
539 >      
540        a = bond->getAtomA()->getGlobalIndex();
541 <      b = bond->getAtomB()->getGlobalIndex();        
542 <      exclude_.removePair(a, b);
541 >      b = bond->getAtomB()->getGlobalIndex();  
542 >    
543 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
544 >        oneTwoInteractions_.removePair(a, b);
545 >      } else {
546 >        excludedInteractions_.removePair(a, b);
547 >      }
548      }
549  
550 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
550 >    for (bend= mol->beginBend(bendIter); bend != NULL;
551 >         bend = mol->nextBend(bendIter)) {
552 >
553        a = bend->getAtomA()->getGlobalIndex();
554        b = bend->getAtomB()->getGlobalIndex();        
555        c = bend->getAtomC()->getGlobalIndex();
508
509      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
510      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
511      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
512
513      exclude_.removePairs(rigidSetA, rigidSetB);
514      exclude_.removePairs(rigidSetA, rigidSetC);
515      exclude_.removePairs(rigidSetB, rigidSetC);
556        
557 <      //exclude_.removePair(a, b);
558 <      //exclude_.removePair(a, c);
559 <      //exclude_.removePair(b, c);        
557 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
558 >        oneTwoInteractions_.removePair(a, b);      
559 >        oneTwoInteractions_.removePair(b, c);
560 >      } else {
561 >        excludedInteractions_.removePair(a, b);
562 >        excludedInteractions_.removePair(b, c);
563 >      }
564 >
565 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
566 >        oneThreeInteractions_.removePair(a, c);      
567 >      } else {
568 >        excludedInteractions_.removePair(a, c);
569 >      }
570      }
571  
572 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
572 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
573 >         torsion = mol->nextTorsion(torsionIter)) {
574 >
575        a = torsion->getAtomA()->getGlobalIndex();
576        b = torsion->getAtomB()->getGlobalIndex();        
577        c = torsion->getAtomC()->getGlobalIndex();        
578 <      d = torsion->getAtomD()->getGlobalIndex();        
578 >      d = torsion->getAtomD()->getGlobalIndex();      
579 >  
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >        oneTwoInteractions_.removePair(c, d);
584 >      } else {
585 >        excludedInteractions_.removePair(a, b);
586 >        excludedInteractions_.removePair(b, c);
587 >        excludedInteractions_.removePair(c, d);
588 >      }
589  
590 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
591 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
592 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
593 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
590 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
591 >        oneThreeInteractions_.removePair(a, c);      
592 >        oneThreeInteractions_.removePair(b, d);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >        excludedInteractions_.removePair(b, d);
596 >      }
597  
598 <      exclude_.removePairs(rigidSetA, rigidSetB);
599 <      exclude_.removePairs(rigidSetA, rigidSetC);
600 <      exclude_.removePairs(rigidSetA, rigidSetD);
601 <      exclude_.removePairs(rigidSetB, rigidSetC);
602 <      exclude_.removePairs(rigidSetB, rigidSetD);
603 <      exclude_.removePairs(rigidSetC, rigidSetD);
598 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
599 >        oneFourInteractions_.removePair(a, d);      
600 >      } else {
601 >        excludedInteractions_.removePair(a, d);
602 >      }
603 >    }
604  
605 <      /*
606 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
542 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
543 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
544 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
545 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
546 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
605 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
606 >         inversion = mol->nextInversion(inversionIter)) {
607  
608 <      
609 <      exclude_.removePair(a, b);
610 <      exclude_.removePair(a, c);
611 <      exclude_.removePair(a, d);
612 <      exclude_.removePair(b, c);
613 <      exclude_.removePair(b, d);
614 <      exclude_.removePair(c, d);        
615 <      */
608 >      a = inversion->getAtomA()->getGlobalIndex();
609 >      b = inversion->getAtomB()->getGlobalIndex();        
610 >      c = inversion->getAtomC()->getGlobalIndex();        
611 >      d = inversion->getAtomD()->getGlobalIndex();        
612 >
613 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
614 >        oneTwoInteractions_.removePair(a, b);      
615 >        oneTwoInteractions_.removePair(a, c);
616 >        oneTwoInteractions_.removePair(a, d);
617 >      } else {
618 >        excludedInteractions_.removePair(a, b);
619 >        excludedInteractions_.removePair(a, c);
620 >        excludedInteractions_.removePair(a, d);
621 >      }
622 >
623 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
624 >        oneThreeInteractions_.removePair(b, c);    
625 >        oneThreeInteractions_.removePair(b, d);    
626 >        oneThreeInteractions_.removePair(c, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(b, c);
629 >        excludedInteractions_.removePair(b, d);
630 >        excludedInteractions_.removePair(c, d);
631 >      }
632      }
633  
634 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
635 <      std::vector<Atom*> atoms = rb->getAtoms();
636 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
637 <        for (int j = i + 1; j < atoms.size(); ++j) {
634 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635 >         rb = mol->nextRigidBody(rbIter)) {
636 >      vector<Atom*> atoms = rb->getAtoms();
637 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639            a = atoms[i]->getGlobalIndex();
640            b = atoms[j]->getGlobalIndex();
641 <          exclude_.removePair(a, b);
641 >          excludedInteractions_.removePair(a, b);
642          }
643        }
644      }        
645 <
645 >    
646    }
647 <
648 <
647 >  
648 >  
649    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
650      int curStampId;
651 <
651 >    
652      //index from 0
653      curStampId = moleculeStamps_.size();
654  
# Line 582 | Line 659 | namespace oopse {
659    void SimInfo::update() {
660  
661      setupSimType();
662 +    setupCutoffRadius();
663 +    setupSwitchingRadius();
664 +    setupCutoffMethod();
665 +    setupSkinThickness();
666 +    setupSwitchingFunction();
667 +    setupAccumulateBoxDipole();
668  
669   #ifdef IS_MPI
670      setupFortranParallel();
671   #endif
589
672      setupFortranSim();
673 +    fortranInitialized_ = true;
674  
592    //setup fortran force field
593    /** @deprecate */    
594    int isError = 0;
595    
596    setupElectrostaticSummationMethod( isError );
597    setupSwitchingFunction();
598
599    if(isError){
600      sprintf( painCave.errMsg,
601               "ForceField error: There was an error initializing the forceField in fortran.\n" );
602      painCave.isFatal = 1;
603      simError();
604    }
605  
606    
607    setupCutoff();
608
675      calcNdf();
676      calcNdfRaw();
677      calcNdfTrans();
612
613    fortranInitialized_ = true;
678    }
679 <
680 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
679 >  
680 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681      SimInfo::MoleculeIterator mi;
682      Molecule* mol;
683      Molecule::AtomIterator ai;
684      Atom* atom;
685 <    std::set<AtomType*> atomTypes;
686 <
687 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
624 <
685 >    set<AtomType*> atomTypes;
686 >    
687 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
688        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689          atomTypes.insert(atom->getAtomType());
690 <      }
691 <        
690 >      }      
691 >    }    
692 >    return atomTypes;        
693 >  }
694 >
695 >  /**
696 >   * setupCutoffRadius
697 >   *
698 >   *  If the cutoffRadius was explicitly set, use that value.
699 >   *  If the cutoffRadius was not explicitly set:
700 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
701 >   *      No electrostatic atoms?  Poll the atom types present in the
702 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
703 >   *      Use the maximum suggested value that was found.
704 >   */
705 >  void SimInfo::setupCutoffRadius() {
706 >    
707 >    if (simParams_->haveCutoffRadius()) {
708 >      cutoffRadius_ = simParams_->getCutoffRadius();
709 >    } else {      
710 >      if (usesElectrostaticAtoms_) {
711 >        sprintf(painCave.errMsg,
712 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
713 >                "\tOpenMD will use a default value of 12.0 angstroms"
714 >                "\tfor the cutoffRadius.\n");
715 >        painCave.isFatal = 0;
716 >        simError();
717 >        cutoffRadius_ = 12.0;
718 >      } else {
719 >        RealType thisCut;
720 >        set<AtomType*>::iterator i;
721 >        set<AtomType*> atomTypes;
722 >        atomTypes = getSimulatedAtomTypes();        
723 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
724 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
725 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
726 >        }
727 >        sprintf(painCave.errMsg,
728 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
729 >                "\tOpenMD will use %lf angstroms.\n",
730 >                cutoffRadius_);
731 >        painCave.isFatal = 0;
732 >        simError();
733 >      }            
734      }
735  
736 <    return atomTypes;        
736 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
737    }
738 <
739 <  void SimInfo::setupSimType() {
740 <    std::set<AtomType*>::iterator i;
741 <    std::set<AtomType*> atomTypes;
742 <    atomTypes = getUniqueAtomTypes();
738 >  
739 >  /**
740 >   * setupSwitchingRadius
741 >   *
742 >   *  If the switchingRadius was explicitly set, use that value (but check it)
743 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
744 >   */
745 >  void SimInfo::setupSwitchingRadius() {
746      
747 <    int useLennardJones = 0;
748 <    int useElectrostatic = 0;
749 <    int useEAM = 0;
750 <    int useSC = 0;
751 <    int useCharge = 0;
752 <    int useDirectional = 0;
753 <    int useDipole = 0;
754 <    int useGayBerne = 0;
647 <    int useSticky = 0;
648 <    int useStickyPower = 0;
649 <    int useShape = 0;
650 <    int useFLARB = 0; //it is not in AtomType yet
651 <    int useDirectionalAtom = 0;    
652 <    int useElectrostatics = 0;
653 <    //usePBC and useRF are from simParams
654 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
655 <    int useRF;
656 <    int useSF;
657 <    std::string myMethod;
747 >    if (simParams_->haveSwitchingRadius()) {
748 >      switchingRadius_ = simParams_->getSwitchingRadius();
749 >      if (switchingRadius_ > cutoffRadius_) {        
750 >        sprintf(painCave.errMsg,
751 >                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
752 >                switchingRadius_, cutoffRadius_);
753 >        painCave.isFatal = 1;
754 >        simError();
755  
756 <    // set the useRF logical
757 <    useRF = 0;
758 <    useSF = 0;
756 >      }
757 >    } else {      
758 >      switchingRadius_ = 0.85 * cutoffRadius_;
759 >      sprintf(painCave.errMsg,
760 >              "SimInfo Warning: No value was set for the switchingRadius.\n"
761 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
762 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
763 >      painCave.isFatal = 0;
764 >      simError();
765 >    }            
766 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
767 >  }
768  
769 +  /**
770 +   * setupSkinThickness
771 +   *
772 +   *  If the skinThickness was explicitly set, use that value (but check it)
773 +   *  If the skinThickness was not explicitly set: use 1.0 angstroms
774 +   */
775 +  void SimInfo::setupSkinThickness() {    
776 +    if (simParams_->haveSkinThickness()) {
777 +      skinThickness_ = simParams_->getSkinThickness();
778 +    } else {      
779 +      skinThickness_ = 1.0;
780 +      sprintf(painCave.errMsg,
781 +              "SimInfo Warning: No value was set for the skinThickness.\n"
782 +              "\tOpenMD will use a default value of %f Angstroms\n"
783 +              "\tfor this simulation\n", skinThickness_);
784 +      painCave.isFatal = 0;
785 +      simError();
786 +    }            
787 +  }
788  
789 <    if (simParams_->haveElectrostaticSummationMethod()) {
790 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
791 <      toUpper(myMethod);
792 <      if (myMethod == "REACTION_FIELD") {
668 <        useRF=1;
669 <      } else {
670 <        if (myMethod == "SHIFTED_FORCE") {
671 <          useSF = 1;
672 <        }
673 <      }
674 <    }
789 >  void SimInfo::setupSimType() {
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();
793  
794 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
795 +
796 +    int usesElectrostatic = 0;
797 +    int usesMetallic = 0;
798 +    int usesDirectional = 0;
799      //loop over all of the atom types
800      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
801 <      useLennardJones |= (*i)->isLennardJones();
802 <      useElectrostatic |= (*i)->isElectrostatic();
803 <      useEAM |= (*i)->isEAM();
681 <      useSC |= (*i)->isSC();
682 <      useCharge |= (*i)->isCharge();
683 <      useDirectional |= (*i)->isDirectional();
684 <      useDipole |= (*i)->isDipole();
685 <      useGayBerne |= (*i)->isGayBerne();
686 <      useSticky |= (*i)->isSticky();
687 <      useStickyPower |= (*i)->isStickyPower();
688 <      useShape |= (*i)->isShape();
801 >      usesElectrostatic |= (*i)->isElectrostatic();
802 >      usesMetallic |= (*i)->isMetal();
803 >      usesDirectional |= (*i)->isDirectional();
804      }
805  
691    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
692      useDirectionalAtom = 1;
693    }
694
695    if (useCharge || useDipole) {
696      useElectrostatics = 1;
697    }
698
806   #ifdef IS_MPI    
807      int temp;
808 <
809 <    temp = usePBC;
703 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
704 <
705 <    temp = useDirectionalAtom;
706 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
707 <
708 <    temp = useLennardJones;
709 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
710 <
711 <    temp = useElectrostatics;
712 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
713 <
714 <    temp = useCharge;
715 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 >    temp = usesDirectional;
809 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810  
811 <    temp = useDipole;
812 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 >    temp = usesMetallic;
812 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useSticky;
815 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
722 <
723 <    temp = useStickyPower;
724 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
725 <    
726 <    temp = useGayBerne;
727 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
728 <
729 <    temp = useEAM;
730 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
732 <    temp = useSC;
733 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734 <    
735 <    temp = useShape;
736 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
737 <
738 <    temp = useFLARB;
739 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
740 <
741 <    temp = useRF;
742 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743 <
744 <    temp = useSF;
745 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
746 <
814 >    temp = usesElectrostatic;
815 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816   #endif
817 <
818 <    fInfo_.SIM_uses_PBC = usePBC;    
819 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
820 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
821 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
822 <    fInfo_.SIM_uses_Charges = useCharge;
754 <    fInfo_.SIM_uses_Dipoles = useDipole;
755 <    fInfo_.SIM_uses_Sticky = useSticky;
756 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
757 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
758 <    fInfo_.SIM_uses_EAM = useEAM;
759 <    fInfo_.SIM_uses_SC = useSC;
760 <    fInfo_.SIM_uses_Shapes = useShape;
761 <    fInfo_.SIM_uses_FLARB = useFLARB;
762 <    fInfo_.SIM_uses_RF = useRF;
763 <    fInfo_.SIM_uses_SF = useSF;
764 <
765 <    if( myMethod == "REACTION_FIELD") {
766 <      
767 <      if (simParams_->haveDielectric()) {
768 <        fInfo_.dielect = simParams_->getDielectric();
769 <      } else {
770 <        sprintf(painCave.errMsg,
771 <                "SimSetup Error: No Dielectric constant was set.\n"
772 <                "\tYou are trying to use Reaction Field without"
773 <                "\tsetting a dielectric constant!\n");
774 <        painCave.isFatal = 1;
775 <        simError();
776 <      }      
777 <    }
778 <
817 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
818 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
819 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
820 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
821 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
822 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
823    }
824  
825    void SimInfo::setupFortranSim() {
826      int isError;
827 <    int nExclude;
828 <    std::vector<int> fortranGlobalGroupMembership;
827 >    int nExclude, nOneTwo, nOneThree, nOneFour;
828 >    vector<int> fortranGlobalGroupMembership;
829      
830 <    nExclude = exclude_.getSize();
830 >    notifyFortranSkinThickness(&skinThickness_);
831 >
832 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
833 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
834 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
835 >
836      isError = 0;
837  
838      //globalGroupMembership_ is filled by SimCreator    
# Line 792 | Line 841 | namespace oopse {
841      }
842  
843      //calculate mass ratio of cutoff group
844 <    std::vector<double> mfact;
844 >    vector<RealType> mfact;
845      SimInfo::MoleculeIterator mi;
846      Molecule* mol;
847      Molecule::CutoffGroupIterator ci;
848      CutoffGroup* cg;
849      Molecule::AtomIterator ai;
850      Atom* atom;
851 <    double totalMass;
851 >    RealType totalMass;
852  
853      //to avoid memory reallocation, reserve enough space for mfact
854      mfact.reserve(getNCutoffGroups());
# Line 815 | Line 864 | namespace oopse {
864            else
865              mfact.push_back( 1.0 );
866          }
818
867        }      
868      }
869  
870      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
871 <    std::vector<int> identArray;
871 >    vector<int> identArray;
872  
873      //to avoid memory reallocation, reserve enough space identArray
874      identArray.reserve(getNAtoms());
# Line 833 | Line 881 | namespace oopse {
881  
882      //fill molMembershipArray
883      //molMembershipArray is filled by SimCreator    
884 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
884 >    vector<int> molMembershipArray(nGlobalAtoms_);
885      for (int i = 0; i < nGlobalAtoms_; i++) {
886        molMembershipArray[i] = globalMolMembership_[i] + 1;
887      }
888      
889      //setup fortran simulation
842    int nGlobalExcludes = 0;
843    int* globalExcludes = NULL;
844    int* excludeList = exclude_.getExcludeList();
845    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
846                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
847                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
890  
891 <    if( isError ){
891 >    nExclude = excludedInteractions_.getSize();
892 >    nOneTwo = oneTwoInteractions_.getSize();
893 >    nOneThree = oneThreeInteractions_.getSize();
894 >    nOneFour = oneFourInteractions_.getSize();
895  
896 +    int* excludeList = excludedInteractions_.getPairList();
897 +    int* oneTwoList = oneTwoInteractions_.getPairList();
898 +    int* oneThreeList = oneThreeInteractions_.getPairList();
899 +    int* oneFourList = oneFourInteractions_.getPairList();
900 +
901 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
902 +                   &nExclude, excludeList,
903 +                   &nOneTwo, oneTwoList,
904 +                   &nOneThree, oneThreeList,
905 +                   &nOneFour, oneFourList,
906 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
907 +                   &fortranGlobalGroupMembership[0], &isError);
908 +    
909 +    if( isError ){
910 +      
911        sprintf( painCave.errMsg,
912                 "There was an error setting the simulation information in fortran.\n" );
913        painCave.isFatal = 1;
914 <      painCave.severity = OOPSE_ERROR;
914 >      painCave.severity = OPENMD_ERROR;
915        simError();
916      }
917 <
918 < #ifdef IS_MPI
917 >    
918 >    
919      sprintf( checkPointMsg,
920               "succesfully sent the simulation information to fortran.\n");
921 <    MPIcheckPoint();
922 < #endif // is_mpi
921 >    
922 >    errorCheckPoint();
923 >    
924 >    // Setup number of neighbors in neighbor list if present
925 >    if (simParams_->haveNeighborListNeighbors()) {
926 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
927 >      setNeighbors(&nlistNeighbors);
928 >    }
929 >  
930 >
931    }
932  
933  
866 #ifdef IS_MPI
934    void SimInfo::setupFortranParallel() {
935 <    
935 > #ifdef IS_MPI    
936      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
937 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 <    std::vector<int> localToGlobalCutoffGroupIndex;
937 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 >    vector<int> localToGlobalCutoffGroupIndex;
939      SimInfo::MoleculeIterator mi;
940      Molecule::AtomIterator ai;
941      Molecule::CutoffGroupIterator ci;
# Line 915 | Line 982 | namespace oopse {
982      }
983  
984      sprintf(checkPointMsg, " mpiRefresh successful.\n");
985 <    MPIcheckPoint();
985 >    errorCheckPoint();
986  
920
921  }
922
987   #endif
924
925  void SimInfo::setupCutoff() {          
926    
927    // Check the cutoff policy
928    int cp =  TRADITIONAL_CUTOFF_POLICY;
929    if (simParams_->haveCutoffPolicy()) {
930      std::string myPolicy = simParams_->getCutoffPolicy();
931      toUpper(myPolicy);
932      if (myPolicy == "MIX") {
933        cp = MIX_CUTOFF_POLICY;
934      } else {
935        if (myPolicy == "MAX") {
936          cp = MAX_CUTOFF_POLICY;
937        } else {
938          if (myPolicy == "TRADITIONAL") {            
939            cp = TRADITIONAL_CUTOFF_POLICY;
940          } else {
941            // throw error        
942            sprintf( painCave.errMsg,
943                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
944            painCave.isFatal = 1;
945            simError();
946          }    
947        }          
948      }
949    }          
950    notifyFortranCutoffPolicy(&cp);
951
952    // Check the Skin Thickness for neighborlists
953    double skin;
954    if (simParams_->haveSkinThickness()) {
955      skin = simParams_->getSkinThickness();
956      notifyFortranSkinThickness(&skin);
957    }            
958        
959    // Check if the cutoff was set explicitly:
960    if (simParams_->haveCutoffRadius()) {
961      rcut_ = simParams_->getCutoffRadius();
962      if (simParams_->haveSwitchingRadius()) {
963        rsw_  = simParams_->getSwitchingRadius();
964      } else {
965        rsw_ = rcut_;
966      }
967      notifyFortranCutoffs(&rcut_, &rsw_);
968      
969    } else {
970      
971      // For electrostatic atoms, we'll assume a large safe value:
972      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
973        sprintf(painCave.errMsg,
974                "SimCreator Warning: No value was set for the cutoffRadius.\n"
975                "\tOOPSE will use a default value of 15.0 angstroms"
976                "\tfor the cutoffRadius.\n");
977        painCave.isFatal = 0;
978        simError();
979        rcut_ = 15.0;
980      
981        if (simParams_->haveElectrostaticSummationMethod()) {
982          std::string myMethod = simParams_->getElectrostaticSummationMethod();
983          toUpper(myMethod);
984          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
985            if (simParams_->haveSwitchingRadius()){
986              sprintf(painCave.errMsg,
987                      "SimInfo Warning: A value was set for the switchingRadius\n"
988                      "\teven though the electrostaticSummationMethod was\n"
989                      "\tset to %s\n", myMethod.c_str());
990              painCave.isFatal = 1;
991              simError();            
992            }
993          }
994        }
995      
996        if (simParams_->haveSwitchingRadius()){
997          rsw_ = simParams_->getSwitchingRadius();
998        } else {        
999          sprintf(painCave.errMsg,
1000                  "SimCreator Warning: No value was set for switchingRadius.\n"
1001                  "\tOOPSE will use a default value of\n"
1002                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1003          painCave.isFatal = 0;
1004          simError();
1005          rsw_ = 0.85 * rcut_;
1006        }
1007        notifyFortranCutoffs(&rcut_, &rsw_);
1008      } else {
1009        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1010        // We'll punt and let fortran figure out the cutoffs later.
1011        
1012        notifyFortranYouAreOnYourOwn();
1013
1014      }
1015    }
988    }
989  
1018  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1019    
1020    int errorOut;
1021    int esm =  NONE;
1022    int sm = UNDAMPED;
1023    double alphaVal;
1024    double dielectric;
990  
1026    errorOut = isError;
1027    alphaVal = simParams_->getDampingAlpha();
1028    dielectric = simParams_->getDielectric();
1029
1030    if (simParams_->haveElectrostaticSummationMethod()) {
1031      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1032      toUpper(myMethod);
1033      if (myMethod == "NONE") {
1034        esm = NONE;
1035      } else {
1036        if (myMethod == "SWITCHING_FUNCTION") {
1037          esm = SWITCHING_FUNCTION;
1038        } else {
1039          if (myMethod == "SHIFTED_POTENTIAL") {
1040            esm = SHIFTED_POTENTIAL;
1041          } else {
1042            if (myMethod == "SHIFTED_FORCE") {            
1043              esm = SHIFTED_FORCE;
1044            } else {
1045              if (myMethod == "REACTION_FIELD") {            
1046                esm = REACTION_FIELD;
1047              } else {
1048                // throw error        
1049                sprintf( painCave.errMsg,
1050                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1051                         "\t(Input file specified %s .)\n"
1052                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1053                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1054                         "\t\"reaction_field\".\n", myMethod.c_str() );
1055                painCave.isFatal = 1;
1056                simError();
1057              }    
1058            }          
1059          }
1060        }
1061      }
1062    }
1063    
1064    if (simParams_->haveElectrostaticScreeningMethod()) {
1065      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1066      toUpper(myScreen);
1067      if (myScreen == "UNDAMPED") {
1068        sm = UNDAMPED;
1069      } else {
1070        if (myScreen == "DAMPED") {
1071          sm = DAMPED;
1072          if (!simParams_->haveDampingAlpha()) {
1073            //throw error
1074            sprintf( painCave.errMsg,
1075                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1076                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1077            painCave.isFatal = 0;
1078            simError();
1079          }
1080        } else {
1081          // throw error        
1082          sprintf( painCave.errMsg,
1083                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1084                   "\t(Input file specified %s .)\n"
1085                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1086                   "or \"damped\".\n", myScreen.c_str() );
1087          painCave.isFatal = 1;
1088          simError();
1089        }
1090      }
1091    }
1092    
1093    // let's pass some summation method variables to fortran
1094    setElectrostaticSummationMethod( &esm );
1095    notifyFortranElectrostaticMethod( &esm );
1096    setScreeningMethod( &sm );
1097    setDampingAlpha( &alphaVal );
1098    setReactionFieldDielectric( &dielectric );
1099    initFortranFF( &errorOut );
1100  }
1101
991    void SimInfo::setupSwitchingFunction() {    
992      int ft = CUBIC;
993 <
993 >    
994      if (simParams_->haveSwitchingFunctionType()) {
995 <      std::string funcType = simParams_->getSwitchingFunctionType();
995 >      string funcType = simParams_->getSwitchingFunctionType();
996        toUpper(funcType);
997        if (funcType == "CUBIC") {
998          ft = CUBIC;
# Line 1113 | Line 1002 | namespace oopse {
1002          } else {
1003            // throw error        
1004            sprintf( painCave.errMsg,
1005 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1005 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n"
1006 >                   "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".",
1007 >                   funcType.c_str() );
1008            painCave.isFatal = 1;
1009            simError();
1010          }          
# Line 1125 | Line 1016 | namespace oopse {
1016  
1017    }
1018  
1019 +  void SimInfo::setupAccumulateBoxDipole() {    
1020 +
1021 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1022 +    if ( simParams_->haveAccumulateBoxDipole() )
1023 +      if ( simParams_->getAccumulateBoxDipole() ) {
1024 +        calcBoxDipole_ = true;
1025 +      }
1026 +
1027 +  }
1028 +
1029    void SimInfo::addProperty(GenericData* genData) {
1030      properties_.addProperty(genData);  
1031    }
1032  
1033 <  void SimInfo::removeProperty(const std::string& propName) {
1033 >  void SimInfo::removeProperty(const string& propName) {
1034      properties_.removeProperty(propName);  
1035    }
1036  
# Line 1137 | Line 1038 | namespace oopse {
1038      properties_.clearProperties();
1039    }
1040  
1041 <  std::vector<std::string> SimInfo::getPropertyNames() {
1041 >  vector<string> SimInfo::getPropertyNames() {
1042      return properties_.getPropertyNames();  
1043    }
1044        
1045 <  std::vector<GenericData*> SimInfo::getProperties() {
1045 >  vector<GenericData*> SimInfo::getProperties() {
1046      return properties_.getProperties();
1047    }
1048  
1049 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1049 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1050      return properties_.getPropertyByName(propName);
1051    }
1052  
# Line 1181 | Line 1082 | namespace oopse {
1082      Molecule* mol;
1083  
1084      Vector3d comVel(0.0);
1085 <    double totalMass = 0.0;
1085 >    RealType totalMass = 0.0;
1086      
1087  
1088      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1089 <      double mass = mol->getMass();
1089 >      RealType mass = mol->getMass();
1090        totalMass += mass;
1091        comVel += mass * mol->getComVel();
1092      }  
1093  
1094   #ifdef IS_MPI
1095 <    double tmpMass = totalMass;
1095 >    RealType tmpMass = totalMass;
1096      Vector3d tmpComVel(comVel);    
1097 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1098 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1097 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1098 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099   #endif
1100  
1101      comVel /= totalMass;
# Line 1207 | Line 1108 | namespace oopse {
1108      Molecule* mol;
1109  
1110      Vector3d com(0.0);
1111 <    double totalMass = 0.0;
1111 >    RealType totalMass = 0.0;
1112      
1113      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1114 <      double mass = mol->getMass();
1114 >      RealType mass = mol->getMass();
1115        totalMass += mass;
1116        com += mass * mol->getCom();
1117      }  
1118  
1119   #ifdef IS_MPI
1120 <    double tmpMass = totalMass;
1120 >    RealType tmpMass = totalMass;
1121      Vector3d tmpCom(com);    
1122 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1123 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1122 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1123 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124   #endif
1125  
1126      com /= totalMass;
# Line 1228 | Line 1129 | namespace oopse {
1129  
1130    }        
1131  
1132 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1132 >  ostream& operator <<(ostream& o, SimInfo& info) {
1133  
1134      return o;
1135    }
# Line 1243 | Line 1144 | namespace oopse {
1144        Molecule* mol;
1145        
1146      
1147 <      double totalMass = 0.0;
1147 >      RealType totalMass = 0.0;
1148      
1149  
1150        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 <         double mass = mol->getMass();
1151 >         RealType mass = mol->getMass();
1152           totalMass += mass;
1153           com += mass * mol->getCom();
1154           comVel += mass * mol->getComVel();          
1155        }  
1156        
1157   #ifdef IS_MPI
1158 <      double tmpMass = totalMass;
1158 >      RealType tmpMass = totalMass;
1159        Vector3d tmpCom(com);  
1160        Vector3d tmpComVel(comVel);
1161 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1162 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1163 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1161 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164   #endif
1165        
1166        com /= totalMass;
# Line 1271 | Line 1172 | namespace oopse {
1172  
1173  
1174         [  Ixx -Ixy  -Ixz ]
1175 <  J =| -Iyx  Iyy  -Iyz |
1175 >    J =| -Iyx  Iyy  -Iyz |
1176         [ -Izx -Iyz   Izz ]
1177      */
1178  
1179     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1180        
1181  
1182 <      double xx = 0.0;
1183 <      double yy = 0.0;
1184 <      double zz = 0.0;
1185 <      double xy = 0.0;
1186 <      double xz = 0.0;
1187 <      double yz = 0.0;
1182 >      RealType xx = 0.0;
1183 >      RealType yy = 0.0;
1184 >      RealType zz = 0.0;
1185 >      RealType xy = 0.0;
1186 >      RealType xz = 0.0;
1187 >      RealType yz = 0.0;
1188        Vector3d com(0.0);
1189        Vector3d comVel(0.0);
1190        
# Line 1295 | Line 1196 | namespace oopse {
1196        Vector3d thisq(0.0);
1197        Vector3d thisv(0.0);
1198  
1199 <      double thisMass = 0.0;
1199 >      RealType thisMass = 0.0;
1200      
1201        
1202        
# Line 1333 | Line 1234 | namespace oopse {
1234   #ifdef IS_MPI
1235        Mat3x3d tmpI(inertiaTensor);
1236        Vector3d tmpAngMom;
1237 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1238 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1237 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1238 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239   #endif
1240                
1241        return;
# Line 1355 | Line 1256 | namespace oopse {
1256        Vector3d thisr(0.0);
1257        Vector3d thisp(0.0);
1258        
1259 <      double thisMass;
1259 >      RealType thisMass;
1260        
1261        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1262          thisMass = mol->getMass();
# Line 1368 | Line 1269 | namespace oopse {
1269        
1270   #ifdef IS_MPI
1271        Vector3d tmpAngMom;
1272 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1272 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1273   #endif
1274        
1275        return angularMomentum;
1276     }
1277    
1278 <  
1279 < }//end namespace oopse
1278 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1279 >    return IOIndexToIntegrableObject.at(index);
1280 >  }
1281 >  
1282 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1283 >    IOIndexToIntegrableObject= v;
1284 >  }
1285  
1286 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1287 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1288 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1289 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1290 +  */
1291 +  void SimInfo::getGyrationalVolume(RealType &volume){
1292 +    Mat3x3d intTensor;
1293 +    RealType det;
1294 +    Vector3d dummyAngMom;
1295 +    RealType sysconstants;
1296 +    RealType geomCnst;
1297 +
1298 +    geomCnst = 3.0/2.0;
1299 +    /* Get the inertial tensor and angular momentum for free*/
1300 +    getInertiaTensor(intTensor,dummyAngMom);
1301 +    
1302 +    det = intTensor.determinant();
1303 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1304 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1305 +    return;
1306 +  }
1307 +
1308 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1309 +    Mat3x3d intTensor;
1310 +    Vector3d dummyAngMom;
1311 +    RealType sysconstants;
1312 +    RealType geomCnst;
1313 +
1314 +    geomCnst = 3.0/2.0;
1315 +    /* Get the inertial tensor and angular momentum for free*/
1316 +    getInertiaTensor(intTensor,dummyAngMom);
1317 +    
1318 +    detI = intTensor.determinant();
1319 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1320 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1321 +    return;
1322 +  }
1323 + /*
1324 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1325 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1326 +      sdByGlobalIndex_ = v;
1327 +    }
1328 +
1329 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1330 +      //assert(index < nAtoms_ + nRigidBodies_);
1331 +      return sdByGlobalIndex_.at(index);
1332 +    }  
1333 + */  
1334 +  int SimInfo::getNGlobalConstraints() {
1335 +    int nGlobalConstraints;
1336 + #ifdef IS_MPI
1337 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1338 +                  MPI_COMM_WORLD);    
1339 + #else
1340 +    nGlobalConstraints =  nConstraints_;
1341 + #endif
1342 +    return nGlobalConstraints;
1343 +  }
1344 +
1345 + }//end namespace OpenMD
1346 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 764 by gezelter, Mon Nov 21 22:59:21 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines