ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 326 by tim, Sun Feb 13 20:05:42 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
62   #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64   #include "selection/SelectionManager.hpp"
65 + #include "io/ForceFieldOptions.hpp"
66 + #include "UseTheForce/ForceField.hpp"
67 + #include "nonbonded/InteractionManager.hpp"
68  
69 +
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
72   #include "UseTheForce/DarkSide/simParallel_interface.h"
73   #endif
74  
75 < namespace oopse {
76 <
77 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
78 <                                ForceField* ff, Globals* simParams) :
79 <                                forceField_(ff), simParams_(simParams),
80 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
84 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
85 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
86 <
87 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
75 > using namespace std;
76 > namespace OpenMD {
77 >  
78 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79 >    forceField_(ff), simParams_(simParams),
80 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87 >    
88      MoleculeStamp* molStamp;
89      int nMolWithSameStamp;
90      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92      CutoffGroupStamp* cgStamp;    
93      RigidBodyStamp* rbStamp;
94      int nRigidAtoms = 0;
95      
96 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
97 <        molStamp = i->first;
98 <        nMolWithSameStamp = i->second;
99 <        
100 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
101 <
102 <        //calculate atoms in molecules
103 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 <
105 <
106 <        //calculate atoms in cutoff groups
107 <        int nAtomsInGroups = 0;
108 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
109 <        
110 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
111 <            cgStamp = molStamp->getCutoffGroup(j);
112 <            nAtomsInGroups += cgStamp->getNMembers();
113 <        }
114 <
115 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
116 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
117 <
118 <        //calculate atoms in rigid bodies
119 <        int nAtomsInRigidBodies = 0;
120 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
121 <        
122 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
123 <            rbStamp = molStamp->getRigidBody(j);
124 <            nAtomsInRigidBodies += rbStamp->getNMembers();
125 <        }
126 <
127 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
128 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
129 <        
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101 >      
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114 >      }
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132      }
133 <
134 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
135 <    //therefore the total number of cutoff groups in the system is equal to
136 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
137 <    //file plus the number of cutoff groups defined in meta-data file
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 <
141 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
142 <    //therefore the total number of  integrable objects in the system is equal to
143 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
144 <    //file plus the number of  rigid bodies defined in meta-data file
145 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
146 <
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
150      molToProcMap_.resize(nGlobalMols_);
151 < #endif
152 <
153 <    selectMan_ = new SelectionManager(this);
154 <    selectMan_->selectAll();
155 < }
156 <
157 < SimInfo::~SimInfo() {
158 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
159 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
151 >  }
152 >  
153 >  SimInfo::~SimInfo() {
154 >    map<int, Molecule*>::iterator i;
155 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156 >      delete i->second;
157 >    }
158 >    molecules_.clear();
159 >      
160      delete sman_;
161      delete simParams_;
162      delete forceField_;
163 <    delete selectMan_;
155 < }
163 >  }
164  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
165  
166 < bool SimInfo::addMolecule(Molecule* mol) {
166 >  bool SimInfo::addMolecule(Molecule* mol) {
167      MoleculeIterator i;
168 <
168 >    
169      i = molecules_.find(mol->getGlobalIndex());
170      if (i == molecules_.end() ) {
171 <
172 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
173 <        
174 <        nAtoms_ += mol->getNAtoms();
175 <        nBonds_ += mol->getNBonds();
176 <        nBends_ += mol->getNBends();
177 <        nTorsions_ += mol->getNTorsions();
178 <        nRigidBodies_ += mol->getNRigidBodies();
179 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
180 <        nCutoffGroups_ += mol->getNCutoffGroups();
181 <        nConstraints_ += mol->getNConstraintPairs();
182 <
183 <        addExcludePairs(mol);
184 <        
185 <        return true;
186 <    } else {
187 <        return false;
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174 >      nAtoms_ += mol->getNAtoms();
175 >      nBonds_ += mol->getNBonds();
176 >      nBends_ += mol->getNBends();
177 >      nTorsions_ += mol->getNTorsions();
178 >      nInversions_ += mol->getNInversions();
179 >      nRigidBodies_ += mol->getNRigidBodies();
180 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
181 >      nCutoffGroups_ += mol->getNCutoffGroups();
182 >      nConstraints_ += mol->getNConstraintPairs();
183 >      
184 >      addInteractionPairs(mol);
185 >      
186 >      return true;
187 >    } else {
188 >      return false;
189      }
190 < }
191 <
192 < bool SimInfo::removeMolecule(Molecule* mol) {
190 >  }
191 >  
192 >  bool SimInfo::removeMolecule(Molecule* mol) {
193      MoleculeIterator i;
194      i = molecules_.find(mol->getGlobalIndex());
195  
196      if (i != molecules_.end() ) {
197  
198 <        assert(mol == i->second);
198 >      assert(mol == i->second);
199          
200 <        nAtoms_ -= mol->getNAtoms();
201 <        nBonds_ -= mol->getNBonds();
202 <        nBends_ -= mol->getNBends();
203 <        nTorsions_ -= mol->getNTorsions();
204 <        nRigidBodies_ -= mol->getNRigidBodies();
205 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
206 <        nCutoffGroups_ -= mol->getNCutoffGroups();
207 <        nConstraints_ -= mol->getNConstraintPairs();
200 >      nAtoms_ -= mol->getNAtoms();
201 >      nBonds_ -= mol->getNBonds();
202 >      nBends_ -= mol->getNBends();
203 >      nTorsions_ -= mol->getNTorsions();
204 >      nInversions_ -= mol->getNInversions();
205 >      nRigidBodies_ -= mol->getNRigidBodies();
206 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 >      nCutoffGroups_ -= mol->getNCutoffGroups();
208 >      nConstraints_ -= mol->getNConstraintPairs();
209  
210 <        removeExcludePairs(mol);
211 <        molecules_.erase(mol->getGlobalIndex());
210 >      removeInteractionPairs(mol);
211 >      molecules_.erase(mol->getGlobalIndex());
212  
213 <        delete mol;
213 >      delete mol;
214          
215 <        return true;
215 >      return true;
216      } else {
217 <        return false;
217 >      return false;
218      }
219 +  }    
220  
220
221 }    
222
221          
222 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
222 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
223      i = molecules_.begin();
224      return i == molecules_.end() ? NULL : i->second;
225 < }    
225 >  }    
226  
227 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
227 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
228      ++i;
229      return i == molecules_.end() ? NULL : i->second;    
230 < }
230 >  }
231  
232  
233 < void SimInfo::calcNdf() {
233 >  void SimInfo::calcNdf() {
234      int ndf_local;
235      MoleculeIterator i;
236 <    std::vector<StuntDouble*>::iterator j;
236 >    vector<StuntDouble*>::iterator j;
237      Molecule* mol;
238      StuntDouble* integrableObject;
239  
240      ndf_local = 0;
241      
242      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
243 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244 <               integrableObject = mol->nextIntegrableObject(j)) {
243 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244 >           integrableObject = mol->nextIntegrableObject(j)) {
245  
246 <            ndf_local += 3;
246 >        ndf_local += 3;
247  
248 <            if (integrableObject->isDirectional()) {
249 <                if (integrableObject->isLinear()) {
250 <                    ndf_local += 2;
251 <                } else {
252 <                    ndf_local += 3;
253 <                }
254 <            }
248 >        if (integrableObject->isDirectional()) {
249 >          if (integrableObject->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255              
256 <        }//end for (integrableObject)
257 <    }// end for (mol)
256 >      }
257 >    }
258      
259      // n_constraints is local, so subtract them on each processor
260      ndf_local -= nConstraints_;
# Line 271 | Line 269 | void SimInfo::calcNdf() {
269      // entire system:
270      ndf_ = ndf_ - 3 - nZconstraint_;
271  
272 < }
272 >  }
273  
274 < void SimInfo::calcNdfRaw() {
274 >  int SimInfo::getFdf() {
275 > #ifdef IS_MPI
276 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
277 > #else
278 >    fdf_ = fdf_local;
279 > #endif
280 >    return fdf_;
281 >  }
282 >    
283 >  void SimInfo::calcNdfRaw() {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
287 <    std::vector<StuntDouble*>::iterator j;
287 >    vector<StuntDouble*>::iterator j;
288      Molecule* mol;
289      StuntDouble* integrableObject;
290  
# Line 285 | Line 292 | void SimInfo::calcNdfRaw() {
292      ndfRaw_local = 0;
293      
294      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 <               integrableObject = mol->nextIntegrableObject(j)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 <            ndfRaw_local += 3;
298 >        ndfRaw_local += 3;
299  
300 <            if (integrableObject->isDirectional()) {
301 <                if (integrableObject->isLinear()) {
302 <                    ndfRaw_local += 2;
303 <                } else {
304 <                    ndfRaw_local += 3;
305 <                }
306 <            }
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307              
308 <        }
308 >      }
309      }
310      
311   #ifdef IS_MPI
# Line 306 | Line 313 | void SimInfo::calcNdfRaw() {
313   #else
314      ndfRaw_ = ndfRaw_local;
315   #endif
316 < }
316 >  }
317  
318 < void SimInfo::calcNdfTrans() {
318 >  void SimInfo::calcNdfTrans() {
319      int ndfTrans_local;
320  
321      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 329 | void SimInfo::calcNdfTrans() {
329  
330      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331  
332 < }
332 >  }
333  
334 < void SimInfo::addExcludePairs(Molecule* mol) {
335 <    std::vector<Bond*>::iterator bondIter;
336 <    std::vector<Bend*>::iterator bendIter;
337 <    std::vector<Torsion*>::iterator torsionIter;
334 >  void SimInfo::addInteractionPairs(Molecule* mol) {
335 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340      Bond* bond;
341      Bend* bend;
342      Torsion* torsion;
343 +    Inversion* inversion;
344      int a;
345      int b;
346      int c;
347      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
348  
349 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
350 <        a = bend->getAtomA()->getGlobalIndex();
351 <        b = bend->getAtomB()->getGlobalIndex();        
352 <        c = bend->getAtomC()->getGlobalIndex();
349 >    // atomGroups can be used to add special interaction maps between
350 >    // groups of atoms that are in two separate rigid bodies.
351 >    // However, most site-site interactions between two rigid bodies
352 >    // are probably not special, just the ones between the physically
353 >    // bonded atoms.  Interactions *within* a single rigid body should
354 >    // always be excluded.  These are done at the bottom of this
355 >    // function.
356  
357 <        exclude_.addPair(a, b);
358 <        exclude_.addPair(a, c);
359 <        exclude_.addPair(b, c);        
360 <    }
361 <
362 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 <        a = torsion->getAtomA()->getGlobalIndex();
364 <        b = torsion->getAtomB()->getGlobalIndex();        
365 <        c = torsion->getAtomC()->getGlobalIndex();        
366 <        d = torsion->getAtomD()->getGlobalIndex();        
357 >    map<int, set<int> > atomGroups;
358 >    Molecule::RigidBodyIterator rbIter;
359 >    RigidBody* rb;
360 >    Molecule::IntegrableObjectIterator ii;
361 >    StuntDouble* integrableObject;
362 >    
363 >    for (integrableObject = mol->beginIntegrableObject(ii);
364 >         integrableObject != NULL;
365 >         integrableObject = mol->nextIntegrableObject(ii)) {
366 >      
367 >      if (integrableObject->isRigidBody()) {
368 >        rb = static_cast<RigidBody*>(integrableObject);
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 >        }
374 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 >        }      
377 >      } else {
378 >        set<int> oneAtomSet;
379 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381 >      }
382 >    }  
383 >          
384 >    for (bond= mol->beginBond(bondIter); bond != NULL;
385 >         bond = mol->nextBond(bondIter)) {
386  
387 <        exclude_.addPair(a, b);
388 <        exclude_.addPair(a, c);
389 <        exclude_.addPair(a, d);
390 <        exclude_.addPair(b, c);
391 <        exclude_.addPair(b, d);
392 <        exclude_.addPair(c, d);        
387 >      a = bond->getAtomA()->getGlobalIndex();
388 >      b = bond->getAtomB()->getGlobalIndex();  
389 >    
390 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
391 >        oneTwoInteractions_.addPair(a, b);
392 >      } else {
393 >        excludedInteractions_.addPair(a, b);
394 >      }
395      }
396  
397 <    
398 < }
397 >    for (bend= mol->beginBend(bendIter); bend != NULL;
398 >         bend = mol->nextBend(bendIter)) {
399  
400 < void SimInfo::removeExcludePairs(Molecule* mol) {
401 <    std::vector<Bond*>::iterator bondIter;
402 <    std::vector<Bend*>::iterator bendIter;
403 <    std::vector<Torsion*>::iterator torsionIter;
400 >      a = bend->getAtomA()->getGlobalIndex();
401 >      b = bend->getAtomB()->getGlobalIndex();        
402 >      c = bend->getAtomC()->getGlobalIndex();
403 >      
404 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
405 >        oneTwoInteractions_.addPair(a, b);      
406 >        oneTwoInteractions_.addPair(b, c);
407 >      } else {
408 >        excludedInteractions_.addPair(a, b);
409 >        excludedInteractions_.addPair(b, c);
410 >      }
411 >
412 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
413 >        oneThreeInteractions_.addPair(a, c);      
414 >      } else {
415 >        excludedInteractions_.addPair(a, c);
416 >      }
417 >    }
418 >
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
420 >         torsion = mol->nextTorsion(torsionIter)) {
421 >
422 >      a = torsion->getAtomA()->getGlobalIndex();
423 >      b = torsion->getAtomB()->getGlobalIndex();        
424 >      c = torsion->getAtomC()->getGlobalIndex();        
425 >      d = torsion->getAtomD()->getGlobalIndex();      
426 >
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >        oneTwoInteractions_.addPair(c, d);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >        excludedInteractions_.addPair(c, d);
435 >      }
436 >
437 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
438 >        oneThreeInteractions_.addPair(a, c);      
439 >        oneThreeInteractions_.addPair(b, d);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >        excludedInteractions_.addPair(b, d);
443 >      }
444 >
445 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
446 >        oneFourInteractions_.addPair(a, d);      
447 >      } else {
448 >        excludedInteractions_.addPair(a, d);
449 >      }
450 >    }
451 >
452 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
453 >         inversion = mol->nextInversion(inversionIter)) {
454 >
455 >      a = inversion->getAtomA()->getGlobalIndex();
456 >      b = inversion->getAtomB()->getGlobalIndex();        
457 >      c = inversion->getAtomC()->getGlobalIndex();        
458 >      d = inversion->getAtomD()->getGlobalIndex();        
459 >
460 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
461 >        oneTwoInteractions_.addPair(a, b);      
462 >        oneTwoInteractions_.addPair(a, c);
463 >        oneTwoInteractions_.addPair(a, d);
464 >      } else {
465 >        excludedInteractions_.addPair(a, b);
466 >        excludedInteractions_.addPair(a, c);
467 >        excludedInteractions_.addPair(a, d);
468 >      }
469 >
470 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
471 >        oneThreeInteractions_.addPair(b, c);    
472 >        oneThreeInteractions_.addPair(b, d);    
473 >        oneThreeInteractions_.addPair(c, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(b, c);
476 >        excludedInteractions_.addPair(b, d);
477 >        excludedInteractions_.addPair(c, d);
478 >      }
479 >    }
480 >
481 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482 >         rb = mol->nextRigidBody(rbIter)) {
483 >      vector<Atom*> atoms = rb->getAtoms();
484 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486 >          a = atoms[i]->getGlobalIndex();
487 >          b = atoms[j]->getGlobalIndex();
488 >          excludedInteractions_.addPair(a, b);
489 >        }
490 >      }
491 >    }        
492 >
493 >  }
494 >
495 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
496 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 >    vector<Bond*>::iterator bondIter;
498 >    vector<Bend*>::iterator bendIter;
499 >    vector<Torsion*>::iterator torsionIter;
500 >    vector<Inversion*>::iterator inversionIter;
501      Bond* bond;
502      Bend* bend;
503      Torsion* torsion;
504 +    Inversion* inversion;
505      int a;
506      int b;
507      int c;
508      int d;
509 +
510 +    map<int, set<int> > atomGroups;
511 +    Molecule::RigidBodyIterator rbIter;
512 +    RigidBody* rb;
513 +    Molecule::IntegrableObjectIterator ii;
514 +    StuntDouble* integrableObject;
515      
516 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
517 <        a = bond->getAtomA()->getGlobalIndex();
518 <        b = bond->getAtomB()->getGlobalIndex();        
519 <        exclude_.removePair(a, b);
516 >    for (integrableObject = mol->beginIntegrableObject(ii);
517 >         integrableObject != NULL;
518 >         integrableObject = mol->nextIntegrableObject(ii)) {
519 >      
520 >      if (integrableObject->isRigidBody()) {
521 >        rb = static_cast<RigidBody*>(integrableObject);
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 >        }
527 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 >        }      
530 >      } else {
531 >        set<int> oneAtomSet;
532 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534 >      }
535 >    }  
536 >
537 >    for (bond= mol->beginBond(bondIter); bond != NULL;
538 >         bond = mol->nextBond(bondIter)) {
539 >      
540 >      a = bond->getAtomA()->getGlobalIndex();
541 >      b = bond->getAtomB()->getGlobalIndex();  
542 >    
543 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
544 >        oneTwoInteractions_.removePair(a, b);
545 >      } else {
546 >        excludedInteractions_.removePair(a, b);
547 >      }
548      }
549  
550 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
551 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
550 >    for (bend= mol->beginBend(bendIter); bend != NULL;
551 >         bend = mol->nextBend(bendIter)) {
552  
553 <        exclude_.removePair(a, b);
554 <        exclude_.removePair(a, c);
555 <        exclude_.removePair(b, c);        
553 >      a = bend->getAtomA()->getGlobalIndex();
554 >      b = bend->getAtomB()->getGlobalIndex();        
555 >      c = bend->getAtomC()->getGlobalIndex();
556 >      
557 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
558 >        oneTwoInteractions_.removePair(a, b);      
559 >        oneTwoInteractions_.removePair(b, c);
560 >      } else {
561 >        excludedInteractions_.removePair(a, b);
562 >        excludedInteractions_.removePair(b, c);
563 >      }
564 >
565 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
566 >        oneThreeInteractions_.removePair(a, c);      
567 >      } else {
568 >        excludedInteractions_.removePair(a, c);
569 >      }
570      }
571  
572 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
573 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
572 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
573 >         torsion = mol->nextTorsion(torsionIter)) {
574  
575 <        exclude_.removePair(a, b);
576 <        exclude_.removePair(a, c);
577 <        exclude_.removePair(a, d);
578 <        exclude_.removePair(b, c);
579 <        exclude_.removePair(b, d);
580 <        exclude_.removePair(c, d);        
575 >      a = torsion->getAtomA()->getGlobalIndex();
576 >      b = torsion->getAtomB()->getGlobalIndex();        
577 >      c = torsion->getAtomC()->getGlobalIndex();        
578 >      d = torsion->getAtomD()->getGlobalIndex();      
579 >  
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >        oneTwoInteractions_.removePair(c, d);
584 >      } else {
585 >        excludedInteractions_.removePair(a, b);
586 >        excludedInteractions_.removePair(b, c);
587 >        excludedInteractions_.removePair(c, d);
588 >      }
589 >
590 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
591 >        oneThreeInteractions_.removePair(a, c);      
592 >        oneThreeInteractions_.removePair(b, d);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >        excludedInteractions_.removePair(b, d);
596 >      }
597 >
598 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
599 >        oneFourInteractions_.removePair(a, d);      
600 >      } else {
601 >        excludedInteractions_.removePair(a, d);
602 >      }
603      }
604  
605 < }
605 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
606 >         inversion = mol->nextInversion(inversionIter)) {
607  
608 +      a = inversion->getAtomA()->getGlobalIndex();
609 +      b = inversion->getAtomB()->getGlobalIndex();        
610 +      c = inversion->getAtomC()->getGlobalIndex();        
611 +      d = inversion->getAtomD()->getGlobalIndex();        
612  
613 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
614 <    int curStampId;
613 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
614 >        oneTwoInteractions_.removePair(a, b);      
615 >        oneTwoInteractions_.removePair(a, c);
616 >        oneTwoInteractions_.removePair(a, d);
617 >      } else {
618 >        excludedInteractions_.removePair(a, b);
619 >        excludedInteractions_.removePair(a, c);
620 >        excludedInteractions_.removePair(a, d);
621 >      }
622  
623 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
624 +        oneThreeInteractions_.removePair(b, c);    
625 +        oneThreeInteractions_.removePair(b, d);    
626 +        oneThreeInteractions_.removePair(c, d);      
627 +      } else {
628 +        excludedInteractions_.removePair(b, c);
629 +        excludedInteractions_.removePair(b, d);
630 +        excludedInteractions_.removePair(c, d);
631 +      }
632 +    }
633 +
634 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635 +         rb = mol->nextRigidBody(rbIter)) {
636 +      vector<Atom*> atoms = rb->getAtoms();
637 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639 +          a = atoms[i]->getGlobalIndex();
640 +          b = atoms[j]->getGlobalIndex();
641 +          excludedInteractions_.removePair(a, b);
642 +        }
643 +      }
644 +    }        
645 +    
646 +  }
647 +  
648 +  
649 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
650 +    int curStampId;
651 +    
652      //index from 0
653      curStampId = moleculeStamps_.size();
654  
655      moleculeStamps_.push_back(molStamp);
656      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
657 < }
657 >  }
658  
659 < void SimInfo::update() {
659 >  void SimInfo::update() {
660  
661      setupSimType();
662 +    setupCutoffRadius();
663 +    setupSwitchingRadius();
664 +    setupCutoffMethod();
665 +    setupSkinThickness();
666 +    setupSwitchingFunction();
667 +    setupAccumulateBoxDipole();
668  
669   #ifdef IS_MPI
670      setupFortranParallel();
671   #endif
434
672      setupFortranSim();
673 +    fortranInitialized_ = true;
674  
437    //setup fortran force field
438    /** @deprecate */    
439    int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
448    
449    setupCutoff();
450
675      calcNdf();
676      calcNdfRaw();
677      calcNdfTrans();
678 <
679 <    fortranInitialized_ = true;
680 < }
457 <
458 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
678 >  }
679 >  
680 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681      SimInfo::MoleculeIterator mi;
682      Molecule* mol;
683      Molecule::AtomIterator ai;
684      Atom* atom;
685 <    std::set<AtomType*> atomTypes;
685 >    set<AtomType*> atomTypes;
686 >    
687 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
688 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689 >        atomTypes.insert(atom->getAtomType());
690 >      }      
691 >    }    
692 >    return atomTypes;        
693 >  }
694  
695 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
696 <
697 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
698 <            atomTypes.insert(atom->getAtomType());
695 >  /**
696 >   * setupCutoffRadius
697 >   *
698 >   *  If the cutoffRadius was explicitly set, use that value.
699 >   *  If the cutoffRadius was not explicitly set:
700 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
701 >   *      No electrostatic atoms?  Poll the atom types present in the
702 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
703 >   *      Use the maximum suggested value that was found.
704 >   */
705 >  void SimInfo::setupCutoffRadius() {
706 >    
707 >    if (simParams_->haveCutoffRadius()) {
708 >      cutoffRadius_ = simParams_->getCutoffRadius();
709 >    } else {      
710 >      if (usesElectrostaticAtoms_) {
711 >        sprintf(painCave.errMsg,
712 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
713 >                "\tOpenMD will use a default value of 12.0 angstroms"
714 >                "\tfor the cutoffRadius.\n");
715 >        painCave.isFatal = 0;
716 >        simError();
717 >        cutoffRadius_ = 12.0;
718 >      } else {
719 >        RealType thisCut;
720 >        set<AtomType*>::iterator i;
721 >        set<AtomType*> atomTypes;
722 >        atomTypes = getSimulatedAtomTypes();        
723 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
724 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
725 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
726          }
727 <        
727 >        sprintf(painCave.errMsg,
728 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
729 >                "\tOpenMD will use %lf angstroms.\n",
730 >                cutoffRadius_);
731 >        painCave.isFatal = 0;
732 >        simError();
733 >      }            
734      }
735  
736 <    return atomTypes;        
737 < }
738 <
739 < void SimInfo::setupSimType() {
740 <    std::set<AtomType*>::iterator i;
741 <    std::set<AtomType*> atomTypes;
742 <    atomTypes = getUniqueAtomTypes();
736 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
737 >  }
738 >  
739 >  /**
740 >   * setupSwitchingRadius
741 >   *
742 >   *  If the switchingRadius was explicitly set, use that value (but check it)
743 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
744 >   */
745 >  void SimInfo::setupSwitchingRadius() {
746      
747 <    int useLennardJones = 0;
748 <    int useElectrostatic = 0;
749 <    int useEAM = 0;
750 <    int useCharge = 0;
751 <    int useDirectional = 0;
752 <    int useDipole = 0;
753 <    int useGayBerne = 0;
754 <    int useSticky = 0;
489 <    int useShape = 0;
490 <    int useFLARB = 0; //it is not in AtomType yet
491 <    int useDirectionalAtom = 0;    
492 <    int useElectrostatics = 0;
493 <    //usePBC and useRF are from simParams
494 <    int usePBC = simParams_->getPBC();
495 <    int useRF = simParams_->getUseRF();
747 >    if (simParams_->haveSwitchingRadius()) {
748 >      switchingRadius_ = simParams_->getSwitchingRadius();
749 >      if (switchingRadius_ > cutoffRadius_) {        
750 >        sprintf(painCave.errMsg,
751 >                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
752 >                switchingRadius_, cutoffRadius_);
753 >        painCave.isFatal = 1;
754 >        simError();
755  
756 +      }
757 +    } else {      
758 +      switchingRadius_ = 0.85 * cutoffRadius_;
759 +      sprintf(painCave.errMsg,
760 +              "SimInfo Warning: No value was set for the switchingRadius.\n"
761 +              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
762 +              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
763 +      painCave.isFatal = 0;
764 +      simError();
765 +    }            
766 +    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
767 +  }
768 +
769 +  /**
770 +   * setupSkinThickness
771 +   *
772 +   *  If the skinThickness was explicitly set, use that value (but check it)
773 +   *  If the skinThickness was not explicitly set: use 1.0 angstroms
774 +   */
775 +  void SimInfo::setupSkinThickness() {    
776 +    if (simParams_->haveSkinThickness()) {
777 +      skinThickness_ = simParams_->getSkinThickness();
778 +    } else {      
779 +      skinThickness_ = 1.0;
780 +      sprintf(painCave.errMsg,
781 +              "SimInfo Warning: No value was set for the skinThickness.\n"
782 +              "\tOpenMD will use a default value of %f Angstroms\n"
783 +              "\tfor this simulation\n", skinThickness_);
784 +      painCave.isFatal = 0;
785 +      simError();
786 +    }            
787 +  }
788 +
789 +  void SimInfo::setupSimType() {
790 +    set<AtomType*>::iterator i;
791 +    set<AtomType*> atomTypes;
792 +    atomTypes = getSimulatedAtomTypes();
793 +
794 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
795 +
796 +    int usesElectrostatic = 0;
797 +    int usesMetallic = 0;
798 +    int usesDirectional = 0;
799      //loop over all of the atom types
800      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
801 <        useLennardJones |= (*i)->isLennardJones();
802 <        useElectrostatic |= (*i)->isElectrostatic();
803 <        useEAM |= (*i)->isEAM();
502 <        useCharge |= (*i)->isCharge();
503 <        useDirectional |= (*i)->isDirectional();
504 <        useDipole |= (*i)->isDipole();
505 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
801 >      usesElectrostatic |= (*i)->isElectrostatic();
802 >      usesMetallic |= (*i)->isMetal();
803 >      usesDirectional |= (*i)->isDirectional();
804      }
805  
510    if (useSticky || useDipole || useGayBerne || useShape) {
511        useDirectionalAtom = 1;
512    }
513
514    if (useCharge || useDipole) {
515        useElectrostatics = 1;
516    }
517
806   #ifdef IS_MPI    
807      int temp;
808 +    temp = usesDirectional;
809 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810  
811 <    temp = usePBC;
812 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 >    temp = usesMetallic;
812 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useDirectionalAtom;
815 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
526 <
527 <    temp = useLennardJones;
528 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
529 <
530 <    temp = useElectrostatics;
531 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
532 <
533 <    temp = useCharge;
534 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
535 <
536 <    temp = useDipole;
537 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
538 <
539 <    temp = useSticky;
540 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
541 <
542 <    temp = useGayBerne;
543 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
544 <
545 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <    
814 >    temp = usesElectrostatic;
815 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816   #endif
817 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
818 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
819 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
820 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
821 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
822 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
823 +  }
824  
825 <    fInfo_.SIM_uses_PBC = usePBC;    
560 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
562 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563 <    fInfo_.SIM_uses_Charges = useCharge;
564 <    fInfo_.SIM_uses_Dipoles = useDipole;
565 <    fInfo_.SIM_uses_Sticky = useSticky;
566 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
567 <    fInfo_.SIM_uses_EAM = useEAM;
568 <    fInfo_.SIM_uses_Shapes = useShape;
569 <    fInfo_.SIM_uses_FLARB = useFLARB;
570 <    fInfo_.SIM_uses_RF = useRF;
571 <
572 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
588 <
589 < }
590 <
591 < void SimInfo::setupFortranSim() {
825 >  void SimInfo::setupFortranSim() {
826      int isError;
827 <    int nExclude;
828 <    std::vector<int> fortranGlobalGroupMembership;
827 >    int nExclude, nOneTwo, nOneThree, nOneFour;
828 >    vector<int> fortranGlobalGroupMembership;
829      
830 <    nExclude = exclude_.getSize();
830 >    notifyFortranSkinThickness(&skinThickness_);
831 >
832 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
833 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
834 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
835 >
836      isError = 0;
837  
838      //globalGroupMembership_ is filled by SimCreator    
839      for (int i = 0; i < nGlobalAtoms_; i++) {
840 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
840 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
841      }
842  
843      //calculate mass ratio of cutoff group
844 <    std::vector<double> mfact;
844 >    vector<RealType> mfact;
845      SimInfo::MoleculeIterator mi;
846      Molecule* mol;
847      Molecule::CutoffGroupIterator ci;
848      CutoffGroup* cg;
849      Molecule::AtomIterator ai;
850      Atom* atom;
851 <    double totalMass;
851 >    RealType totalMass;
852  
853      //to avoid memory reallocation, reserve enough space for mfact
854      mfact.reserve(getNCutoffGroups());
855      
856      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
857 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
857 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
858  
859 <            totalMass = cg->getMass();
860 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
861 <                        mfact.push_back(atom->getMass()/totalMass);
862 <            }
863 <
864 <        }      
859 >        totalMass = cg->getMass();
860 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
861 >          // Check for massless groups - set mfact to 1 if true
862 >          if (totalMass != 0)
863 >            mfact.push_back(atom->getMass()/totalMass);
864 >          else
865 >            mfact.push_back( 1.0 );
866 >        }
867 >      }      
868      }
869  
870      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
871 <    std::vector<int> identArray;
871 >    vector<int> identArray;
872  
873      //to avoid memory reallocation, reserve enough space identArray
874      identArray.reserve(getNAtoms());
875      
876      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
877 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
878 <            identArray.push_back(atom->getIdent());
879 <        }
877 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
878 >        identArray.push_back(atom->getIdent());
879 >      }
880      }    
881  
882      //fill molMembershipArray
883      //molMembershipArray is filled by SimCreator    
884 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
884 >    vector<int> molMembershipArray(nGlobalAtoms_);
885      for (int i = 0; i < nGlobalAtoms_; i++) {
886 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
886 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
887      }
888      
889      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651    int nGlobalExcludes = 0;
652    int* globalExcludes = NULL;
653    int* excludeList = exclude_.getExcludeList();
654    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
890  
891 <    if( isError ){
891 >    nExclude = excludedInteractions_.getSize();
892 >    nOneTwo = oneTwoInteractions_.getSize();
893 >    nOneThree = oneThreeInteractions_.getSize();
894 >    nOneFour = oneFourInteractions_.getSize();
895  
896 <        sprintf( painCave.errMsg,
897 <                 "There was an error setting the simulation information in fortran.\n" );
898 <        painCave.isFatal = 1;
899 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
896 >    int* excludeList = excludedInteractions_.getPairList();
897 >    int* oneTwoList = oneTwoInteractions_.getPairList();
898 >    int* oneThreeList = oneThreeInteractions_.getPairList();
899 >    int* oneFourList = oneFourInteractions_.getPairList();
900  
901 < #ifdef IS_MPI
901 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
902 >                   &nExclude, excludeList,
903 >                   &nOneTwo, oneTwoList,
904 >                   &nOneThree, oneThreeList,
905 >                   &nOneFour, oneFourList,
906 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
907 >                   &fortranGlobalGroupMembership[0], &isError);
908 >    
909 >    if( isError ){
910 >      
911 >      sprintf( painCave.errMsg,
912 >               "There was an error setting the simulation information in fortran.\n" );
913 >      painCave.isFatal = 1;
914 >      painCave.severity = OPENMD_ERROR;
915 >      simError();
916 >    }
917 >    
918 >    
919      sprintf( checkPointMsg,
920 <       "succesfully sent the simulation information to fortran.\n");
921 <    MPIcheckPoint();
922 < #endif // is_mpi
923 < }
920 >             "succesfully sent the simulation information to fortran.\n");
921 >    
922 >    errorCheckPoint();
923 >    
924 >    // Setup number of neighbors in neighbor list if present
925 >    if (simParams_->haveNeighborListNeighbors()) {
926 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
927 >      setNeighbors(&nlistNeighbors);
928 >    }
929 >  
930  
931 +  }
932  
933 < #ifdef IS_MPI
934 < void SimInfo::setupFortranParallel() {
935 <    
933 >
934 >  void SimInfo::setupFortranParallel() {
935 > #ifdef IS_MPI    
936      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
937 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 <    std::vector<int> localToGlobalCutoffGroupIndex;
937 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 >    vector<int> localToGlobalCutoffGroupIndex;
939      SimInfo::MoleculeIterator mi;
940      Molecule::AtomIterator ai;
941      Molecule::CutoffGroupIterator ci;
# Line 689 | Line 947 | void SimInfo::setupFortranParallel() {
947  
948      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
949  
950 <        //local index(index in DataStorge) of atom is important
951 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
953 <        }
950 >      //local index(index in DataStorge) of atom is important
951 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
953 >      }
954  
955 <        //local index of cutoff group is trivial, it only depends on the order of travesing
956 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
957 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
958 <        }        
955 >      //local index of cutoff group is trivial, it only depends on the order of travesing
956 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
957 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
958 >      }        
959          
960      }
961  
# Line 717 | Line 975 | void SimInfo::setupFortranParallel() {
975                      &localToGlobalCutoffGroupIndex[0], &isError);
976  
977      if (isError) {
978 <        sprintf(painCave.errMsg,
979 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
980 <        painCave.isFatal = 1;
981 <        simError();
978 >      sprintf(painCave.errMsg,
979 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
980 >      painCave.isFatal = 1;
981 >      simError();
982      }
983  
984      sprintf(checkPointMsg, " mpiRefresh successful.\n");
985 <    MPIcheckPoint();
985 >    errorCheckPoint();
986  
729
730 }
731
987   #endif
988 +  }
989  
734 double SimInfo::calcMaxCutoffRadius() {
990  
991 +  void SimInfo::setupSwitchingFunction() {    
992 +    int ft = CUBIC;
993 +    
994 +    if (simParams_->haveSwitchingFunctionType()) {
995 +      string funcType = simParams_->getSwitchingFunctionType();
996 +      toUpper(funcType);
997 +      if (funcType == "CUBIC") {
998 +        ft = CUBIC;
999 +      } else {
1000 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1001 +          ft = FIFTH_ORDER_POLY;
1002 +        } else {
1003 +          // throw error        
1004 +          sprintf( painCave.errMsg,
1005 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n"
1006 +                   "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".",
1007 +                   funcType.c_str() );
1008 +          painCave.isFatal = 1;
1009 +          simError();
1010 +        }          
1011 +      }
1012 +    }
1013  
1014 <    std::set<AtomType*> atomTypes;
1015 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
1014 >    // send switching function notification to switcheroo
1015 >    setFunctionType(&ft);
1016  
1017 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
1017 >  }
1018  
1019 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 <    }
1019 >  void SimInfo::setupAccumulateBoxDipole() {    
1020  
1021 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
1022 < #ifdef IS_MPI
1023 <    //pick the max cutoff radius among the processors
1024 < #endif
1021 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1022 >    if ( simParams_->haveAccumulateBoxDipole() )
1023 >      if ( simParams_->getAccumulateBoxDipole() ) {
1024 >        calcBoxDipole_ = true;
1025 >      }
1026  
1027 <    return maxCutoffRadius;
755 < }
1027 >  }
1028  
1029 < void SimInfo::getCutoff(double& rcut, double& rsw) {
758 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut_ = 15.0;
769 <        } else{
770 <            rcut_ = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw_ = 0.95 * rcut_;
781 <        } else{
782 <            rsw_ = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut_ = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut_ = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw_  = simParams_->getRsw();
798 <        } else {
799 <            rsw_ = rcut_;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
1029 >  void SimInfo::addProperty(GenericData* genData) {
1030      properties_.addProperty(genData);  
1031 < }
1031 >  }
1032  
1033 < void SimInfo::removeProperty(const std::string& propName) {
1033 >  void SimInfo::removeProperty(const string& propName) {
1034      properties_.removeProperty(propName);  
1035 < }
1035 >  }
1036  
1037 < void SimInfo::clearProperties() {
1037 >  void SimInfo::clearProperties() {
1038      properties_.clearProperties();
1039 < }
1039 >  }
1040  
1041 < std::vector<std::string> SimInfo::getPropertyNames() {
1041 >  vector<string> SimInfo::getPropertyNames() {
1042      return properties_.getPropertyNames();  
1043 < }
1043 >  }
1044        
1045 < std::vector<GenericData*> SimInfo::getProperties() {
1045 >  vector<GenericData*> SimInfo::getProperties() {
1046      return properties_.getProperties();
1047 < }
1047 >  }
1048  
1049 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1049 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1050      return properties_.getPropertyByName(propName);
1051 < }
1051 >  }
1052  
1053 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1053 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1054 >    if (sman_ == sman) {
1055 >      return;
1056 >    }    
1057 >    delete sman_;
1058      sman_ = sman;
1059  
1060      Molecule* mol;
# Line 846 | Line 1066 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1066  
1067      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1068          
1069 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1070 <            atom->setSnapshotManager(sman_);
1071 <        }
1069 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1070 >        atom->setSnapshotManager(sman_);
1071 >      }
1072          
1073 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1074 <            rb->setSnapshotManager(sman_);
1075 <        }
1073 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1074 >        rb->setSnapshotManager(sman_);
1075 >      }
1076      }    
1077      
1078 < }
1078 >  }
1079  
1080 < Vector3d SimInfo::getComVel(){
1080 >  Vector3d SimInfo::getComVel(){
1081      SimInfo::MoleculeIterator i;
1082      Molecule* mol;
1083  
1084      Vector3d comVel(0.0);
1085 <    double totalMass = 0.0;
1085 >    RealType totalMass = 0.0;
1086      
1087  
1088      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1089 <        double mass = mol->getMass();
1090 <        totalMass += mass;
1091 <        comVel += mass * mol->getComVel();
1089 >      RealType mass = mol->getMass();
1090 >      totalMass += mass;
1091 >      comVel += mass * mol->getComVel();
1092      }  
1093  
1094   #ifdef IS_MPI
1095 <    double tmpMass = totalMass;
1095 >    RealType tmpMass = totalMass;
1096      Vector3d tmpComVel(comVel);    
1097 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1098 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1097 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1098 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099   #endif
1100  
1101      comVel /= totalMass;
1102  
1103      return comVel;
1104 < }
1104 >  }
1105  
1106 < Vector3d SimInfo::getCom(){
1106 >  Vector3d SimInfo::getCom(){
1107      SimInfo::MoleculeIterator i;
1108      Molecule* mol;
1109  
1110      Vector3d com(0.0);
1111 <    double totalMass = 0.0;
1111 >    RealType totalMass = 0.0;
1112      
1113      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1114 <        double mass = mol->getMass();
1115 <        totalMass += mass;
1116 <        com += mass * mol->getCom();
1114 >      RealType mass = mol->getMass();
1115 >      totalMass += mass;
1116 >      com += mass * mol->getCom();
1117      }  
1118  
1119   #ifdef IS_MPI
1120 <    double tmpMass = totalMass;
1120 >    RealType tmpMass = totalMass;
1121      Vector3d tmpCom(com);    
1122 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1123 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1122 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1123 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124   #endif
1125  
1126      com /= totalMass;
1127  
1128      return com;
1129  
1130 < }        
1130 >  }        
1131  
1132 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1132 >  ostream& operator <<(ostream& o, SimInfo& info) {
1133  
1134      return o;
1135 < }
1135 >  }
1136 >  
1137 >  
1138 >   /*
1139 >   Returns center of mass and center of mass velocity in one function call.
1140 >   */
1141 >  
1142 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1143 >      SimInfo::MoleculeIterator i;
1144 >      Molecule* mol;
1145 >      
1146 >    
1147 >      RealType totalMass = 0.0;
1148 >    
1149  
1150 < }//end namespace oopse
1150 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 >         RealType mass = mol->getMass();
1152 >         totalMass += mass;
1153 >         com += mass * mol->getCom();
1154 >         comVel += mass * mol->getComVel();          
1155 >      }  
1156 >      
1157 > #ifdef IS_MPI
1158 >      RealType tmpMass = totalMass;
1159 >      Vector3d tmpCom(com);  
1160 >      Vector3d tmpComVel(comVel);
1161 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 > #endif
1165 >      
1166 >      com /= totalMass;
1167 >      comVel /= totalMass;
1168 >   }        
1169 >  
1170 >   /*
1171 >   Return intertia tensor for entire system and angular momentum Vector.
1172  
1173 +
1174 +       [  Ixx -Ixy  -Ixz ]
1175 +    J =| -Iyx  Iyy  -Iyz |
1176 +       [ -Izx -Iyz   Izz ]
1177 +    */
1178 +
1179 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1180 +      
1181 +
1182 +      RealType xx = 0.0;
1183 +      RealType yy = 0.0;
1184 +      RealType zz = 0.0;
1185 +      RealType xy = 0.0;
1186 +      RealType xz = 0.0;
1187 +      RealType yz = 0.0;
1188 +      Vector3d com(0.0);
1189 +      Vector3d comVel(0.0);
1190 +      
1191 +      getComAll(com, comVel);
1192 +      
1193 +      SimInfo::MoleculeIterator i;
1194 +      Molecule* mol;
1195 +      
1196 +      Vector3d thisq(0.0);
1197 +      Vector3d thisv(0.0);
1198 +
1199 +      RealType thisMass = 0.0;
1200 +    
1201 +      
1202 +      
1203 +  
1204 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1205 +        
1206 +         thisq = mol->getCom()-com;
1207 +         thisv = mol->getComVel()-comVel;
1208 +         thisMass = mol->getMass();
1209 +         // Compute moment of intertia coefficients.
1210 +         xx += thisq[0]*thisq[0]*thisMass;
1211 +         yy += thisq[1]*thisq[1]*thisMass;
1212 +         zz += thisq[2]*thisq[2]*thisMass;
1213 +        
1214 +         // compute products of intertia
1215 +         xy += thisq[0]*thisq[1]*thisMass;
1216 +         xz += thisq[0]*thisq[2]*thisMass;
1217 +         yz += thisq[1]*thisq[2]*thisMass;
1218 +            
1219 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1220 +            
1221 +      }  
1222 +      
1223 +      
1224 +      inertiaTensor(0,0) = yy + zz;
1225 +      inertiaTensor(0,1) = -xy;
1226 +      inertiaTensor(0,2) = -xz;
1227 +      inertiaTensor(1,0) = -xy;
1228 +      inertiaTensor(1,1) = xx + zz;
1229 +      inertiaTensor(1,2) = -yz;
1230 +      inertiaTensor(2,0) = -xz;
1231 +      inertiaTensor(2,1) = -yz;
1232 +      inertiaTensor(2,2) = xx + yy;
1233 +      
1234 + #ifdef IS_MPI
1235 +      Mat3x3d tmpI(inertiaTensor);
1236 +      Vector3d tmpAngMom;
1237 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1238 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 + #endif
1240 +              
1241 +      return;
1242 +   }
1243 +
1244 +   //Returns the angular momentum of the system
1245 +   Vector3d SimInfo::getAngularMomentum(){
1246 +      
1247 +      Vector3d com(0.0);
1248 +      Vector3d comVel(0.0);
1249 +      Vector3d angularMomentum(0.0);
1250 +      
1251 +      getComAll(com,comVel);
1252 +      
1253 +      SimInfo::MoleculeIterator i;
1254 +      Molecule* mol;
1255 +      
1256 +      Vector3d thisr(0.0);
1257 +      Vector3d thisp(0.0);
1258 +      
1259 +      RealType thisMass;
1260 +      
1261 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1262 +        thisMass = mol->getMass();
1263 +        thisr = mol->getCom()-com;
1264 +        thisp = (mol->getComVel()-comVel)*thisMass;
1265 +        
1266 +        angularMomentum += cross( thisr, thisp );
1267 +        
1268 +      }  
1269 +      
1270 + #ifdef IS_MPI
1271 +      Vector3d tmpAngMom;
1272 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1273 + #endif
1274 +      
1275 +      return angularMomentum;
1276 +   }
1277 +  
1278 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1279 +    return IOIndexToIntegrableObject.at(index);
1280 +  }
1281 +  
1282 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1283 +    IOIndexToIntegrableObject= v;
1284 +  }
1285 +
1286 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1287 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1288 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1289 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1290 +  */
1291 +  void SimInfo::getGyrationalVolume(RealType &volume){
1292 +    Mat3x3d intTensor;
1293 +    RealType det;
1294 +    Vector3d dummyAngMom;
1295 +    RealType sysconstants;
1296 +    RealType geomCnst;
1297 +
1298 +    geomCnst = 3.0/2.0;
1299 +    /* Get the inertial tensor and angular momentum for free*/
1300 +    getInertiaTensor(intTensor,dummyAngMom);
1301 +    
1302 +    det = intTensor.determinant();
1303 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1304 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1305 +    return;
1306 +  }
1307 +
1308 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1309 +    Mat3x3d intTensor;
1310 +    Vector3d dummyAngMom;
1311 +    RealType sysconstants;
1312 +    RealType geomCnst;
1313 +
1314 +    geomCnst = 3.0/2.0;
1315 +    /* Get the inertial tensor and angular momentum for free*/
1316 +    getInertiaTensor(intTensor,dummyAngMom);
1317 +    
1318 +    detI = intTensor.determinant();
1319 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1320 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1321 +    return;
1322 +  }
1323 + /*
1324 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1325 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1326 +      sdByGlobalIndex_ = v;
1327 +    }
1328 +
1329 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1330 +      //assert(index < nAtoms_ + nRigidBodies_);
1331 +      return sdByGlobalIndex_.at(index);
1332 +    }  
1333 + */  
1334 +  int SimInfo::getNGlobalConstraints() {
1335 +    int nGlobalConstraints;
1336 + #ifdef IS_MPI
1337 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1338 +                  MPI_COMM_WORLD);    
1339 + #else
1340 +    nGlobalConstraints =  nConstraints_;
1341 + #endif
1342 +    return nGlobalConstraints;
1343 +  }
1344 +
1345 + }//end namespace OpenMD
1346 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 326 by tim, Sun Feb 13 20:05:42 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines