ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 53 | Line 53
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
57 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
58 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58   #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61   #include "UseTheForce/DarkSide/switcheroo_interface.h"
62   #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64   #include "selection/SelectionManager.hpp"
65   #include "io/ForceFieldOptions.hpp"
66   #include "UseTheForce/ForceField.hpp"
67 + #include "nonbonded/InteractionManager.hpp"
68  
69 +
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
72   #include "UseTheForce/DarkSide/simParallel_interface.h"
73   #endif
74  
75 < namespace oopse {
76 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 <    std::map<int, std::set<int> >::iterator i = container.find(index);
77 <    std::set<int> result;
78 <    if (i != container.end()) {
79 <        result = i->second;
80 <    }
81 <
82 <    return result;
83 <  }
75 > using namespace std;
76 > namespace OpenMD {
77    
78    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79      forceField_(ff), simParams_(simParams),
80      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
84 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
85 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
86 <
87 <      MoleculeStamp* molStamp;
88 <      int nMolWithSameStamp;
89 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
90 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
91 <      CutoffGroupStamp* cgStamp;    
92 <      RigidBodyStamp* rbStamp;
93 <      int nRigidAtoms = 0;
94 <      std::vector<Component*> components = simParams->getComponents();
83 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87 >    
88 >    MoleculeStamp* molStamp;
89 >    int nMolWithSameStamp;
90 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92 >    CutoffGroupStamp* cgStamp;    
93 >    RigidBodyStamp* rbStamp;
94 >    int nRigidAtoms = 0;
95 >    
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101        
102 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
103 <        molStamp = (*i)->getMoleculeStamp();
104 <        nMolWithSameStamp = (*i)->getNMol();
105 <        
106 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
107 <
108 <        //calculate atoms in molecules
109 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
110 <
111 <        //calculate atoms in cutoff groups
112 <        int nAtomsInGroups = 0;
113 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
115 <        
116 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
117 <          cgStamp = molStamp->getCutoffGroupStamp(j);
118 <          nAtomsInGroups += cgStamp->getNMembers();
119 <        }
120 <
121 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
122 <
123 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
124 <
125 <        //calculate atoms in rigid bodies
126 <        int nAtomsInRigidBodies = 0;
127 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
128 <        
129 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
130 <          rbStamp = molStamp->getRigidBodyStamp(j);
131 <          nAtomsInRigidBodies += rbStamp->getNMembers();
132 <        }
133 <
134 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
135 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
136 <        
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114        }
115 <
116 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
117 <      //group therefore the total number of cutoff groups in the system is
118 <      //equal to the total number of atoms minus number of atoms belong to
119 <      //cutoff group defined in meta-data file plus the number of cutoff
120 <      //groups defined in meta-data file
121 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
122 <
123 <      //every free atom (atom does not belong to rigid bodies) is an
124 <      //integrable object therefore the total number of integrable objects
125 <      //in the system is equal to the total number of atoms minus number of
126 <      //atoms belong to rigid body defined in meta-data file plus the number
127 <      //of rigid bodies defined in meta-data file
128 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
129 <                                                + nGlobalRigidBodies_;
130 <  
131 <      nGlobalMols_ = molStampIds_.size();
155 <
156 < #ifdef IS_MPI    
157 <      molToProcMap_.resize(nGlobalMols_);
158 < #endif
159 <
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132      }
133 <
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149 >    nGlobalMols_ = molStampIds_.size();
150 >    molToProcMap_.resize(nGlobalMols_);
151 >  }
152 >  
153    SimInfo::~SimInfo() {
154 <    std::map<int, Molecule*>::iterator i;
154 >    map<int, Molecule*>::iterator i;
155      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156        delete i->second;
157      }
# Line 171 | Line 162 | namespace oopse {
162      delete forceField_;
163    }
164  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
165  
166    bool SimInfo::addMolecule(Molecule* mol) {
167      MoleculeIterator i;
168 <
168 >    
169      i = molecules_.find(mol->getGlobalIndex());
170      if (i == molecules_.end() ) {
171 <
172 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
173 <        
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174        nAtoms_ += mol->getNAtoms();
175        nBonds_ += mol->getNBonds();
176        nBends_ += mol->getNBends();
177        nTorsions_ += mol->getNTorsions();
178 +      nInversions_ += mol->getNInversions();
179        nRigidBodies_ += mol->getNRigidBodies();
180        nIntegrableObjects_ += mol->getNIntegrableObjects();
181        nCutoffGroups_ += mol->getNCutoffGroups();
182        nConstraints_ += mol->getNConstraintPairs();
183 <
184 <      addExcludePairs(mol);
185 <        
183 >      
184 >      addInteractionPairs(mol);
185 >      
186        return true;
187      } else {
188        return false;
189      }
190    }
191 <
191 >  
192    bool SimInfo::removeMolecule(Molecule* mol) {
193      MoleculeIterator i;
194      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 201 | namespace oopse {
201        nBonds_ -= mol->getNBonds();
202        nBends_ -= mol->getNBends();
203        nTorsions_ -= mol->getNTorsions();
204 +      nInversions_ -= mol->getNInversions();
205        nRigidBodies_ -= mol->getNRigidBodies();
206        nIntegrableObjects_ -= mol->getNIntegrableObjects();
207        nCutoffGroups_ -= mol->getNCutoffGroups();
208        nConstraints_ -= mol->getNConstraintPairs();
209  
210 <      removeExcludePairs(mol);
210 >      removeInteractionPairs(mol);
211        molecules_.erase(mol->getGlobalIndex());
212  
213        delete mol;
# Line 233 | Line 216 | namespace oopse {
216      } else {
217        return false;
218      }
236
237
219    }    
220  
221          
# Line 252 | Line 233 | namespace oopse {
233    void SimInfo::calcNdf() {
234      int ndf_local;
235      MoleculeIterator i;
236 <    std::vector<StuntDouble*>::iterator j;
236 >    vector<StuntDouble*>::iterator j;
237      Molecule* mol;
238      StuntDouble* integrableObject;
239  
# Line 303 | Line 284 | namespace oopse {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
287 <    std::vector<StuntDouble*>::iterator j;
287 >    vector<StuntDouble*>::iterator j;
288      Molecule* mol;
289      StuntDouble* integrableObject;
290  
# Line 350 | Line 331 | namespace oopse {
331  
332    }
333  
334 <  void SimInfo::addExcludePairs(Molecule* mol) {
335 <    std::vector<Bond*>::iterator bondIter;
336 <    std::vector<Bend*>::iterator bendIter;
337 <    std::vector<Torsion*>::iterator torsionIter;
334 >  void SimInfo::addInteractionPairs(Molecule* mol) {
335 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340      Bond* bond;
341      Bend* bend;
342      Torsion* torsion;
343 +    Inversion* inversion;
344      int a;
345      int b;
346      int c;
347      int d;
348  
349 <    std::map<int, std::set<int> > atomGroups;
349 >    // atomGroups can be used to add special interaction maps between
350 >    // groups of atoms that are in two separate rigid bodies.
351 >    // However, most site-site interactions between two rigid bodies
352 >    // are probably not special, just the ones between the physically
353 >    // bonded atoms.  Interactions *within* a single rigid body should
354 >    // always be excluded.  These are done at the bottom of this
355 >    // function.
356  
357 +    map<int, set<int> > atomGroups;
358      Molecule::RigidBodyIterator rbIter;
359      RigidBody* rb;
360      Molecule::IntegrableObjectIterator ii;
361      StuntDouble* integrableObject;
362      
363 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
364 <           integrableObject = mol->nextIntegrableObject(ii)) {
365 <
363 >    for (integrableObject = mol->beginIntegrableObject(ii);
364 >         integrableObject != NULL;
365 >         integrableObject = mol->nextIntegrableObject(ii)) {
366 >      
367        if (integrableObject->isRigidBody()) {
368 <          rb = static_cast<RigidBody*>(integrableObject);
369 <          std::vector<Atom*> atoms = rb->getAtoms();
370 <          std::set<int> rigidAtoms;
371 <          for (int i = 0; i < atoms.size(); ++i) {
372 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 <          }
374 <          for (int i = 0; i < atoms.size(); ++i) {
375 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 <          }      
377 <      } else {
378 <        std::set<int> oneAtomSet;
368 >        rb = static_cast<RigidBody*>(integrableObject);
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 >        }
374 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 >        }      
377 >      } else {
378 >        set<int> oneAtomSet;
379          oneAtomSet.insert(integrableObject->getGlobalIndex());
380 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381        }
382      }  
383 +          
384 +    for (bond= mol->beginBond(bondIter); bond != NULL;
385 +         bond = mol->nextBond(bondIter)) {
386  
392    
393    
394    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
387        a = bond->getAtomA()->getGlobalIndex();
388 <      b = bond->getAtomB()->getGlobalIndex();        
389 <      exclude_.addPair(a, b);
388 >      b = bond->getAtomB()->getGlobalIndex();  
389 >    
390 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
391 >        oneTwoInteractions_.addPair(a, b);
392 >      } else {
393 >        excludedInteractions_.addPair(a, b);
394 >      }
395      }
396  
397 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
397 >    for (bend= mol->beginBend(bendIter); bend != NULL;
398 >         bend = mol->nextBend(bendIter)) {
399 >
400        a = bend->getAtomA()->getGlobalIndex();
401        b = bend->getAtomB()->getGlobalIndex();        
402        c = bend->getAtomC()->getGlobalIndex();
404      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408      exclude_.addPairs(rigidSetA, rigidSetB);
409      exclude_.addPairs(rigidSetA, rigidSetC);
410      exclude_.addPairs(rigidSetB, rigidSetC);
403        
404 <      //exclude_.addPair(a, b);
405 <      //exclude_.addPair(a, c);
406 <      //exclude_.addPair(b, c);        
404 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
405 >        oneTwoInteractions_.addPair(a, b);      
406 >        oneTwoInteractions_.addPair(b, c);
407 >      } else {
408 >        excludedInteractions_.addPair(a, b);
409 >        excludedInteractions_.addPair(b, c);
410 >      }
411 >
412 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
413 >        oneThreeInteractions_.addPair(a, c);      
414 >      } else {
415 >        excludedInteractions_.addPair(a, c);
416 >      }
417      }
418  
419 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
420 >         torsion = mol->nextTorsion(torsionIter)) {
421 >
422        a = torsion->getAtomA()->getGlobalIndex();
423        b = torsion->getAtomB()->getGlobalIndex();        
424        c = torsion->getAtomC()->getGlobalIndex();        
425 <      d = torsion->getAtomD()->getGlobalIndex();        
422 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
425 >      d = torsion->getAtomD()->getGlobalIndex();      
426  
427 <      exclude_.addPairs(rigidSetA, rigidSetB);
428 <      exclude_.addPairs(rigidSetA, rigidSetC);
429 <      exclude_.addPairs(rigidSetA, rigidSetD);
430 <      exclude_.addPairs(rigidSetB, rigidSetC);
431 <      exclude_.addPairs(rigidSetB, rigidSetD);
432 <      exclude_.addPairs(rigidSetC, rigidSetD);
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >        oneTwoInteractions_.addPair(c, d);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >        excludedInteractions_.addPair(c, d);
435 >      }
436  
437 <      /*
438 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444 <        
445 <      
446 <      exclude_.addPair(a, b);
447 <      exclude_.addPair(a, c);
448 <      exclude_.addPair(a, d);
449 <      exclude_.addPair(b, c);
447 <      exclude_.addPair(b, d);
448 <      exclude_.addPair(c, d);        
449 <      */
437 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
438 >        oneThreeInteractions_.addPair(a, c);      
439 >        oneThreeInteractions_.addPair(b, d);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >        excludedInteractions_.addPair(b, d);
443 >      }
444 >
445 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
446 >        oneFourInteractions_.addPair(a, d);      
447 >      } else {
448 >        excludedInteractions_.addPair(a, d);
449 >      }
450      }
451  
452 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 <      std::vector<Atom*> atoms = rb->getAtoms();
454 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 <        for (int j = i + 1; j < atoms.size(); ++j) {
452 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
453 >         inversion = mol->nextInversion(inversionIter)) {
454 >
455 >      a = inversion->getAtomA()->getGlobalIndex();
456 >      b = inversion->getAtomB()->getGlobalIndex();        
457 >      c = inversion->getAtomC()->getGlobalIndex();        
458 >      d = inversion->getAtomD()->getGlobalIndex();        
459 >
460 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
461 >        oneTwoInteractions_.addPair(a, b);      
462 >        oneTwoInteractions_.addPair(a, c);
463 >        oneTwoInteractions_.addPair(a, d);
464 >      } else {
465 >        excludedInteractions_.addPair(a, b);
466 >        excludedInteractions_.addPair(a, c);
467 >        excludedInteractions_.addPair(a, d);
468 >      }
469 >
470 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
471 >        oneThreeInteractions_.addPair(b, c);    
472 >        oneThreeInteractions_.addPair(b, d);    
473 >        oneThreeInteractions_.addPair(c, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(b, c);
476 >        excludedInteractions_.addPair(b, d);
477 >        excludedInteractions_.addPair(c, d);
478 >      }
479 >    }
480 >
481 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482 >         rb = mol->nextRigidBody(rbIter)) {
483 >      vector<Atom*> atoms = rb->getAtoms();
484 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486            a = atoms[i]->getGlobalIndex();
487            b = atoms[j]->getGlobalIndex();
488 <          exclude_.addPair(a, b);
488 >          excludedInteractions_.addPair(a, b);
489          }
490        }
491      }        
492  
493    }
494  
495 <  void SimInfo::removeExcludePairs(Molecule* mol) {
496 <    std::vector<Bond*>::iterator bondIter;
497 <    std::vector<Bend*>::iterator bendIter;
498 <    std::vector<Torsion*>::iterator torsionIter;
495 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
496 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 >    vector<Bond*>::iterator bondIter;
498 >    vector<Bend*>::iterator bendIter;
499 >    vector<Torsion*>::iterator torsionIter;
500 >    vector<Inversion*>::iterator inversionIter;
501      Bond* bond;
502      Bend* bend;
503      Torsion* torsion;
504 +    Inversion* inversion;
505      int a;
506      int b;
507      int c;
508      int d;
509  
510 <    std::map<int, std::set<int> > atomGroups;
478 <
510 >    map<int, set<int> > atomGroups;
511      Molecule::RigidBodyIterator rbIter;
512      RigidBody* rb;
513      Molecule::IntegrableObjectIterator ii;
514      StuntDouble* integrableObject;
515      
516 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
517 <           integrableObject = mol->nextIntegrableObject(ii)) {
518 <
516 >    for (integrableObject = mol->beginIntegrableObject(ii);
517 >         integrableObject != NULL;
518 >         integrableObject = mol->nextIntegrableObject(ii)) {
519 >      
520        if (integrableObject->isRigidBody()) {
521 <          rb = static_cast<RigidBody*>(integrableObject);
522 <          std::vector<Atom*> atoms = rb->getAtoms();
523 <          std::set<int> rigidAtoms;
524 <          for (int i = 0; i < atoms.size(); ++i) {
525 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 <          }
527 <          for (int i = 0; i < atoms.size(); ++i) {
528 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 <          }      
521 >        rb = static_cast<RigidBody*>(integrableObject);
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 >        }
527 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 >        }      
530        } else {
531 <        std::set<int> oneAtomSet;
531 >        set<int> oneAtomSet;
532          oneAtomSet.insert(integrableObject->getGlobalIndex());
533 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534        }
535      }  
536  
537 <    
538 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
537 >    for (bond= mol->beginBond(bondIter); bond != NULL;
538 >         bond = mol->nextBond(bondIter)) {
539 >      
540        a = bond->getAtomA()->getGlobalIndex();
541 <      b = bond->getAtomB()->getGlobalIndex();        
542 <      exclude_.removePair(a, b);
541 >      b = bond->getAtomB()->getGlobalIndex();  
542 >    
543 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
544 >        oneTwoInteractions_.removePair(a, b);
545 >      } else {
546 >        excludedInteractions_.removePair(a, b);
547 >      }
548      }
549  
550 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
550 >    for (bend= mol->beginBend(bendIter); bend != NULL;
551 >         bend = mol->nextBend(bendIter)) {
552 >
553        a = bend->getAtomA()->getGlobalIndex();
554        b = bend->getAtomB()->getGlobalIndex();        
555        c = bend->getAtomC()->getGlobalIndex();
515
516      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520      exclude_.removePairs(rigidSetA, rigidSetB);
521      exclude_.removePairs(rigidSetA, rigidSetC);
522      exclude_.removePairs(rigidSetB, rigidSetC);
556        
557 <      //exclude_.removePair(a, b);
558 <      //exclude_.removePair(a, c);
559 <      //exclude_.removePair(b, c);        
557 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
558 >        oneTwoInteractions_.removePair(a, b);      
559 >        oneTwoInteractions_.removePair(b, c);
560 >      } else {
561 >        excludedInteractions_.removePair(a, b);
562 >        excludedInteractions_.removePair(b, c);
563 >      }
564 >
565 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
566 >        oneThreeInteractions_.removePair(a, c);      
567 >      } else {
568 >        excludedInteractions_.removePair(a, c);
569 >      }
570      }
571  
572 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
572 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
573 >         torsion = mol->nextTorsion(torsionIter)) {
574 >
575        a = torsion->getAtomA()->getGlobalIndex();
576        b = torsion->getAtomB()->getGlobalIndex();        
577        c = torsion->getAtomC()->getGlobalIndex();        
578 <      d = torsion->getAtomD()->getGlobalIndex();        
578 >      d = torsion->getAtomD()->getGlobalIndex();      
579 >  
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >        oneTwoInteractions_.removePair(c, d);
584 >      } else {
585 >        excludedInteractions_.removePair(a, b);
586 >        excludedInteractions_.removePair(b, c);
587 >        excludedInteractions_.removePair(c, d);
588 >      }
589  
590 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
591 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
592 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
593 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
590 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
591 >        oneThreeInteractions_.removePair(a, c);      
592 >        oneThreeInteractions_.removePair(b, d);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >        excludedInteractions_.removePair(b, d);
596 >      }
597  
598 <      exclude_.removePairs(rigidSetA, rigidSetB);
599 <      exclude_.removePairs(rigidSetA, rigidSetC);
600 <      exclude_.removePairs(rigidSetA, rigidSetD);
601 <      exclude_.removePairs(rigidSetB, rigidSetC);
602 <      exclude_.removePairs(rigidSetB, rigidSetD);
603 <      exclude_.removePairs(rigidSetC, rigidSetD);
598 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
599 >        oneFourInteractions_.removePair(a, d);      
600 >      } else {
601 >        excludedInteractions_.removePair(a, d);
602 >      }
603 >    }
604  
605 <      /*
606 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
605 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
606 >         inversion = mol->nextInversion(inversionIter)) {
607  
608 <      
609 <      exclude_.removePair(a, b);
610 <      exclude_.removePair(a, c);
611 <      exclude_.removePair(a, d);
612 <      exclude_.removePair(b, c);
613 <      exclude_.removePair(b, d);
614 <      exclude_.removePair(c, d);        
615 <      */
608 >      a = inversion->getAtomA()->getGlobalIndex();
609 >      b = inversion->getAtomB()->getGlobalIndex();        
610 >      c = inversion->getAtomC()->getGlobalIndex();        
611 >      d = inversion->getAtomD()->getGlobalIndex();        
612 >
613 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
614 >        oneTwoInteractions_.removePair(a, b);      
615 >        oneTwoInteractions_.removePair(a, c);
616 >        oneTwoInteractions_.removePair(a, d);
617 >      } else {
618 >        excludedInteractions_.removePair(a, b);
619 >        excludedInteractions_.removePair(a, c);
620 >        excludedInteractions_.removePair(a, d);
621 >      }
622 >
623 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
624 >        oneThreeInteractions_.removePair(b, c);    
625 >        oneThreeInteractions_.removePair(b, d);    
626 >        oneThreeInteractions_.removePair(c, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(b, c);
629 >        excludedInteractions_.removePair(b, d);
630 >        excludedInteractions_.removePair(c, d);
631 >      }
632      }
633  
634 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
635 <      std::vector<Atom*> atoms = rb->getAtoms();
636 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
637 <        for (int j = i + 1; j < atoms.size(); ++j) {
634 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635 >         rb = mol->nextRigidBody(rbIter)) {
636 >      vector<Atom*> atoms = rb->getAtoms();
637 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639            a = atoms[i]->getGlobalIndex();
640            b = atoms[j]->getGlobalIndex();
641 <          exclude_.removePair(a, b);
641 >          excludedInteractions_.removePair(a, b);
642          }
643        }
644      }        
645 <
645 >    
646    }
647 <
648 <
647 >  
648 >  
649    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
650      int curStampId;
651 <
651 >    
652      //index from 0
653      curStampId = moleculeStamps_.size();
654  
# Line 589 | Line 659 | namespace oopse {
659    void SimInfo::update() {
660  
661      setupSimType();
662 +    setupCutoffRadius();
663 +    setupSwitchingRadius();
664 +    setupCutoffMethod();
665 +    setupSkinThickness();
666 +    setupSwitchingFunction();
667 +    setupAccumulateBoxDipole();
668  
669   #ifdef IS_MPI
670      setupFortranParallel();
671   #endif
596
672      setupFortranSim();
673 +    fortranInitialized_ = true;
674  
599    //setup fortran force field
600    /** @deprecate */    
601    int isError = 0;
602    
603    setupElectrostaticSummationMethod( isError );
604    setupSwitchingFunction();
605    setupAccumulateBoxDipole();
606
607    if(isError){
608      sprintf( painCave.errMsg,
609               "ForceField error: There was an error initializing the forceField in fortran.\n" );
610      painCave.isFatal = 1;
611      simError();
612    }
613  
614    
615    setupCutoff();
616
675      calcNdf();
676      calcNdfRaw();
677      calcNdfTrans();
620
621    fortranInitialized_ = true;
678    }
679 <
680 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
679 >  
680 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681      SimInfo::MoleculeIterator mi;
682      Molecule* mol;
683      Molecule::AtomIterator ai;
684      Atom* atom;
685 <    std::set<AtomType*> atomTypes;
686 <
685 >    set<AtomType*> atomTypes;
686 >    
687      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
688 <
688 >      
689        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
690          atomTypes.insert(atom->getAtomType());
691        }
692 <        
692 >      
693      }
694 <
694 >    
695      return atomTypes;        
696    }
697  
698 <  void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
700 <    std::set<AtomType*> atomTypes;
701 <    atomTypes = getUniqueAtomTypes();
698 >  /**
699 >   * setupCutoffRadius
700 >   *
701 >   *  If the cutoffRadius was explicitly set, use that value.
702 >   *  If the cutoffRadius was not explicitly set:
703 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
704 >   *      No electrostatic atoms?  Poll the atom types present in the
705 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
706 >   *      Use the maximum suggested value that was found.
707 >   */
708 >  void SimInfo::setupCutoffRadius() {
709      
710 <    int useLennardJones = 0;
711 <    int useElectrostatic = 0;
712 <    int useEAM = 0;
713 <    int useSC = 0;
714 <    int useCharge = 0;
715 <    int useDirectional = 0;
716 <    int useDipole = 0;
717 <    int useGayBerne = 0;
718 <    int useSticky = 0;
719 <    int useStickyPower = 0;
720 <    int useShape = 0;
721 <    int useFLARB = 0; //it is not in AtomType yet
722 <    int useDirectionalAtom = 0;    
723 <    int useElectrostatics = 0;
724 <    //usePBC and useRF are from simParams
725 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
726 <    int useRF;
727 <    int useSF;
728 <    int useSP;
729 <    int useBoxDipole;
730 <    std::string myMethod;
710 >    if (simParams_->haveCutoffRadius()) {
711 >      cutoffRadius_ = simParams_->getCutoffRadius();
712 >    } else {      
713 >      if (usesElectrostaticAtoms_) {
714 >        sprintf(painCave.errMsg,
715 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
716 >                "\tOpenMD will use a default value of 12.0 angstroms"
717 >                "\tfor the cutoffRadius.\n");
718 >        painCave.isFatal = 0;
719 >        simError();
720 >        cutoffRadius_ = 12.0;
721 >      } else {
722 >        RealType thisCut;
723 >        set<AtomType*>::iterator i;
724 >        set<AtomType*> atomTypes;
725 >        atomTypes = getSimulatedAtomTypes();        
726 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
727 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
728 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
729 >        }
730 >        sprintf(painCave.errMsg,
731 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
732 >                "\tOpenMD will use %lf angstroms.\n",
733 >                cutoffRadius_);
734 >        painCave.isFatal = 0;
735 >        simError();
736 >      }            
737 >    }
738  
739 <    // set the useRF logical
740 <    useRF = 0;
741 <    useSF = 0;
739 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
740 >  }
741 >  
742 >  /**
743 >   * setupSwitchingRadius
744 >   *
745 >   *  If the switchingRadius was explicitly set, use that value (but check it)
746 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
747 >   */
748 >  void SimInfo::setupSwitchingRadius() {
749 >    
750 >    if (simParams_->haveSwitchingRadius()) {
751 >      switchingRadius_ = simParams_->getSwitchingRadius();
752 >      if (switchingRadius_ > cutoffRadius_) {        
753 >        sprintf(painCave.errMsg,
754 >                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
755 >                switchingRadius_, cutoffRadius_);
756 >        painCave.isFatal = 1;
757 >        simError();
758  
673
674    if (simParams_->haveElectrostaticSummationMethod()) {
675      std::string myMethod = simParams_->getElectrostaticSummationMethod();
676      toUpper(myMethod);
677      if (myMethod == "REACTION_FIELD"){
678        useRF=1;
679      } else if (myMethod == "SHIFTED_FORCE"){
680        useSF = 1;
681      } else if (myMethod == "SHIFTED_POTENTIAL"){
682        useSP = 1;
759        }
760 <    }
761 <    
762 <    if (simParams_->haveAccumulateBoxDipole())
763 <      if (simParams_->getAccumulateBoxDipole())
764 <        useBoxDipole = 1;
760 >    } else {      
761 >      switchingRadius_ = 0.85 * cutoffRadius_;
762 >      sprintf(painCave.errMsg,
763 >              "SimInfo Warning: No value was set for the switchingRadius.\n"
764 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
765 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
766 >      painCave.isFatal = 0;
767 >      simError();
768 >    }            
769 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
770 >  }
771  
772 +  /**
773 +   * setupSkinThickness
774 +   *
775 +   *  If the skinThickness was explicitly set, use that value (but check it)
776 +   *  If the skinThickness was not explicitly set: use 1.0 angstroms
777 +   */
778 +  void SimInfo::setupSkinThickness() {    
779 +    if (simParams_->haveSkinThickness()) {
780 +      skinThickness_ = simParams_->getSkinThickness();
781 +    } else {      
782 +      skinThickness_ = 1.0;
783 +      sprintf(painCave.errMsg,
784 +              "SimInfo Warning: No value was set for the skinThickness.\n"
785 +              "\tOpenMD will use a default value of %f Angstroms\n"
786 +              "\tfor this simulation\n", skinThickness_);
787 +      painCave.isFatal = 0;
788 +      simError();
789 +    }            
790 +  }
791 +
792 +  void SimInfo::setupSimType() {
793 +    set<AtomType*>::iterator i;
794 +    set<AtomType*> atomTypes;
795 +    atomTypes = getSimulatedAtomTypes();
796 +
797 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
798 +
799 +    int usesElectrostatic = 0;
800 +    int usesMetallic = 0;
801 +    int usesDirectional = 0;
802      //loop over all of the atom types
803      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
804 <      useLennardJones |= (*i)->isLennardJones();
805 <      useElectrostatic |= (*i)->isElectrostatic();
806 <      useEAM |= (*i)->isEAM();
695 <      useSC |= (*i)->isSC();
696 <      useCharge |= (*i)->isCharge();
697 <      useDirectional |= (*i)->isDirectional();
698 <      useDipole |= (*i)->isDipole();
699 <      useGayBerne |= (*i)->isGayBerne();
700 <      useSticky |= (*i)->isSticky();
701 <      useStickyPower |= (*i)->isStickyPower();
702 <      useShape |= (*i)->isShape();
804 >      usesElectrostatic |= (*i)->isElectrostatic();
805 >      usesMetallic |= (*i)->isMetal();
806 >      usesDirectional |= (*i)->isDirectional();
807      }
808  
705    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706      useDirectionalAtom = 1;
707    }
708
709    if (useCharge || useDipole) {
710      useElectrostatics = 1;
711    }
712
809   #ifdef IS_MPI    
810      int temp;
811 +    temp = usesDirectional;
812 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = usePBC;
815 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >    temp = usesMetallic;
815 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816  
817 <    temp = useDirectionalAtom;
818 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 <
722 <    temp = useLennardJones;
723 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 <
725 <    temp = useElectrostatics;
726 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 <
728 <    temp = useCharge;
729 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 <
731 <    temp = useDipole;
732 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 <
734 <    temp = useSticky;
735 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 <
737 <    temp = useStickyPower;
738 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 <    
740 <    temp = useGayBerne;
741 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 <
743 <    temp = useEAM;
744 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 <
746 <    temp = useSC;
747 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 <    
749 <    temp = useShape;
750 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751 <
752 <    temp = useFLARB;
753 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
754 <
755 <    temp = useRF;
756 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 <
758 <    temp = useSF;
759 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 <
761 <    temp = useSP;
762 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 <
764 <    temp = useBoxDipole;
765 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 <
817 >    temp = usesElectrostatic;
818 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819   #endif
820 <
821 <    fInfo_.SIM_uses_PBC = usePBC;    
822 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
823 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
824 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
825 <    fInfo_.SIM_uses_Charges = useCharge;
774 <    fInfo_.SIM_uses_Dipoles = useDipole;
775 <    fInfo_.SIM_uses_Sticky = useSticky;
776 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
777 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
778 <    fInfo_.SIM_uses_EAM = useEAM;
779 <    fInfo_.SIM_uses_SC = useSC;
780 <    fInfo_.SIM_uses_Shapes = useShape;
781 <    fInfo_.SIM_uses_FLARB = useFLARB;
782 <    fInfo_.SIM_uses_RF = useRF;
783 <    fInfo_.SIM_uses_SF = useSF;
784 <    fInfo_.SIM_uses_SP = useSP;
785 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786 <
787 <    if( myMethod == "REACTION_FIELD") {
788 <      
789 <      if (simParams_->haveDielectric()) {
790 <        fInfo_.dielect = simParams_->getDielectric();
791 <      } else {
792 <        sprintf(painCave.errMsg,
793 <                "SimSetup Error: No Dielectric constant was set.\n"
794 <                "\tYou are trying to use Reaction Field without"
795 <                "\tsetting a dielectric constant!\n");
796 <        painCave.isFatal = 1;
797 <        simError();
798 <      }      
799 <    }
800 <
820 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
821 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
822 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
823 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
824 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
825 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
826    }
827  
828    void SimInfo::setupFortranSim() {
829      int isError;
830 <    int nExclude;
831 <    std::vector<int> fortranGlobalGroupMembership;
830 >    int nExclude, nOneTwo, nOneThree, nOneFour;
831 >    vector<int> fortranGlobalGroupMembership;
832      
833 <    nExclude = exclude_.getSize();
833 >    notifyFortranSkinThickness(&skinThickness_);
834 >
835 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
836 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
837 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
838 >
839      isError = 0;
840  
841      //globalGroupMembership_ is filled by SimCreator    
# Line 814 | Line 844 | namespace oopse {
844      }
845  
846      //calculate mass ratio of cutoff group
847 <    std::vector<RealType> mfact;
847 >    vector<RealType> mfact;
848      SimInfo::MoleculeIterator mi;
849      Molecule* mol;
850      Molecule::CutoffGroupIterator ci;
# Line 837 | Line 867 | namespace oopse {
867            else
868              mfact.push_back( 1.0 );
869          }
840
870        }      
871      }
872  
873      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
874 <    std::vector<int> identArray;
874 >    vector<int> identArray;
875  
876      //to avoid memory reallocation, reserve enough space identArray
877      identArray.reserve(getNAtoms());
# Line 855 | Line 884 | namespace oopse {
884  
885      //fill molMembershipArray
886      //molMembershipArray is filled by SimCreator    
887 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
887 >    vector<int> molMembershipArray(nGlobalAtoms_);
888      for (int i = 0; i < nGlobalAtoms_; i++) {
889        molMembershipArray[i] = globalMolMembership_[i] + 1;
890      }
891      
892      //setup fortran simulation
864    int nGlobalExcludes = 0;
865    int* globalExcludes = NULL;
866    int* excludeList = exclude_.getExcludeList();
867    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
893  
894 <    if( isError ){
894 >    nExclude = excludedInteractions_.getSize();
895 >    nOneTwo = oneTwoInteractions_.getSize();
896 >    nOneThree = oneThreeInteractions_.getSize();
897 >    nOneFour = oneFourInteractions_.getSize();
898  
899 +    int* excludeList = excludedInteractions_.getPairList();
900 +    int* oneTwoList = oneTwoInteractions_.getPairList();
901 +    int* oneThreeList = oneThreeInteractions_.getPairList();
902 +    int* oneFourList = oneFourInteractions_.getPairList();
903 +
904 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
905 +                   &nExclude, excludeList,
906 +                   &nOneTwo, oneTwoList,
907 +                   &nOneThree, oneThreeList,
908 +                   &nOneFour, oneFourList,
909 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
910 +                   &fortranGlobalGroupMembership[0], &isError);
911 +    
912 +    if( isError ){
913 +      
914        sprintf( painCave.errMsg,
915                 "There was an error setting the simulation information in fortran.\n" );
916        painCave.isFatal = 1;
917 <      painCave.severity = OOPSE_ERROR;
917 >      painCave.severity = OPENMD_ERROR;
918        simError();
919      }
920 <
921 < #ifdef IS_MPI
920 >    
921 >    
922      sprintf( checkPointMsg,
923               "succesfully sent the simulation information to fortran.\n");
924 <    MPIcheckPoint();
925 < #endif // is_mpi
924 >    
925 >    errorCheckPoint();
926 >    
927 >    // Setup number of neighbors in neighbor list if present
928 >    if (simParams_->haveNeighborListNeighbors()) {
929 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
930 >      setNeighbors(&nlistNeighbors);
931 >    }
932 >  
933 >
934    }
935  
936  
888 #ifdef IS_MPI
937    void SimInfo::setupFortranParallel() {
938 <    
938 > #ifdef IS_MPI    
939      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
940 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 <    std::vector<int> localToGlobalCutoffGroupIndex;
940 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 >    vector<int> localToGlobalCutoffGroupIndex;
942      SimInfo::MoleculeIterator mi;
943      Molecule::AtomIterator ai;
944      Molecule::CutoffGroupIterator ci;
# Line 937 | Line 985 | namespace oopse {
985      }
986  
987      sprintf(checkPointMsg, " mpiRefresh successful.\n");
988 <    MPIcheckPoint();
988 >    errorCheckPoint();
989  
942
943  }
944
990   #endif
946
947  void SimInfo::setupCutoff() {          
948    
949    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
950
951    // Check the cutoff policy
952    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953
954    std::string myPolicy;
955    if (forceFieldOptions_.haveCutoffPolicy()){
956      myPolicy = forceFieldOptions_.getCutoffPolicy();
957    }else if (simParams_->haveCutoffPolicy()) {
958      myPolicy = simParams_->getCutoffPolicy();
959    }
960
961    if (!myPolicy.empty()){
962      toUpper(myPolicy);
963      if (myPolicy == "MIX") {
964        cp = MIX_CUTOFF_POLICY;
965      } else {
966        if (myPolicy == "MAX") {
967          cp = MAX_CUTOFF_POLICY;
968        } else {
969          if (myPolicy == "TRADITIONAL") {            
970            cp = TRADITIONAL_CUTOFF_POLICY;
971          } else {
972            // throw error        
973            sprintf( painCave.errMsg,
974                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975            painCave.isFatal = 1;
976            simError();
977          }    
978        }          
979      }
980    }          
981    notifyFortranCutoffPolicy(&cp);
982
983    // Check the Skin Thickness for neighborlists
984    RealType skin;
985    if (simParams_->haveSkinThickness()) {
986      skin = simParams_->getSkinThickness();
987      notifyFortranSkinThickness(&skin);
988    }            
989        
990    // Check if the cutoff was set explicitly:
991    if (simParams_->haveCutoffRadius()) {
992      rcut_ = simParams_->getCutoffRadius();
993      if (simParams_->haveSwitchingRadius()) {
994        rsw_  = simParams_->getSwitchingRadius();
995      } else {
996        if (fInfo_.SIM_uses_Charges |
997            fInfo_.SIM_uses_Dipoles |
998            fInfo_.SIM_uses_RF) {
999          
1000          rsw_ = 0.85 * rcut_;
1001          sprintf(painCave.errMsg,
1002                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005        painCave.isFatal = 0;
1006        simError();
1007        } else {
1008          rsw_ = rcut_;
1009          sprintf(painCave.errMsg,
1010                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013          painCave.isFatal = 0;
1014          simError();
1015        }
1016      }
1017      
1018      notifyFortranCutoffs(&rcut_, &rsw_);
1019      
1020    } else {
1021      
1022      // For electrostatic atoms, we'll assume a large safe value:
1023      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024        sprintf(painCave.errMsg,
1025                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026                "\tOOPSE will use a default value of 15.0 angstroms"
1027                "\tfor the cutoffRadius.\n");
1028        painCave.isFatal = 0;
1029        simError();
1030        rcut_ = 15.0;
1031      
1032        if (simParams_->haveElectrostaticSummationMethod()) {
1033          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034          toUpper(myMethod);
1035          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036            if (simParams_->haveSwitchingRadius()){
1037              sprintf(painCave.errMsg,
1038                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039                      "\teven though the electrostaticSummationMethod was\n"
1040                      "\tset to %s\n", myMethod.c_str());
1041              painCave.isFatal = 1;
1042              simError();            
1043            }
1044          }
1045        }
1046      
1047        if (simParams_->haveSwitchingRadius()){
1048          rsw_ = simParams_->getSwitchingRadius();
1049        } else {        
1050          sprintf(painCave.errMsg,
1051                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052                  "\tOOPSE will use a default value of\n"
1053                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054          painCave.isFatal = 0;
1055          simError();
1056          rsw_ = 0.85 * rcut_;
1057        }
1058        notifyFortranCutoffs(&rcut_, &rsw_);
1059      } else {
1060        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061        // We'll punt and let fortran figure out the cutoffs later.
1062        
1063        notifyFortranYouAreOnYourOwn();
1064
1065      }
1066    }
991    }
992  
1069  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070    
1071    int errorOut;
1072    int esm =  NONE;
1073    int sm = UNDAMPED;
1074    RealType alphaVal;
1075    RealType dielectric;
1076
1077    errorOut = isError;
1078    alphaVal = simParams_->getDampingAlpha();
1079    dielectric = simParams_->getDielectric();
1080
1081    if (simParams_->haveElectrostaticSummationMethod()) {
1082      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1083      toUpper(myMethod);
1084      if (myMethod == "NONE") {
1085        esm = NONE;
1086      } else {
1087        if (myMethod == "SWITCHING_FUNCTION") {
1088          esm = SWITCHING_FUNCTION;
1089        } else {
1090          if (myMethod == "SHIFTED_POTENTIAL") {
1091            esm = SHIFTED_POTENTIAL;
1092          } else {
1093            if (myMethod == "SHIFTED_FORCE") {            
1094              esm = SHIFTED_FORCE;
1095            } else {
1096              if (myMethod == "REACTION_FIELD") {            
1097                esm = REACTION_FIELD;
1098              } else {
1099                // throw error        
1100                sprintf( painCave.errMsg,
1101                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1102                         "\t(Input file specified %s .)\n"
1103                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1104                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1105                         "\t\"reaction_field\".\n", myMethod.c_str() );
1106                painCave.isFatal = 1;
1107                simError();
1108              }    
1109            }          
1110          }
1111        }
1112      }
1113    }
1114    
1115    if (simParams_->haveElectrostaticScreeningMethod()) {
1116      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1117      toUpper(myScreen);
1118      if (myScreen == "UNDAMPED") {
1119        sm = UNDAMPED;
1120      } else {
1121        if (myScreen == "DAMPED") {
1122          sm = DAMPED;
1123          if (!simParams_->haveDampingAlpha()) {
1124            //throw error
1125            sprintf( painCave.errMsg,
1126                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1127                     "\tA default value of %f (1/ang) will be used.\n", alphaVal);
1128            painCave.isFatal = 0;
1129            simError();
1130          }
1131        } else {
1132          // throw error        
1133          sprintf( painCave.errMsg,
1134                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1135                   "\t(Input file specified %s .)\n"
1136                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1137                   "or \"damped\".\n", myScreen.c_str() );
1138          painCave.isFatal = 1;
1139          simError();
1140        }
1141      }
1142    }
1143    
1144    // let's pass some summation method variables to fortran
1145    setElectrostaticSummationMethod( &esm );
1146    setFortranElectrostaticMethod( &esm );
1147    setScreeningMethod( &sm );
1148    setDampingAlpha( &alphaVal );
1149    setReactionFieldDielectric( &dielectric );
1150    initFortranFF( &errorOut );
1151  }
993  
994    void SimInfo::setupSwitchingFunction() {    
995      int ft = CUBIC;
996 <
996 >    
997      if (simParams_->haveSwitchingFunctionType()) {
998 <      std::string funcType = simParams_->getSwitchingFunctionType();
998 >      string funcType = simParams_->getSwitchingFunctionType();
999        toUpper(funcType);
1000        if (funcType == "CUBIC") {
1001          ft = CUBIC;
# Line 1181 | Line 1022 | namespace oopse {
1022      // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1023      if ( simParams_->haveAccumulateBoxDipole() )
1024        if ( simParams_->getAccumulateBoxDipole() ) {
1184        setAccumulateBoxDipole();
1025          calcBoxDipole_ = true;
1026        }
1027  
# Line 1191 | Line 1031 | namespace oopse {
1031      properties_.addProperty(genData);  
1032    }
1033  
1034 <  void SimInfo::removeProperty(const std::string& propName) {
1034 >  void SimInfo::removeProperty(const string& propName) {
1035      properties_.removeProperty(propName);  
1036    }
1037  
# Line 1199 | Line 1039 | namespace oopse {
1039      properties_.clearProperties();
1040    }
1041  
1042 <  std::vector<std::string> SimInfo::getPropertyNames() {
1042 >  vector<string> SimInfo::getPropertyNames() {
1043      return properties_.getPropertyNames();  
1044    }
1045        
1046 <  std::vector<GenericData*> SimInfo::getProperties() {
1046 >  vector<GenericData*> SimInfo::getProperties() {
1047      return properties_.getProperties();
1048    }
1049  
1050 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1050 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1051      return properties_.getPropertyByName(propName);
1052    }
1053  
# Line 1290 | Line 1130 | namespace oopse {
1130  
1131    }        
1132  
1133 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1133 >  ostream& operator <<(ostream& o, SimInfo& info) {
1134  
1135      return o;
1136    }
# Line 1333 | Line 1173 | namespace oopse {
1173  
1174  
1175         [  Ixx -Ixy  -Ixz ]
1176 <  J =| -Iyx  Iyy  -Iyz |
1176 >    J =| -Iyx  Iyy  -Iyz |
1177         [ -Izx -Iyz   Izz ]
1178      */
1179  
# Line 1436 | Line 1276 | namespace oopse {
1276        return angularMomentum;
1277     }
1278    
1279 <  
1280 < }//end namespace oopse
1279 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1280 >    return IOIndexToIntegrableObject.at(index);
1281 >  }
1282 >  
1283 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1284 >    IOIndexToIntegrableObject= v;
1285 >  }
1286 >
1287 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1288 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1289 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1290 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1291 >  */
1292 >  void SimInfo::getGyrationalVolume(RealType &volume){
1293 >    Mat3x3d intTensor;
1294 >    RealType det;
1295 >    Vector3d dummyAngMom;
1296 >    RealType sysconstants;
1297 >    RealType geomCnst;
1298 >
1299 >    geomCnst = 3.0/2.0;
1300 >    /* Get the inertial tensor and angular momentum for free*/
1301 >    getInertiaTensor(intTensor,dummyAngMom);
1302 >    
1303 >    det = intTensor.determinant();
1304 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1305 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1306 >    return;
1307 >  }
1308 >
1309 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1310 >    Mat3x3d intTensor;
1311 >    Vector3d dummyAngMom;
1312 >    RealType sysconstants;
1313 >    RealType geomCnst;
1314  
1315 +    geomCnst = 3.0/2.0;
1316 +    /* Get the inertial tensor and angular momentum for free*/
1317 +    getInertiaTensor(intTensor,dummyAngMom);
1318 +    
1319 +    detI = intTensor.determinant();
1320 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1321 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1322 +    return;
1323 +  }
1324 + /*
1325 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1326 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1327 +      sdByGlobalIndex_ = v;
1328 +    }
1329 +
1330 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1331 +      //assert(index < nAtoms_ + nRigidBodies_);
1332 +      return sdByGlobalIndex_.at(index);
1333 +    }  
1334 + */  
1335 +  int SimInfo::getNGlobalConstraints() {
1336 +    int nGlobalConstraints;
1337 + #ifdef IS_MPI
1338 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1339 +                  MPI_COMM_WORLD);    
1340 + #else
1341 +    nGlobalConstraints =  nConstraints_;
1342 + #endif
1343 +    return nGlobalConstraints;
1344 +  }
1345 +
1346 + }//end namespace OpenMD
1347 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines