ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1528 by gezelter, Fri Dec 17 20:11:05 2010 UTC vs.
Revision 1668 by gezelter, Fri Jan 6 19:03:05 2012 UTC

# Line 36 | Line 36
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37   * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   /**
# Line 54 | Line 55
55   #include "math/Vector3.hpp"
56   #include "primitives/Molecule.hpp"
57   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
60 #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62   #include "UseTheForce/ForceField.hpp"
63 < #include "nonbonded/InteractionManager.hpp"
68 <
69 <
63 > #include "nonbonded/SwitchingFunction.hpp"
64   #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
65 > #include <mpi.h>
66 > #endif
67  
68   using namespace std;
69   namespace OpenMD {
# Line 82 | Line 75 | namespace OpenMD {
75      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
76      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
77      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
78 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
78 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
79      calcBoxDipole_(false), useAtomicVirial_(true) {    
80      
81      MoleculeStamp* molStamp;
# Line 136 | Line 129 | namespace OpenMD {
129      //equal to the total number of atoms minus number of atoms belong to
130      //cutoff group defined in meta-data file plus the number of cutoff
131      //groups defined in meta-data file
132 +
133      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
134      
135      //every free atom (atom does not belong to rigid bodies) is an
# Line 278 | Line 272 | namespace OpenMD {
272      fdf_ = fdf_local;
273   #endif
274      return fdf_;
275 +  }
276 +  
277 +  unsigned int SimInfo::getNLocalCutoffGroups(){
278 +    int nLocalCutoffAtoms = 0;
279 +    Molecule* mol;
280 +    MoleculeIterator mi;
281 +    CutoffGroup* cg;
282 +    Molecule::CutoffGroupIterator ci;
283 +    
284 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
285 +      
286 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
287 +           cg = mol->nextCutoffGroup(ci)) {
288 +        nLocalCutoffAtoms += cg->getNumAtom();
289 +        
290 +      }        
291 +    }
292 +    
293 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
294    }
295      
296    void SimInfo::calcNdfRaw() {
# Line 655 | Line 668 | namespace OpenMD {
668      moleculeStamps_.push_back(molStamp);
669      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
670    }
658
659  void SimInfo::update() {
671  
661    setupSimType();
662    setupCutoffRadius();
663    setupSwitchingRadius();
664    setupCutoffMethod();
665    setupSkinThickness();
666    setupSwitchingFunction();
667    setupAccumulateBoxDipole();
672  
673 < #ifdef IS_MPI
674 <    setupFortranParallel();
675 < #endif
676 <    setupFortranSim();
677 <    fortranInitialized_ = true;
678 <
673 >  /**
674 >   * update
675 >   *
676 >   *  Performs the global checks and variable settings after the
677 >   *  objects have been created.
678 >   *
679 >   */
680 >  void SimInfo::update() {  
681 >    setupSimVariables();
682      calcNdf();
683      calcNdfRaw();
684      calcNdfTrans();
685    }
686    
687 +  /**
688 +   * getSimulatedAtomTypes
689 +   *
690 +   * Returns an STL set of AtomType* that are actually present in this
691 +   * simulation.  Must query all processors to assemble this information.
692 +   *
693 +   */
694    set<AtomType*> SimInfo::getSimulatedAtomTypes() {
695      SimInfo::MoleculeIterator mi;
696      Molecule* mol;
# Line 685 | Line 699 | namespace OpenMD {
699      set<AtomType*> atomTypes;
700      
701      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
702 <      
703 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
702 >      for(atom = mol->beginAtom(ai); atom != NULL;
703 >          atom = mol->nextAtom(ai)) {
704          atomTypes.insert(atom->getAtomType());
705 <      }
706 <      
693 <    }
705 >      }      
706 >    }    
707      
708 <    return atomTypes;        
696 <  }
708 > #ifdef IS_MPI
709  
710 <  /**
711 <   * setupCutoffRadius
700 <   *
701 <   *  If the cutoffRadius was explicitly set, use that value.
702 <   *  If the cutoffRadius was not explicitly set:
703 <   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
704 <   *      No electrostatic atoms?  Poll the atom types present in the
705 <   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
706 <   *      Use the maximum suggested value that was found.
707 <   */
708 <  void SimInfo::setupCutoffRadius() {
710 >    // loop over the found atom types on this processor, and add their
711 >    // numerical idents to a vector:
712      
713 <    if (simParams_->haveCutoffRadius()) {
714 <      cutoffRadius_ = simParams_->getCutoffRadius();
715 <    } else {      
716 <      if (usesElectrostaticAtoms_) {
714 <        sprintf(painCave.errMsg,
715 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
716 <                "\tOpenMD will use a default value of 12.0 angstroms"
717 <                "\tfor the cutoffRadius.\n");
718 <        painCave.isFatal = 0;
719 <        simError();
720 <        cutoffRadius_ = 12.0;
721 <      } else {
722 <        RealType thisCut;
723 <        set<AtomType*>::iterator i;
724 <        set<AtomType*> atomTypes;
725 <        atomTypes = getSimulatedAtomTypes();        
726 <        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
727 <          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
728 <          cutoffRadius_ = max(thisCut, cutoffRadius_);
729 <        }
730 <        sprintf(painCave.errMsg,
731 <                "SimInfo Warning: No value was set for the cutoffRadius.\n"
732 <                "\tOpenMD will use %lf angstroms.\n",
733 <                cutoffRadius_);
734 <        painCave.isFatal = 0;
735 <        simError();
736 <      }            
737 <    }
713 >    vector<int> foundTypes;
714 >    set<AtomType*>::iterator i;
715 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
716 >      foundTypes.push_back( (*i)->getIdent() );
717  
718 <    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
719 <  }
718 >    // count_local holds the number of found types on this processor
719 >    int count_local = foundTypes.size();
720 >
721 >    int nproc = MPI::COMM_WORLD.Get_size();
722 >
723 >    // we need arrays to hold the counts and displacement vectors for
724 >    // all processors
725 >    vector<int> counts(nproc, 0);
726 >    vector<int> disps(nproc, 0);
727 >
728 >    // fill the counts array
729 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
730 >                              1, MPI::INT);
731    
732 <  /**
733 <   * setupSwitchingRadius
734 <   *
735 <   *  If the switchingRadius was explicitly set, use that value (but check it)
736 <   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
737 <   */
738 <  void SimInfo::setupSwitchingRadius() {
732 >    // use the processor counts to compute the displacement array
733 >    disps[0] = 0;    
734 >    int totalCount = counts[0];
735 >    for (int iproc = 1; iproc < nproc; iproc++) {
736 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
737 >      totalCount += counts[iproc];
738 >    }
739 >
740 >    // we need a (possibly redundant) set of all found types:
741 >    vector<int> ftGlobal(totalCount);
742      
743 <    if (simParams_->haveSwitchingRadius()) {
744 <      switchingRadius_ = simParams_->getSwitchingRadius();
745 <      if (switchingRadius_ > cutoffRadius_) {        
746 <        sprintf(painCave.errMsg,
754 <                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
755 <                switchingRadius_, cutoffRadius_);
756 <        painCave.isFatal = 1;
757 <        simError();
743 >    // now spray out the foundTypes to all the other processors:    
744 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
745 >                               &ftGlobal[0], &counts[0], &disps[0],
746 >                               MPI::INT);
747  
748 <      }
760 <    } else {      
761 <      switchingRadius_ = 0.85 * cutoffRadius_;
762 <      sprintf(painCave.errMsg,
763 <              "SimInfo Warning: No value was set for the switchingRadius.\n"
764 <              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
765 <              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
766 <      painCave.isFatal = 0;
767 <      simError();
768 <    }            
769 <    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
770 <  }
748 >    vector<int>::iterator j;
749  
750 <  /**
751 <   * setupSkinThickness
752 <   *
753 <   *  If the skinThickness was explicitly set, use that value (but check it)
754 <   *  If the skinThickness was not explicitly set: use 1.0 angstroms
755 <   */
756 <  void SimInfo::setupSkinThickness() {    
757 <    if (simParams_->haveSkinThickness()) {
758 <      skinThickness_ = simParams_->getSkinThickness();
759 <    } else {      
760 <      skinThickness_ = 1.0;
761 <      sprintf(painCave.errMsg,
762 <              "SimInfo Warning: No value was set for the skinThickness.\n"
763 <              "\tOpenMD will use a default value of %f Angstroms\n"
764 <              "\tfor this simulation\n", skinThickness_);
765 <      painCave.isFatal = 0;
788 <      simError();
789 <    }            
750 >    // foundIdents is a stl set, so inserting an already found ident
751 >    // will have no effect.
752 >    set<int> foundIdents;
753 >
754 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
755 >      foundIdents.insert((*j));
756 >    
757 >    // now iterate over the foundIdents and get the actual atom types
758 >    // that correspond to these:
759 >    set<int>::iterator it;
760 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
761 >      atomTypes.insert( forceField_->getAtomType((*it)) );
762 >
763 > #endif
764 >
765 >    return atomTypes;        
766    }
767  
768 <  void SimInfo::setupSimType() {
768 >  void SimInfo::setupSimVariables() {
769 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
770 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
771 >    calcBoxDipole_ = false;
772 >    if ( simParams_->haveAccumulateBoxDipole() )
773 >      if ( simParams_->getAccumulateBoxDipole() ) {
774 >        calcBoxDipole_ = true;      
775 >      }
776 >    
777      set<AtomType*>::iterator i;
778      set<AtomType*> atomTypes;
779 <    atomTypes = getSimulatedAtomTypes();
796 <
797 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
798 <
779 >    atomTypes = getSimulatedAtomTypes();    
780      int usesElectrostatic = 0;
781      int usesMetallic = 0;
782      int usesDirectional = 0;
# Line 805 | Line 786 | namespace OpenMD {
786        usesMetallic |= (*i)->isMetal();
787        usesDirectional |= (*i)->isDirectional();
788      }
789 <
789 >    
790   #ifdef IS_MPI    
791      int temp;
792      temp = usesDirectional;
793      MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
794 <
794 >    
795      temp = usesMetallic;
796      MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
797 <
797 >    
798      temp = usesElectrostatic;
799      MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
800 + #else
801 +
802 +    usesDirectionalAtoms_ = usesDirectional;
803 +    usesMetallicAtoms_ = usesMetallic;
804 +    usesElectrostaticAtoms_ = usesElectrostatic;
805 +
806   #endif
807 <    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
808 <    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
809 <    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
810 <    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
824 <    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
825 <    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
807 >    
808 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
809 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
810 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
811    }
812  
813 <  void SimInfo::setupFortranSim() {
814 <    int isError;
815 <    int nExclude, nOneTwo, nOneThree, nOneFour;
816 <    vector<int> fortranGlobalGroupMembership;
813 >
814 >  vector<int> SimInfo::getGlobalAtomIndices() {
815 >    SimInfo::MoleculeIterator mi;
816 >    Molecule* mol;
817 >    Molecule::AtomIterator ai;
818 >    Atom* atom;
819 >
820 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
821      
822 <    notifyFortranSkinThickness(&skinThickness_);
822 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
823 >      
824 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
825 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
826 >      }
827 >    }
828 >    return GlobalAtomIndices;
829 >  }
830  
835    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
836    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
837    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
831  
832 <    isError = 0;
832 >  vector<int> SimInfo::getGlobalGroupIndices() {
833 >    SimInfo::MoleculeIterator mi;
834 >    Molecule* mol;
835 >    Molecule::CutoffGroupIterator ci;
836 >    CutoffGroup* cg;
837  
838 <    //globalGroupMembership_ is filled by SimCreator    
839 <    for (int i = 0; i < nGlobalAtoms_; i++) {
840 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
838 >    vector<int> GlobalGroupIndices;
839 >    
840 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
841 >      
842 >      //local index of cutoff group is trivial, it only depends on the
843 >      //order of travesing
844 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
845 >           cg = mol->nextCutoffGroup(ci)) {
846 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
847 >      }        
848      }
849 +    return GlobalGroupIndices;
850 +  }
851  
852 +
853 +  void SimInfo::prepareTopology() {
854 +    int nExclude, nOneTwo, nOneThree, nOneFour;
855 +
856      //calculate mass ratio of cutoff group
847    vector<RealType> mfact;
857      SimInfo::MoleculeIterator mi;
858      Molecule* mol;
859      Molecule::CutoffGroupIterator ci;
# Line 853 | Line 862 | namespace OpenMD {
862      Atom* atom;
863      RealType totalMass;
864  
865 <    //to avoid memory reallocation, reserve enough space for mfact
866 <    mfact.reserve(getNCutoffGroups());
865 >    /**
866 >     * The mass factor is the relative mass of an atom to the total
867 >     * mass of the cutoff group it belongs to.  By default, all atoms
868 >     * are their own cutoff groups, and therefore have mass factors of
869 >     * 1.  We need some special handling for massless atoms, which
870 >     * will be treated as carrying the entire mass of the cutoff
871 >     * group.
872 >     */
873 >    massFactors_.clear();
874 >    massFactors_.resize(getNAtoms(), 1.0);
875      
876      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
877 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
877 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
878 >           cg = mol->nextCutoffGroup(ci)) {
879  
880          totalMass = cg->getMass();
881          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
882            // Check for massless groups - set mfact to 1 if true
883 <          if (totalMass != 0)
884 <            mfact.push_back(atom->getMass()/totalMass);
883 >          if (totalMass != 0)
884 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
885            else
886 <            mfact.push_back( 1.0 );
886 >            massFactors_[atom->getLocalIndex()] = 1.0;
887          }
888        }      
889      }
890  
891 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
874 <    vector<int> identArray;
891 >    // Build the identArray_
892  
893 <    //to avoid memory reallocation, reserve enough space identArray
894 <    identArray.reserve(getNAtoms());
878 <    
893 >    identArray_.clear();
894 >    identArray_.reserve(getNAtoms());    
895      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
896        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
897 <        identArray.push_back(atom->getIdent());
897 >        identArray_.push_back(atom->getIdent());
898        }
899      }    
884
885    //fill molMembershipArray
886    //molMembershipArray is filled by SimCreator    
887    vector<int> molMembershipArray(nGlobalAtoms_);
888    for (int i = 0; i < nGlobalAtoms_; i++) {
889      molMembershipArray[i] = globalMolMembership_[i] + 1;
890    }
900      
901 <    //setup fortran simulation
901 >    //scan topology
902  
903      nExclude = excludedInteractions_.getSize();
904      nOneTwo = oneTwoInteractions_.getSize();
# Line 901 | Line 910 | namespace OpenMD {
910      int* oneThreeList = oneThreeInteractions_.getPairList();
911      int* oneFourList = oneFourInteractions_.getPairList();
912  
913 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
905 <                   &nExclude, excludeList,
906 <                   &nOneTwo, oneTwoList,
907 <                   &nOneThree, oneThreeList,
908 <                   &nOneFour, oneFourList,
909 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
910 <                   &fortranGlobalGroupMembership[0], &isError);
911 <    
912 <    if( isError ){
913 <      
914 <      sprintf( painCave.errMsg,
915 <               "There was an error setting the simulation information in fortran.\n" );
916 <      painCave.isFatal = 1;
917 <      painCave.severity = OPENMD_ERROR;
918 <      simError();
919 <    }
920 <    
921 <    
922 <    sprintf( checkPointMsg,
923 <             "succesfully sent the simulation information to fortran.\n");
924 <    
925 <    errorCheckPoint();
926 <    
927 <    // Setup number of neighbors in neighbor list if present
928 <    if (simParams_->haveNeighborListNeighbors()) {
929 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
930 <      setNeighbors(&nlistNeighbors);
931 <    }
932 <  
933 <
934 <  }
935 <
936 <
937 <  void SimInfo::setupFortranParallel() {
938 < #ifdef IS_MPI    
939 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
940 <    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
941 <    vector<int> localToGlobalCutoffGroupIndex;
942 <    SimInfo::MoleculeIterator mi;
943 <    Molecule::AtomIterator ai;
944 <    Molecule::CutoffGroupIterator ci;
945 <    Molecule* mol;
946 <    Atom* atom;
947 <    CutoffGroup* cg;
948 <    mpiSimData parallelData;
949 <    int isError;
950 <
951 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
952 <
953 <      //local index(index in DataStorge) of atom is important
954 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
955 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
956 <      }
957 <
958 <      //local index of cutoff group is trivial, it only depends on the order of travesing
959 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
960 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
961 <      }        
962 <        
963 <    }
964 <
965 <    //fill up mpiSimData struct
966 <    parallelData.nMolGlobal = getNGlobalMolecules();
967 <    parallelData.nMolLocal = getNMolecules();
968 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
969 <    parallelData.nAtomsLocal = getNAtoms();
970 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
971 <    parallelData.nGroupsLocal = getNCutoffGroups();
972 <    parallelData.myNode = worldRank;
973 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
974 <
975 <    //pass mpiSimData struct and index arrays to fortran
976 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
977 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
978 <                    &localToGlobalCutoffGroupIndex[0], &isError);
979 <
980 <    if (isError) {
981 <      sprintf(painCave.errMsg,
982 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
983 <      painCave.isFatal = 1;
984 <      simError();
985 <    }
986 <
987 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
988 <    errorCheckPoint();
989 <
990 < #endif
913 >    topologyDone_ = true;
914    }
915  
993
994  void SimInfo::setupSwitchingFunction() {    
995    int ft = CUBIC;
996    
997    if (simParams_->haveSwitchingFunctionType()) {
998      string funcType = simParams_->getSwitchingFunctionType();
999      toUpper(funcType);
1000      if (funcType == "CUBIC") {
1001        ft = CUBIC;
1002      } else {
1003        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1004          ft = FIFTH_ORDER_POLY;
1005        } else {
1006          // throw error        
1007          sprintf( painCave.errMsg,
1008                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1009          painCave.isFatal = 1;
1010          simError();
1011        }          
1012      }
1013    }
1014
1015    // send switching function notification to switcheroo
1016    setFunctionType(&ft);
1017
1018  }
1019
1020  void SimInfo::setupAccumulateBoxDipole() {    
1021
1022    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1023    if ( simParams_->haveAccumulateBoxDipole() )
1024      if ( simParams_->getAccumulateBoxDipole() ) {
1025        calcBoxDipole_ = true;
1026      }
1027
1028  }
1029
916    void SimInfo::addProperty(GenericData* genData) {
917      properties_.addProperty(genData);  
918    }
# Line 1061 | Line 947 | namespace OpenMD {
947      Molecule* mol;
948      RigidBody* rb;
949      Atom* atom;
950 +    CutoffGroup* cg;
951      SimInfo::MoleculeIterator mi;
952      Molecule::RigidBodyIterator rbIter;
953 <    Molecule::AtomIterator atomIter;;
953 >    Molecule::AtomIterator atomIter;
954 >    Molecule::CutoffGroupIterator cgIter;
955  
956      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
957          
# Line 1074 | Line 962 | namespace OpenMD {
962        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
963          rb->setSnapshotManager(sman_);
964        }
965 +
966 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
967 +        cg->setSnapshotManager(sman_);
968 +      }
969      }    
970      
971    }
# Line 1302 | Line 1194 | namespace OpenMD {
1194      
1195      det = intTensor.determinant();
1196      sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1197 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1197 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
1198      return;
1199    }
1200  
# Line 1318 | Line 1210 | namespace OpenMD {
1210      
1211      detI = intTensor.determinant();
1212      sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1213 <    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1213 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
1214      return;
1215    }
1216   /*

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines