ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 326 by tim, Sun Feb 13 20:05:42 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
62   #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64   #include "selection/SelectionManager.hpp"
65 + #include "io/ForceFieldOptions.hpp"
66 + #include "UseTheForce/ForceField.hpp"
67 + #include "nonbonded/InteractionManager.hpp"
68  
69 +
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
72   #include "UseTheForce/DarkSide/simParallel_interface.h"
73   #endif
74  
75 < namespace oopse {
76 <
77 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
78 <                                ForceField* ff, Globals* simParams) :
79 <                                forceField_(ff), simParams_(simParams),
80 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
84 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
85 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
86 <
87 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
75 > using namespace std;
76 > namespace OpenMD {
77 >  
78 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79 >    forceField_(ff), simParams_(simParams),
80 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87 >    
88      MoleculeStamp* molStamp;
89      int nMolWithSameStamp;
90      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92      CutoffGroupStamp* cgStamp;    
93      RigidBodyStamp* rbStamp;
94      int nRigidAtoms = 0;
95      
96 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
97 <        molStamp = i->first;
98 <        nMolWithSameStamp = i->second;
99 <        
100 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
101 <
102 <        //calculate atoms in molecules
103 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 <
105 <
106 <        //calculate atoms in cutoff groups
107 <        int nAtomsInGroups = 0;
108 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
109 <        
110 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
111 <            cgStamp = molStamp->getCutoffGroup(j);
112 <            nAtomsInGroups += cgStamp->getNMembers();
113 <        }
114 <
115 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
116 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
117 <
118 <        //calculate atoms in rigid bodies
119 <        int nAtomsInRigidBodies = 0;
120 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
121 <        
122 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
123 <            rbStamp = molStamp->getRigidBody(j);
124 <            nAtomsInRigidBodies += rbStamp->getNMembers();
125 <        }
126 <
127 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
128 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
129 <        
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101 >      
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114 >      }
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132      }
133 <
134 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
135 <    //therefore the total number of cutoff groups in the system is equal to
136 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
137 <    //file plus the number of cutoff groups defined in meta-data file
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 <
141 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
142 <    //therefore the total number of  integrable objects in the system is equal to
143 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
144 <    //file plus the number of  rigid bodies defined in meta-data file
145 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
146 <
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
150      molToProcMap_.resize(nGlobalMols_);
151 < #endif
152 <
153 <    selectMan_ = new SelectionManager(this);
154 <    selectMan_->selectAll();
155 < }
156 <
157 < SimInfo::~SimInfo() {
158 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
159 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
151 >  }
152 >  
153 >  SimInfo::~SimInfo() {
154 >    map<int, Molecule*>::iterator i;
155 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156 >      delete i->second;
157 >    }
158 >    molecules_.clear();
159 >      
160      delete sman_;
161      delete simParams_;
162      delete forceField_;
163 <    delete selectMan_;
155 < }
163 >  }
164  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
165  
166 < bool SimInfo::addMolecule(Molecule* mol) {
166 >  bool SimInfo::addMolecule(Molecule* mol) {
167      MoleculeIterator i;
168 <
168 >    
169      i = molecules_.find(mol->getGlobalIndex());
170      if (i == molecules_.end() ) {
171 <
172 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
173 <        
174 <        nAtoms_ += mol->getNAtoms();
175 <        nBonds_ += mol->getNBonds();
176 <        nBends_ += mol->getNBends();
177 <        nTorsions_ += mol->getNTorsions();
178 <        nRigidBodies_ += mol->getNRigidBodies();
179 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
180 <        nCutoffGroups_ += mol->getNCutoffGroups();
181 <        nConstraints_ += mol->getNConstraintPairs();
182 <
183 <        addExcludePairs(mol);
184 <        
185 <        return true;
186 <    } else {
187 <        return false;
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174 >      nAtoms_ += mol->getNAtoms();
175 >      nBonds_ += mol->getNBonds();
176 >      nBends_ += mol->getNBends();
177 >      nTorsions_ += mol->getNTorsions();
178 >      nInversions_ += mol->getNInversions();
179 >      nRigidBodies_ += mol->getNRigidBodies();
180 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
181 >      nCutoffGroups_ += mol->getNCutoffGroups();
182 >      nConstraints_ += mol->getNConstraintPairs();
183 >      
184 >      addInteractionPairs(mol);
185 >      
186 >      return true;
187 >    } else {
188 >      return false;
189      }
190 < }
191 <
192 < bool SimInfo::removeMolecule(Molecule* mol) {
190 >  }
191 >  
192 >  bool SimInfo::removeMolecule(Molecule* mol) {
193      MoleculeIterator i;
194      i = molecules_.find(mol->getGlobalIndex());
195  
196      if (i != molecules_.end() ) {
197  
198 <        assert(mol == i->second);
198 >      assert(mol == i->second);
199          
200 <        nAtoms_ -= mol->getNAtoms();
201 <        nBonds_ -= mol->getNBonds();
202 <        nBends_ -= mol->getNBends();
203 <        nTorsions_ -= mol->getNTorsions();
204 <        nRigidBodies_ -= mol->getNRigidBodies();
205 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
206 <        nCutoffGroups_ -= mol->getNCutoffGroups();
207 <        nConstraints_ -= mol->getNConstraintPairs();
200 >      nAtoms_ -= mol->getNAtoms();
201 >      nBonds_ -= mol->getNBonds();
202 >      nBends_ -= mol->getNBends();
203 >      nTorsions_ -= mol->getNTorsions();
204 >      nInversions_ -= mol->getNInversions();
205 >      nRigidBodies_ -= mol->getNRigidBodies();
206 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 >      nCutoffGroups_ -= mol->getNCutoffGroups();
208 >      nConstraints_ -= mol->getNConstraintPairs();
209  
210 <        removeExcludePairs(mol);
211 <        molecules_.erase(mol->getGlobalIndex());
210 >      removeInteractionPairs(mol);
211 >      molecules_.erase(mol->getGlobalIndex());
212  
213 <        delete mol;
213 >      delete mol;
214          
215 <        return true;
215 >      return true;
216      } else {
217 <        return false;
217 >      return false;
218      }
219 +  }    
220  
220
221 }    
222
221          
222 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
222 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
223      i = molecules_.begin();
224      return i == molecules_.end() ? NULL : i->second;
225 < }    
225 >  }    
226  
227 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
227 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
228      ++i;
229      return i == molecules_.end() ? NULL : i->second;    
230 < }
230 >  }
231  
232  
233 < void SimInfo::calcNdf() {
233 >  void SimInfo::calcNdf() {
234      int ndf_local;
235      MoleculeIterator i;
236 <    std::vector<StuntDouble*>::iterator j;
236 >    vector<StuntDouble*>::iterator j;
237      Molecule* mol;
238      StuntDouble* integrableObject;
239  
240      ndf_local = 0;
241      
242      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
243 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244 <               integrableObject = mol->nextIntegrableObject(j)) {
243 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244 >           integrableObject = mol->nextIntegrableObject(j)) {
245  
246 <            ndf_local += 3;
246 >        ndf_local += 3;
247  
248 <            if (integrableObject->isDirectional()) {
249 <                if (integrableObject->isLinear()) {
250 <                    ndf_local += 2;
251 <                } else {
252 <                    ndf_local += 3;
253 <                }
254 <            }
248 >        if (integrableObject->isDirectional()) {
249 >          if (integrableObject->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255              
256 <        }//end for (integrableObject)
257 <    }// end for (mol)
256 >      }
257 >    }
258      
259      // n_constraints is local, so subtract them on each processor
260      ndf_local -= nConstraints_;
# Line 271 | Line 269 | void SimInfo::calcNdf() {
269      // entire system:
270      ndf_ = ndf_ - 3 - nZconstraint_;
271  
272 < }
272 >  }
273  
274 < void SimInfo::calcNdfRaw() {
274 >  int SimInfo::getFdf() {
275 > #ifdef IS_MPI
276 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
277 > #else
278 >    fdf_ = fdf_local;
279 > #endif
280 >    return fdf_;
281 >  }
282 >    
283 >  void SimInfo::calcNdfRaw() {
284      int ndfRaw_local;
285  
286      MoleculeIterator i;
287 <    std::vector<StuntDouble*>::iterator j;
287 >    vector<StuntDouble*>::iterator j;
288      Molecule* mol;
289      StuntDouble* integrableObject;
290  
# Line 285 | Line 292 | void SimInfo::calcNdfRaw() {
292      ndfRaw_local = 0;
293      
294      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 <               integrableObject = mol->nextIntegrableObject(j)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 <            ndfRaw_local += 3;
298 >        ndfRaw_local += 3;
299  
300 <            if (integrableObject->isDirectional()) {
301 <                if (integrableObject->isLinear()) {
302 <                    ndfRaw_local += 2;
303 <                } else {
304 <                    ndfRaw_local += 3;
305 <                }
306 <            }
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307              
308 <        }
308 >      }
309      }
310      
311   #ifdef IS_MPI
# Line 306 | Line 313 | void SimInfo::calcNdfRaw() {
313   #else
314      ndfRaw_ = ndfRaw_local;
315   #endif
316 < }
316 >  }
317  
318 < void SimInfo::calcNdfTrans() {
318 >  void SimInfo::calcNdfTrans() {
319      int ndfTrans_local;
320  
321      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 329 | void SimInfo::calcNdfTrans() {
329  
330      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331  
332 < }
332 >  }
333  
334 < void SimInfo::addExcludePairs(Molecule* mol) {
335 <    std::vector<Bond*>::iterator bondIter;
336 <    std::vector<Bend*>::iterator bendIter;
337 <    std::vector<Torsion*>::iterator torsionIter;
334 >  void SimInfo::addInteractionPairs(Molecule* mol) {
335 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340      Bond* bond;
341      Bend* bend;
342      Torsion* torsion;
343 +    Inversion* inversion;
344      int a;
345      int b;
346      int c;
347      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
348  
349 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
350 <        a = bend->getAtomA()->getGlobalIndex();
351 <        b = bend->getAtomB()->getGlobalIndex();        
352 <        c = bend->getAtomC()->getGlobalIndex();
349 >    // atomGroups can be used to add special interaction maps between
350 >    // groups of atoms that are in two separate rigid bodies.
351 >    // However, most site-site interactions between two rigid bodies
352 >    // are probably not special, just the ones between the physically
353 >    // bonded atoms.  Interactions *within* a single rigid body should
354 >    // always be excluded.  These are done at the bottom of this
355 >    // function.
356  
357 <        exclude_.addPair(a, b);
358 <        exclude_.addPair(a, c);
359 <        exclude_.addPair(b, c);        
360 <    }
361 <
362 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
363 <        a = torsion->getAtomA()->getGlobalIndex();
364 <        b = torsion->getAtomB()->getGlobalIndex();        
365 <        c = torsion->getAtomC()->getGlobalIndex();        
366 <        d = torsion->getAtomD()->getGlobalIndex();        
357 >    map<int, set<int> > atomGroups;
358 >    Molecule::RigidBodyIterator rbIter;
359 >    RigidBody* rb;
360 >    Molecule::IntegrableObjectIterator ii;
361 >    StuntDouble* integrableObject;
362 >    
363 >    for (integrableObject = mol->beginIntegrableObject(ii);
364 >         integrableObject != NULL;
365 >         integrableObject = mol->nextIntegrableObject(ii)) {
366 >      
367 >      if (integrableObject->isRigidBody()) {
368 >        rb = static_cast<RigidBody*>(integrableObject);
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 >        }
374 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 >        }      
377 >      } else {
378 >        set<int> oneAtomSet;
379 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381 >      }
382 >    }  
383 >          
384 >    for (bond= mol->beginBond(bondIter); bond != NULL;
385 >         bond = mol->nextBond(bondIter)) {
386  
387 <        exclude_.addPair(a, b);
388 <        exclude_.addPair(a, c);
389 <        exclude_.addPair(a, d);
390 <        exclude_.addPair(b, c);
391 <        exclude_.addPair(b, d);
392 <        exclude_.addPair(c, d);        
387 >      a = bond->getAtomA()->getGlobalIndex();
388 >      b = bond->getAtomB()->getGlobalIndex();  
389 >    
390 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
391 >        oneTwoInteractions_.addPair(a, b);
392 >      } else {
393 >        excludedInteractions_.addPair(a, b);
394 >      }
395      }
396  
397 <    
398 < }
397 >    for (bend= mol->beginBend(bendIter); bend != NULL;
398 >         bend = mol->nextBend(bendIter)) {
399  
400 < void SimInfo::removeExcludePairs(Molecule* mol) {
401 <    std::vector<Bond*>::iterator bondIter;
402 <    std::vector<Bend*>::iterator bendIter;
403 <    std::vector<Torsion*>::iterator torsionIter;
400 >      a = bend->getAtomA()->getGlobalIndex();
401 >      b = bend->getAtomB()->getGlobalIndex();        
402 >      c = bend->getAtomC()->getGlobalIndex();
403 >      
404 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
405 >        oneTwoInteractions_.addPair(a, b);      
406 >        oneTwoInteractions_.addPair(b, c);
407 >      } else {
408 >        excludedInteractions_.addPair(a, b);
409 >        excludedInteractions_.addPair(b, c);
410 >      }
411 >
412 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
413 >        oneThreeInteractions_.addPair(a, c);      
414 >      } else {
415 >        excludedInteractions_.addPair(a, c);
416 >      }
417 >    }
418 >
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
420 >         torsion = mol->nextTorsion(torsionIter)) {
421 >
422 >      a = torsion->getAtomA()->getGlobalIndex();
423 >      b = torsion->getAtomB()->getGlobalIndex();        
424 >      c = torsion->getAtomC()->getGlobalIndex();        
425 >      d = torsion->getAtomD()->getGlobalIndex();      
426 >
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >        oneTwoInteractions_.addPair(c, d);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >        excludedInteractions_.addPair(c, d);
435 >      }
436 >
437 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
438 >        oneThreeInteractions_.addPair(a, c);      
439 >        oneThreeInteractions_.addPair(b, d);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >        excludedInteractions_.addPair(b, d);
443 >      }
444 >
445 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
446 >        oneFourInteractions_.addPair(a, d);      
447 >      } else {
448 >        excludedInteractions_.addPair(a, d);
449 >      }
450 >    }
451 >
452 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
453 >         inversion = mol->nextInversion(inversionIter)) {
454 >
455 >      a = inversion->getAtomA()->getGlobalIndex();
456 >      b = inversion->getAtomB()->getGlobalIndex();        
457 >      c = inversion->getAtomC()->getGlobalIndex();        
458 >      d = inversion->getAtomD()->getGlobalIndex();        
459 >
460 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
461 >        oneTwoInteractions_.addPair(a, b);      
462 >        oneTwoInteractions_.addPair(a, c);
463 >        oneTwoInteractions_.addPair(a, d);
464 >      } else {
465 >        excludedInteractions_.addPair(a, b);
466 >        excludedInteractions_.addPair(a, c);
467 >        excludedInteractions_.addPair(a, d);
468 >      }
469 >
470 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
471 >        oneThreeInteractions_.addPair(b, c);    
472 >        oneThreeInteractions_.addPair(b, d);    
473 >        oneThreeInteractions_.addPair(c, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(b, c);
476 >        excludedInteractions_.addPair(b, d);
477 >        excludedInteractions_.addPair(c, d);
478 >      }
479 >    }
480 >
481 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482 >         rb = mol->nextRigidBody(rbIter)) {
483 >      vector<Atom*> atoms = rb->getAtoms();
484 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486 >          a = atoms[i]->getGlobalIndex();
487 >          b = atoms[j]->getGlobalIndex();
488 >          excludedInteractions_.addPair(a, b);
489 >        }
490 >      }
491 >    }        
492 >
493 >  }
494 >
495 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
496 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 >    vector<Bond*>::iterator bondIter;
498 >    vector<Bend*>::iterator bendIter;
499 >    vector<Torsion*>::iterator torsionIter;
500 >    vector<Inversion*>::iterator inversionIter;
501      Bond* bond;
502      Bend* bend;
503      Torsion* torsion;
504 +    Inversion* inversion;
505      int a;
506      int b;
507      int c;
508      int d;
509 +
510 +    map<int, set<int> > atomGroups;
511 +    Molecule::RigidBodyIterator rbIter;
512 +    RigidBody* rb;
513 +    Molecule::IntegrableObjectIterator ii;
514 +    StuntDouble* integrableObject;
515      
516 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
517 <        a = bond->getAtomA()->getGlobalIndex();
518 <        b = bond->getAtomB()->getGlobalIndex();        
519 <        exclude_.removePair(a, b);
516 >    for (integrableObject = mol->beginIntegrableObject(ii);
517 >         integrableObject != NULL;
518 >         integrableObject = mol->nextIntegrableObject(ii)) {
519 >      
520 >      if (integrableObject->isRigidBody()) {
521 >        rb = static_cast<RigidBody*>(integrableObject);
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 >        }
527 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 >        }      
530 >      } else {
531 >        set<int> oneAtomSet;
532 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534 >      }
535 >    }  
536 >
537 >    for (bond= mol->beginBond(bondIter); bond != NULL;
538 >         bond = mol->nextBond(bondIter)) {
539 >      
540 >      a = bond->getAtomA()->getGlobalIndex();
541 >      b = bond->getAtomB()->getGlobalIndex();  
542 >    
543 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
544 >        oneTwoInteractions_.removePair(a, b);
545 >      } else {
546 >        excludedInteractions_.removePair(a, b);
547 >      }
548      }
549  
550 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
551 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
550 >    for (bend= mol->beginBend(bendIter); bend != NULL;
551 >         bend = mol->nextBend(bendIter)) {
552  
553 <        exclude_.removePair(a, b);
554 <        exclude_.removePair(a, c);
555 <        exclude_.removePair(b, c);        
553 >      a = bend->getAtomA()->getGlobalIndex();
554 >      b = bend->getAtomB()->getGlobalIndex();        
555 >      c = bend->getAtomC()->getGlobalIndex();
556 >      
557 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
558 >        oneTwoInteractions_.removePair(a, b);      
559 >        oneTwoInteractions_.removePair(b, c);
560 >      } else {
561 >        excludedInteractions_.removePair(a, b);
562 >        excludedInteractions_.removePair(b, c);
563 >      }
564 >
565 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
566 >        oneThreeInteractions_.removePair(a, c);      
567 >      } else {
568 >        excludedInteractions_.removePair(a, c);
569 >      }
570      }
571  
572 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
573 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
572 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
573 >         torsion = mol->nextTorsion(torsionIter)) {
574  
575 <        exclude_.removePair(a, b);
576 <        exclude_.removePair(a, c);
577 <        exclude_.removePair(a, d);
578 <        exclude_.removePair(b, c);
579 <        exclude_.removePair(b, d);
580 <        exclude_.removePair(c, d);        
575 >      a = torsion->getAtomA()->getGlobalIndex();
576 >      b = torsion->getAtomB()->getGlobalIndex();        
577 >      c = torsion->getAtomC()->getGlobalIndex();        
578 >      d = torsion->getAtomD()->getGlobalIndex();      
579 >  
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >        oneTwoInteractions_.removePair(c, d);
584 >      } else {
585 >        excludedInteractions_.removePair(a, b);
586 >        excludedInteractions_.removePair(b, c);
587 >        excludedInteractions_.removePair(c, d);
588 >      }
589 >
590 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
591 >        oneThreeInteractions_.removePair(a, c);      
592 >        oneThreeInteractions_.removePair(b, d);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >        excludedInteractions_.removePair(b, d);
596 >      }
597 >
598 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
599 >        oneFourInteractions_.removePair(a, d);      
600 >      } else {
601 >        excludedInteractions_.removePair(a, d);
602 >      }
603      }
604  
605 < }
605 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
606 >         inversion = mol->nextInversion(inversionIter)) {
607  
608 +      a = inversion->getAtomA()->getGlobalIndex();
609 +      b = inversion->getAtomB()->getGlobalIndex();        
610 +      c = inversion->getAtomC()->getGlobalIndex();        
611 +      d = inversion->getAtomD()->getGlobalIndex();        
612  
613 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
614 <    int curStampId;
613 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
614 >        oneTwoInteractions_.removePair(a, b);      
615 >        oneTwoInteractions_.removePair(a, c);
616 >        oneTwoInteractions_.removePair(a, d);
617 >      } else {
618 >        excludedInteractions_.removePair(a, b);
619 >        excludedInteractions_.removePair(a, c);
620 >        excludedInteractions_.removePair(a, d);
621 >      }
622  
623 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
624 +        oneThreeInteractions_.removePair(b, c);    
625 +        oneThreeInteractions_.removePair(b, d);    
626 +        oneThreeInteractions_.removePair(c, d);      
627 +      } else {
628 +        excludedInteractions_.removePair(b, c);
629 +        excludedInteractions_.removePair(b, d);
630 +        excludedInteractions_.removePair(c, d);
631 +      }
632 +    }
633 +
634 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635 +         rb = mol->nextRigidBody(rbIter)) {
636 +      vector<Atom*> atoms = rb->getAtoms();
637 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639 +          a = atoms[i]->getGlobalIndex();
640 +          b = atoms[j]->getGlobalIndex();
641 +          excludedInteractions_.removePair(a, b);
642 +        }
643 +      }
644 +    }        
645 +    
646 +  }
647 +  
648 +  
649 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
650 +    int curStampId;
651 +    
652      //index from 0
653      curStampId = moleculeStamps_.size();
654  
655      moleculeStamps_.push_back(molStamp);
656      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
657 < }
657 >  }
658  
659 < void SimInfo::update() {
659 >  void SimInfo::update() {
660  
661      setupSimType();
662 +    setupCutoffRadius();
663 +    setupSwitchingRadius();
664 +    setupCutoffMethod();
665 +    setupSkinThickness();
666 +    setupSwitchingFunction();
667 +    setupAccumulateBoxDipole();
668  
669   #ifdef IS_MPI
670      setupFortranParallel();
671   #endif
434
672      setupFortranSim();
673 +    fortranInitialized_ = true;
674  
437    //setup fortran force field
438    /** @deprecate */    
439    int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
448    
449    setupCutoff();
450
675      calcNdf();
676      calcNdfRaw();
677      calcNdfTrans();
678 <
679 <    fortranInitialized_ = true;
680 < }
457 <
458 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
678 >  }
679 >  
680 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681      SimInfo::MoleculeIterator mi;
682      Molecule* mol;
683      Molecule::AtomIterator ai;
684      Atom* atom;
685 <    std::set<AtomType*> atomTypes;
686 <
685 >    set<AtomType*> atomTypes;
686 >    
687      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
688 <
689 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
690 <            atomTypes.insert(atom->getAtomType());
691 <        }
692 <        
688 >      
689 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
690 >        atomTypes.insert(atom->getAtomType());
691 >      }
692 >      
693      }
694 <
694 >    
695      return atomTypes;        
696 < }
696 >  }
697  
698 < void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
700 <    std::set<AtomType*> atomTypes;
701 <    atomTypes = getUniqueAtomTypes();
698 >  /**
699 >   * setupCutoffRadius
700 >   *
701 >   *  If the cutoffRadius was explicitly set, use that value.
702 >   *  If the cutoffRadius was not explicitly set:
703 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
704 >   *      No electrostatic atoms?  Poll the atom types present in the
705 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
706 >   *      Use the maximum suggested value that was found.
707 >   */
708 >  void SimInfo::setupCutoffRadius() {
709      
710 <    int useLennardJones = 0;
711 <    int useElectrostatic = 0;
712 <    int useEAM = 0;
713 <    int useCharge = 0;
714 <    int useDirectional = 0;
715 <    int useDipole = 0;
716 <    int useGayBerne = 0;
717 <    int useSticky = 0;
718 <    int useShape = 0;
719 <    int useFLARB = 0; //it is not in AtomType yet
720 <    int useDirectionalAtom = 0;    
721 <    int useElectrostatics = 0;
722 <    //usePBC and useRF are from simParams
723 <    int usePBC = simParams_->getPBC();
724 <    int useRF = simParams_->getUseRF();
725 <
726 <    //loop over all of the atom types
727 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
728 <        useLennardJones |= (*i)->isLennardJones();
729 <        useElectrostatic |= (*i)->isElectrostatic();
730 <        useEAM |= (*i)->isEAM();
731 <        useCharge |= (*i)->isCharge();
732 <        useDirectional |= (*i)->isDirectional();
733 <        useDipole |= (*i)->isDipole();
734 <        useGayBerne |= (*i)->isGayBerne();
735 <        useSticky |= (*i)->isSticky();
736 <        useShape |= (*i)->isShape();
710 >    if (simParams_->haveCutoffRadius()) {
711 >      cutoffRadius_ = simParams_->getCutoffRadius();
712 >    } else {      
713 >      if (usesElectrostaticAtoms_) {
714 >        sprintf(painCave.errMsg,
715 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
716 >                "\tOpenMD will use a default value of 12.0 angstroms"
717 >                "\tfor the cutoffRadius.\n");
718 >        painCave.isFatal = 0;
719 >        simError();
720 >        cutoffRadius_ = 12.0;
721 >      } else {
722 >        RealType thisCut;
723 >        set<AtomType*>::iterator i;
724 >        set<AtomType*> atomTypes;
725 >        atomTypes = getSimulatedAtomTypes();        
726 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
727 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
728 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
729 >        }
730 >        sprintf(painCave.errMsg,
731 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
732 >                "\tOpenMD will use %lf angstroms.\n",
733 >                cutoffRadius_);
734 >        painCave.isFatal = 0;
735 >        simError();
736 >      }            
737      }
738  
739 <    if (useSticky || useDipole || useGayBerne || useShape) {
740 <        useDirectionalAtom = 1;
741 <    }
739 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
740 >  }
741 >  
742 >  /**
743 >   * setupSwitchingRadius
744 >   *
745 >   *  If the switchingRadius was explicitly set, use that value (but check it)
746 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
747 >   */
748 >  void SimInfo::setupSwitchingRadius() {
749 >    
750 >    if (simParams_->haveSwitchingRadius()) {
751 >      switchingRadius_ = simParams_->getSwitchingRadius();
752 >      if (switchingRadius_ > cutoffRadius_) {        
753 >        sprintf(painCave.errMsg,
754 >                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
755 >                switchingRadius_, cutoffRadius_);
756 >        painCave.isFatal = 1;
757 >        simError();
758  
759 <    if (useCharge || useDipole) {
760 <        useElectrostatics = 1;
761 <    }
759 >      }
760 >    } else {      
761 >      switchingRadius_ = 0.85 * cutoffRadius_;
762 >      sprintf(painCave.errMsg,
763 >              "SimInfo Warning: No value was set for the switchingRadius.\n"
764 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
765 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
766 >      painCave.isFatal = 0;
767 >      simError();
768 >    }            
769 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
770 >  }
771  
772 < #ifdef IS_MPI    
773 <    int temp;
772 >  /**
773 >   * setupSkinThickness
774 >   *
775 >   *  If the skinThickness was explicitly set, use that value (but check it)
776 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
777 >   */
778 >  void SimInfo::setupSkinThickness() {    
779 >    if (simParams_->haveSkinThickness()) {
780 >      skinThickness_ = simParams_->getSkinThickness();
781 >    } else {      
782 >      skinThickness_ = 1.0;
783 >      sprintf(painCave.errMsg,
784 >              "SimInfo Warning: No value was set for the skinThickness.\n"
785 >              "\tOpenMD will use a default value of %f Angstroms\n"
786 >              "\tfor this simulation\n", skinThickness_);
787 >      painCave.isFatal = 0;
788 >      simError();
789 >    }            
790 >  }
791  
792 <    temp = usePBC;
793 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
792 >  void SimInfo::setupSimType() {
793 >    set<AtomType*>::iterator i;
794 >    set<AtomType*> atomTypes;
795 >    atomTypes = getSimulatedAtomTypes();
796  
797 <    temp = useDirectionalAtom;
525 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
797 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
798  
799 <    temp = useLennardJones;
800 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
799 >    int usesElectrostatic = 0;
800 >    int usesMetallic = 0;
801 >    int usesDirectional = 0;
802 >    //loop over all of the atom types
803 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
804 >      usesElectrostatic |= (*i)->isElectrostatic();
805 >      usesMetallic |= (*i)->isMetal();
806 >      usesDirectional |= (*i)->isDirectional();
807 >    }
808  
809 <    temp = useElectrostatics;
810 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809 > #ifdef IS_MPI    
810 >    int temp;
811 >    temp = usesDirectional;
812 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <    temp = useCharge;
815 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 >    temp = usesMetallic;
815 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816  
817 <    temp = useDipole;
818 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
538 <
539 <    temp = useSticky;
540 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
541 <
542 <    temp = useGayBerne;
543 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
544 <
545 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
556 <    
817 >    temp = usesElectrostatic;
818 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
819   #endif
820 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
821 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
822 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
823 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
824 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
825 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
826 +  }
827  
828 <    fInfo_.SIM_uses_PBC = usePBC;    
560 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
562 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563 <    fInfo_.SIM_uses_Charges = useCharge;
564 <    fInfo_.SIM_uses_Dipoles = useDipole;
565 <    fInfo_.SIM_uses_Sticky = useSticky;
566 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
567 <    fInfo_.SIM_uses_EAM = useEAM;
568 <    fInfo_.SIM_uses_Shapes = useShape;
569 <    fInfo_.SIM_uses_FLARB = useFLARB;
570 <    fInfo_.SIM_uses_RF = useRF;
571 <
572 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
588 <
589 < }
590 <
591 < void SimInfo::setupFortranSim() {
828 >  void SimInfo::setupFortranSim() {
829      int isError;
830 <    int nExclude;
831 <    std::vector<int> fortranGlobalGroupMembership;
830 >    int nExclude, nOneTwo, nOneThree, nOneFour;
831 >    vector<int> fortranGlobalGroupMembership;
832      
833 <    nExclude = exclude_.getSize();
833 >    notifyFortranSkinThickness(&skinThickness_);
834 >
835 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
836 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
837 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
838 >
839      isError = 0;
840  
841      //globalGroupMembership_ is filled by SimCreator    
842      for (int i = 0; i < nGlobalAtoms_; i++) {
843 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
843 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
844      }
845  
846      //calculate mass ratio of cutoff group
847 <    std::vector<double> mfact;
847 >    vector<RealType> mfact;
848      SimInfo::MoleculeIterator mi;
849      Molecule* mol;
850      Molecule::CutoffGroupIterator ci;
851      CutoffGroup* cg;
852      Molecule::AtomIterator ai;
853      Atom* atom;
854 <    double totalMass;
854 >    RealType totalMass;
855  
856      //to avoid memory reallocation, reserve enough space for mfact
857      mfact.reserve(getNCutoffGroups());
858      
859      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
860 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
860 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
861  
862 <            totalMass = cg->getMass();
863 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
864 <                        mfact.push_back(atom->getMass()/totalMass);
865 <            }
866 <
867 <        }      
862 >        totalMass = cg->getMass();
863 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
864 >          // Check for massless groups - set mfact to 1 if true
865 >          if (totalMass != 0)
866 >            mfact.push_back(atom->getMass()/totalMass);
867 >          else
868 >            mfact.push_back( 1.0 );
869 >        }
870 >      }      
871      }
872  
873      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
874 <    std::vector<int> identArray;
874 >    vector<int> identArray;
875  
876      //to avoid memory reallocation, reserve enough space identArray
877      identArray.reserve(getNAtoms());
878      
879      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
880 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
881 <            identArray.push_back(atom->getIdent());
882 <        }
880 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
881 >        identArray.push_back(atom->getIdent());
882 >      }
883      }    
884  
885      //fill molMembershipArray
886      //molMembershipArray is filled by SimCreator    
887 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
887 >    vector<int> molMembershipArray(nGlobalAtoms_);
888      for (int i = 0; i < nGlobalAtoms_; i++) {
889 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
889 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
890      }
891      
892      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651    int nGlobalExcludes = 0;
652    int* globalExcludes = NULL;
653    int* excludeList = exclude_.getExcludeList();
654    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
893  
894 <    if( isError ){
894 >    nExclude = excludedInteractions_.getSize();
895 >    nOneTwo = oneTwoInteractions_.getSize();
896 >    nOneThree = oneThreeInteractions_.getSize();
897 >    nOneFour = oneFourInteractions_.getSize();
898  
899 <        sprintf( painCave.errMsg,
900 <                 "There was an error setting the simulation information in fortran.\n" );
901 <        painCave.isFatal = 1;
902 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
899 >    int* excludeList = excludedInteractions_.getPairList();
900 >    int* oneTwoList = oneTwoInteractions_.getPairList();
901 >    int* oneThreeList = oneThreeInteractions_.getPairList();
902 >    int* oneFourList = oneFourInteractions_.getPairList();
903  
904 < #ifdef IS_MPI
904 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
905 >                   &nExclude, excludeList,
906 >                   &nOneTwo, oneTwoList,
907 >                   &nOneThree, oneThreeList,
908 >                   &nOneFour, oneFourList,
909 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
910 >                   &fortranGlobalGroupMembership[0], &isError);
911 >    
912 >    if( isError ){
913 >      
914 >      sprintf( painCave.errMsg,
915 >               "There was an error setting the simulation information in fortran.\n" );
916 >      painCave.isFatal = 1;
917 >      painCave.severity = OPENMD_ERROR;
918 >      simError();
919 >    }
920 >    
921 >    
922      sprintf( checkPointMsg,
923 <       "succesfully sent the simulation information to fortran.\n");
924 <    MPIcheckPoint();
925 < #endif // is_mpi
926 < }
923 >             "succesfully sent the simulation information to fortran.\n");
924 >    
925 >    errorCheckPoint();
926 >    
927 >    // Setup number of neighbors in neighbor list if present
928 >    if (simParams_->haveNeighborListNeighbors()) {
929 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
930 >      setNeighbors(&nlistNeighbors);
931 >    }
932 >  
933  
934 +  }
935  
936 < #ifdef IS_MPI
937 < void SimInfo::setupFortranParallel() {
938 <    
936 >
937 >  void SimInfo::setupFortranParallel() {
938 > #ifdef IS_MPI    
939      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
940 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 <    std::vector<int> localToGlobalCutoffGroupIndex;
940 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 >    vector<int> localToGlobalCutoffGroupIndex;
942      SimInfo::MoleculeIterator mi;
943      Molecule::AtomIterator ai;
944      Molecule::CutoffGroupIterator ci;
# Line 689 | Line 950 | void SimInfo::setupFortranParallel() {
950  
951      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
952  
953 <        //local index(index in DataStorge) of atom is important
954 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
955 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
956 <        }
953 >      //local index(index in DataStorge) of atom is important
954 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
955 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
956 >      }
957  
958 <        //local index of cutoff group is trivial, it only depends on the order of travesing
959 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
960 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
961 <        }        
958 >      //local index of cutoff group is trivial, it only depends on the order of travesing
959 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
960 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
961 >      }        
962          
963      }
964  
# Line 717 | Line 978 | void SimInfo::setupFortranParallel() {
978                      &localToGlobalCutoffGroupIndex[0], &isError);
979  
980      if (isError) {
981 <        sprintf(painCave.errMsg,
982 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
983 <        painCave.isFatal = 1;
984 <        simError();
981 >      sprintf(painCave.errMsg,
982 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
983 >      painCave.isFatal = 1;
984 >      simError();
985      }
986  
987      sprintf(checkPointMsg, " mpiRefresh successful.\n");
988 <    MPIcheckPoint();
988 >    errorCheckPoint();
989  
729
730 }
731
990   #endif
991 +  }
992  
734 double SimInfo::calcMaxCutoffRadius() {
993  
994 +  void SimInfo::setupSwitchingFunction() {    
995 +    int ft = CUBIC;
996 +    
997 +    if (simParams_->haveSwitchingFunctionType()) {
998 +      string funcType = simParams_->getSwitchingFunctionType();
999 +      toUpper(funcType);
1000 +      if (funcType == "CUBIC") {
1001 +        ft = CUBIC;
1002 +      } else {
1003 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1004 +          ft = FIFTH_ORDER_POLY;
1005 +        } else {
1006 +          // throw error        
1007 +          sprintf( painCave.errMsg,
1008 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1009 +          painCave.isFatal = 1;
1010 +          simError();
1011 +        }          
1012 +      }
1013 +    }
1014  
1015 <    std::set<AtomType*> atomTypes;
1016 <    std::set<AtomType*>::iterator i;
739 <    std::vector<double> cutoffRadius;
1015 >    // send switching function notification to switcheroo
1016 >    setFunctionType(&ft);
1017  
1018 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
1018 >  }
1019  
1020 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
747 <    }
1020 >  void SimInfo::setupAccumulateBoxDipole() {    
1021  
1022 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
1023 < #ifdef IS_MPI
1024 <    //pick the max cutoff radius among the processors
1025 < #endif
1022 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1023 >    if ( simParams_->haveAccumulateBoxDipole() )
1024 >      if ( simParams_->getAccumulateBoxDipole() ) {
1025 >        calcBoxDipole_ = true;
1026 >      }
1027  
1028 <    return maxCutoffRadius;
755 < }
1028 >  }
1029  
1030 < void SimInfo::getCutoff(double& rcut, double& rsw) {
758 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut_ = 15.0;
769 <        } else{
770 <            rcut_ = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw_ = 0.95 * rcut_;
781 <        } else{
782 <            rsw_ = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut_ = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut_ = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw_  = simParams_->getRsw();
798 <        } else {
799 <            rsw_ = rcut_;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
1030 >  void SimInfo::addProperty(GenericData* genData) {
1031      properties_.addProperty(genData);  
1032 < }
1032 >  }
1033  
1034 < void SimInfo::removeProperty(const std::string& propName) {
1034 >  void SimInfo::removeProperty(const string& propName) {
1035      properties_.removeProperty(propName);  
1036 < }
1036 >  }
1037  
1038 < void SimInfo::clearProperties() {
1038 >  void SimInfo::clearProperties() {
1039      properties_.clearProperties();
1040 < }
1040 >  }
1041  
1042 < std::vector<std::string> SimInfo::getPropertyNames() {
1042 >  vector<string> SimInfo::getPropertyNames() {
1043      return properties_.getPropertyNames();  
1044 < }
1044 >  }
1045        
1046 < std::vector<GenericData*> SimInfo::getProperties() {
1046 >  vector<GenericData*> SimInfo::getProperties() {
1047      return properties_.getProperties();
1048 < }
1048 >  }
1049  
1050 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1050 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1051      return properties_.getPropertyByName(propName);
1052 < }
1052 >  }
1053  
1054 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1054 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1055 >    if (sman_ == sman) {
1056 >      return;
1057 >    }    
1058 >    delete sman_;
1059      sman_ = sman;
1060  
1061      Molecule* mol;
# Line 846 | Line 1067 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1067  
1068      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1069          
1070 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1071 <            atom->setSnapshotManager(sman_);
1072 <        }
1070 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1071 >        atom->setSnapshotManager(sman_);
1072 >      }
1073          
1074 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1075 <            rb->setSnapshotManager(sman_);
1076 <        }
1074 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1075 >        rb->setSnapshotManager(sman_);
1076 >      }
1077      }    
1078      
1079 < }
1079 >  }
1080  
1081 < Vector3d SimInfo::getComVel(){
1081 >  Vector3d SimInfo::getComVel(){
1082      SimInfo::MoleculeIterator i;
1083      Molecule* mol;
1084  
1085      Vector3d comVel(0.0);
1086 <    double totalMass = 0.0;
1086 >    RealType totalMass = 0.0;
1087      
1088  
1089      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1090 <        double mass = mol->getMass();
1091 <        totalMass += mass;
1092 <        comVel += mass * mol->getComVel();
1090 >      RealType mass = mol->getMass();
1091 >      totalMass += mass;
1092 >      comVel += mass * mol->getComVel();
1093      }  
1094  
1095   #ifdef IS_MPI
1096 <    double tmpMass = totalMass;
1096 >    RealType tmpMass = totalMass;
1097      Vector3d tmpComVel(comVel);    
1098 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1099 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1098 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1100   #endif
1101  
1102      comVel /= totalMass;
1103  
1104      return comVel;
1105 < }
1105 >  }
1106  
1107 < Vector3d SimInfo::getCom(){
1107 >  Vector3d SimInfo::getCom(){
1108      SimInfo::MoleculeIterator i;
1109      Molecule* mol;
1110  
1111      Vector3d com(0.0);
1112 <    double totalMass = 0.0;
1112 >    RealType totalMass = 0.0;
1113      
1114      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115 <        double mass = mol->getMass();
1116 <        totalMass += mass;
1117 <        com += mass * mol->getCom();
1115 >      RealType mass = mol->getMass();
1116 >      totalMass += mass;
1117 >      com += mass * mol->getCom();
1118      }  
1119  
1120   #ifdef IS_MPI
1121 <    double tmpMass = totalMass;
1121 >    RealType tmpMass = totalMass;
1122      Vector3d tmpCom(com);    
1123 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1124 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1123 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1125   #endif
1126  
1127      com /= totalMass;
1128  
1129      return com;
1130  
1131 < }        
1131 >  }        
1132  
1133 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1133 >  ostream& operator <<(ostream& o, SimInfo& info) {
1134  
1135      return o;
1136 < }
1136 >  }
1137 >  
1138 >  
1139 >   /*
1140 >   Returns center of mass and center of mass velocity in one function call.
1141 >   */
1142 >  
1143 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1144 >      SimInfo::MoleculeIterator i;
1145 >      Molecule* mol;
1146 >      
1147 >    
1148 >      RealType totalMass = 0.0;
1149 >    
1150  
1151 < }//end namespace oopse
1151 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1152 >         RealType mass = mol->getMass();
1153 >         totalMass += mass;
1154 >         com += mass * mol->getCom();
1155 >         comVel += mass * mol->getComVel();          
1156 >      }  
1157 >      
1158 > #ifdef IS_MPI
1159 >      RealType tmpMass = totalMass;
1160 >      Vector3d tmpCom(com);  
1161 >      Vector3d tmpComVel(comVel);
1162 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1165 > #endif
1166 >      
1167 >      com /= totalMass;
1168 >      comVel /= totalMass;
1169 >   }        
1170 >  
1171 >   /*
1172 >   Return intertia tensor for entire system and angular momentum Vector.
1173  
1174 +
1175 +       [  Ixx -Ixy  -Ixz ]
1176 +    J =| -Iyx  Iyy  -Iyz |
1177 +       [ -Izx -Iyz   Izz ]
1178 +    */
1179 +
1180 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1181 +      
1182 +
1183 +      RealType xx = 0.0;
1184 +      RealType yy = 0.0;
1185 +      RealType zz = 0.0;
1186 +      RealType xy = 0.0;
1187 +      RealType xz = 0.0;
1188 +      RealType yz = 0.0;
1189 +      Vector3d com(0.0);
1190 +      Vector3d comVel(0.0);
1191 +      
1192 +      getComAll(com, comVel);
1193 +      
1194 +      SimInfo::MoleculeIterator i;
1195 +      Molecule* mol;
1196 +      
1197 +      Vector3d thisq(0.0);
1198 +      Vector3d thisv(0.0);
1199 +
1200 +      RealType thisMass = 0.0;
1201 +    
1202 +      
1203 +      
1204 +  
1205 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1206 +        
1207 +         thisq = mol->getCom()-com;
1208 +         thisv = mol->getComVel()-comVel;
1209 +         thisMass = mol->getMass();
1210 +         // Compute moment of intertia coefficients.
1211 +         xx += thisq[0]*thisq[0]*thisMass;
1212 +         yy += thisq[1]*thisq[1]*thisMass;
1213 +         zz += thisq[2]*thisq[2]*thisMass;
1214 +        
1215 +         // compute products of intertia
1216 +         xy += thisq[0]*thisq[1]*thisMass;
1217 +         xz += thisq[0]*thisq[2]*thisMass;
1218 +         yz += thisq[1]*thisq[2]*thisMass;
1219 +            
1220 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1221 +            
1222 +      }  
1223 +      
1224 +      
1225 +      inertiaTensor(0,0) = yy + zz;
1226 +      inertiaTensor(0,1) = -xy;
1227 +      inertiaTensor(0,2) = -xz;
1228 +      inertiaTensor(1,0) = -xy;
1229 +      inertiaTensor(1,1) = xx + zz;
1230 +      inertiaTensor(1,2) = -yz;
1231 +      inertiaTensor(2,0) = -xz;
1232 +      inertiaTensor(2,1) = -yz;
1233 +      inertiaTensor(2,2) = xx + yy;
1234 +      
1235 + #ifdef IS_MPI
1236 +      Mat3x3d tmpI(inertiaTensor);
1237 +      Vector3d tmpAngMom;
1238 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1240 + #endif
1241 +              
1242 +      return;
1243 +   }
1244 +
1245 +   //Returns the angular momentum of the system
1246 +   Vector3d SimInfo::getAngularMomentum(){
1247 +      
1248 +      Vector3d com(0.0);
1249 +      Vector3d comVel(0.0);
1250 +      Vector3d angularMomentum(0.0);
1251 +      
1252 +      getComAll(com,comVel);
1253 +      
1254 +      SimInfo::MoleculeIterator i;
1255 +      Molecule* mol;
1256 +      
1257 +      Vector3d thisr(0.0);
1258 +      Vector3d thisp(0.0);
1259 +      
1260 +      RealType thisMass;
1261 +      
1262 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1263 +        thisMass = mol->getMass();
1264 +        thisr = mol->getCom()-com;
1265 +        thisp = (mol->getComVel()-comVel)*thisMass;
1266 +        
1267 +        angularMomentum += cross( thisr, thisp );
1268 +        
1269 +      }  
1270 +      
1271 + #ifdef IS_MPI
1272 +      Vector3d tmpAngMom;
1273 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1274 + #endif
1275 +      
1276 +      return angularMomentum;
1277 +   }
1278 +  
1279 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1280 +    return IOIndexToIntegrableObject.at(index);
1281 +  }
1282 +  
1283 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1284 +    IOIndexToIntegrableObject= v;
1285 +  }
1286 +
1287 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1288 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1289 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1290 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1291 +  */
1292 +  void SimInfo::getGyrationalVolume(RealType &volume){
1293 +    Mat3x3d intTensor;
1294 +    RealType det;
1295 +    Vector3d dummyAngMom;
1296 +    RealType sysconstants;
1297 +    RealType geomCnst;
1298 +
1299 +    geomCnst = 3.0/2.0;
1300 +    /* Get the inertial tensor and angular momentum for free*/
1301 +    getInertiaTensor(intTensor,dummyAngMom);
1302 +    
1303 +    det = intTensor.determinant();
1304 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1305 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1306 +    return;
1307 +  }
1308 +
1309 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1310 +    Mat3x3d intTensor;
1311 +    Vector3d dummyAngMom;
1312 +    RealType sysconstants;
1313 +    RealType geomCnst;
1314 +
1315 +    geomCnst = 3.0/2.0;
1316 +    /* Get the inertial tensor and angular momentum for free*/
1317 +    getInertiaTensor(intTensor,dummyAngMom);
1318 +    
1319 +    detI = intTensor.determinant();
1320 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1321 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1322 +    return;
1323 +  }
1324 + /*
1325 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1326 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1327 +      sdByGlobalIndex_ = v;
1328 +    }
1329 +
1330 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1331 +      //assert(index < nAtoms_ + nRigidBodies_);
1332 +      return sdByGlobalIndex_.at(index);
1333 +    }  
1334 + */  
1335 +  int SimInfo::getNGlobalConstraints() {
1336 +    int nGlobalConstraints;
1337 + #ifdef IS_MPI
1338 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1339 +                  MPI_COMM_WORLD);    
1340 + #else
1341 +    nGlobalConstraints =  nConstraints_;
1342 + #endif
1343 +    return nGlobalConstraints;
1344 +  }
1345 +
1346 + }//end namespace OpenMD
1347 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 326 by tim, Sun Feb 13 20:05:42 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines