54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
– |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
– |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
– |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
– |
#include "UseTheForce/doForces_interface.h" |
62 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
– |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
– |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 |
|
#include "utils/MemoryUtils.hpp" |
58 |
|
#include "utils/simError.h" |
59 |
|
#include "selection/SelectionManager.hpp" |
60 |
|
#include "io/ForceFieldOptions.hpp" |
61 |
|
#include "UseTheForce/ForceField.hpp" |
62 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
63 |
|
|
64 |
< |
|
72 |
< |
#ifdef IS_MPI |
73 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
74 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
75 |
< |
#endif |
76 |
< |
|
64 |
> |
using namespace std; |
65 |
|
namespace OpenMD { |
78 |
– |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
– |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
– |
std::set<int> result; |
81 |
– |
if (i != container.end()) { |
82 |
– |
result = i->second; |
83 |
– |
} |
84 |
– |
|
85 |
– |
return result; |
86 |
– |
} |
66 |
|
|
67 |
|
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
68 |
|
forceField_(ff), simParams_(simParams), |
72 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
73 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
74 |
|
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
75 |
< |
calcBoxDipole_(false), useAtomicVirial_(true) { |
76 |
< |
|
77 |
< |
|
78 |
< |
MoleculeStamp* molStamp; |
79 |
< |
int nMolWithSameStamp; |
80 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
81 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
82 |
< |
CutoffGroupStamp* cgStamp; |
83 |
< |
RigidBodyStamp* rbStamp; |
84 |
< |
int nRigidAtoms = 0; |
85 |
< |
|
86 |
< |
std::vector<Component*> components = simParams->getComponents(); |
75 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
76 |
> |
|
77 |
> |
MoleculeStamp* molStamp; |
78 |
> |
int nMolWithSameStamp; |
79 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
80 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
81 |
> |
CutoffGroupStamp* cgStamp; |
82 |
> |
RigidBodyStamp* rbStamp; |
83 |
> |
int nRigidAtoms = 0; |
84 |
> |
|
85 |
> |
vector<Component*> components = simParams->getComponents(); |
86 |
> |
|
87 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
88 |
> |
molStamp = (*i)->getMoleculeStamp(); |
89 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
90 |
|
|
91 |
< |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 |
< |
molStamp = (*i)->getMoleculeStamp(); |
93 |
< |
nMolWithSameStamp = (*i)->getNMol(); |
94 |
< |
|
95 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 |
< |
|
97 |
< |
//calculate atoms in molecules |
98 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 |
< |
|
100 |
< |
//calculate atoms in cutoff groups |
101 |
< |
int nAtomsInGroups = 0; |
102 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
121 |
< |
|
122 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
123 |
< |
cgStamp = molStamp->getCutoffGroupStamp(j); |
124 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
125 |
< |
} |
126 |
< |
|
127 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
128 |
< |
|
129 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
130 |
< |
|
131 |
< |
//calculate atoms in rigid bodies |
132 |
< |
int nAtomsInRigidBodies = 0; |
133 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
134 |
< |
|
135 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
136 |
< |
rbStamp = molStamp->getRigidBodyStamp(j); |
137 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
138 |
< |
} |
139 |
< |
|
140 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
141 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
142 |
< |
|
91 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
92 |
> |
|
93 |
> |
//calculate atoms in molecules |
94 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
95 |
> |
|
96 |
> |
//calculate atoms in cutoff groups |
97 |
> |
int nAtomsInGroups = 0; |
98 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
99 |
> |
|
100 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
101 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
102 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
103 |
|
} |
104 |
< |
|
105 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
106 |
< |
//group therefore the total number of cutoff groups in the system is |
107 |
< |
//equal to the total number of atoms minus number of atoms belong to |
108 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
109 |
< |
//groups defined in meta-data file |
110 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
111 |
< |
|
112 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
113 |
< |
//integrable object therefore the total number of integrable objects |
114 |
< |
//in the system is equal to the total number of atoms minus number of |
115 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
116 |
< |
//of rigid bodies defined in meta-data file |
117 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
118 |
< |
+ nGlobalRigidBodies_; |
119 |
< |
|
120 |
< |
nGlobalMols_ = molStampIds_.size(); |
161 |
< |
molToProcMap_.resize(nGlobalMols_); |
104 |
> |
|
105 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
106 |
> |
|
107 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
108 |
> |
|
109 |
> |
//calculate atoms in rigid bodies |
110 |
> |
int nAtomsInRigidBodies = 0; |
111 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
112 |
> |
|
113 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
114 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
115 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
116 |
> |
} |
117 |
> |
|
118 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
119 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
120 |
> |
|
121 |
|
} |
122 |
+ |
|
123 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
124 |
+ |
//group therefore the total number of cutoff groups in the system is |
125 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
126 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
+ |
//groups defined in meta-data file |
128 |
+ |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 |
+ |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 |
+ |
std::cerr << "nG = " << nGroups << "\n"; |
131 |
|
|
132 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
+ |
|
134 |
+ |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
135 |
+ |
|
136 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
137 |
+ |
//integrable object therefore the total number of integrable objects |
138 |
+ |
//in the system is equal to the total number of atoms minus number of |
139 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
140 |
+ |
//of rigid bodies defined in meta-data file |
141 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
142 |
+ |
+ nGlobalRigidBodies_; |
143 |
+ |
|
144 |
+ |
nGlobalMols_ = molStampIds_.size(); |
145 |
+ |
molToProcMap_.resize(nGlobalMols_); |
146 |
+ |
} |
147 |
+ |
|
148 |
|
SimInfo::~SimInfo() { |
149 |
< |
std::map<int, Molecule*>::iterator i; |
149 |
> |
map<int, Molecule*>::iterator i; |
150 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
151 |
|
delete i->second; |
152 |
|
} |
157 |
|
delete forceField_; |
158 |
|
} |
159 |
|
|
176 |
– |
int SimInfo::getNGlobalConstraints() { |
177 |
– |
int nGlobalConstraints; |
178 |
– |
#ifdef IS_MPI |
179 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
180 |
– |
MPI_COMM_WORLD); |
181 |
– |
#else |
182 |
– |
nGlobalConstraints = nConstraints_; |
183 |
– |
#endif |
184 |
– |
return nGlobalConstraints; |
185 |
– |
} |
160 |
|
|
161 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
162 |
|
MoleculeIterator i; |
163 |
< |
|
163 |
> |
|
164 |
|
i = molecules_.find(mol->getGlobalIndex()); |
165 |
|
if (i == molecules_.end() ) { |
166 |
< |
|
167 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
168 |
< |
|
166 |
> |
|
167 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
168 |
> |
|
169 |
|
nAtoms_ += mol->getNAtoms(); |
170 |
|
nBonds_ += mol->getNBonds(); |
171 |
|
nBends_ += mol->getNBends(); |
175 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
176 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
177 |
|
nConstraints_ += mol->getNConstraintPairs(); |
178 |
< |
|
178 |
> |
|
179 |
|
addInteractionPairs(mol); |
180 |
< |
|
180 |
> |
|
181 |
|
return true; |
182 |
|
} else { |
183 |
|
return false; |
184 |
|
} |
185 |
|
} |
186 |
< |
|
186 |
> |
|
187 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
188 |
|
MoleculeIterator i; |
189 |
|
i = molecules_.find(mol->getGlobalIndex()); |
211 |
|
} else { |
212 |
|
return false; |
213 |
|
} |
240 |
– |
|
241 |
– |
|
214 |
|
} |
215 |
|
|
216 |
|
|
228 |
|
void SimInfo::calcNdf() { |
229 |
|
int ndf_local; |
230 |
|
MoleculeIterator i; |
231 |
< |
std::vector<StuntDouble*>::iterator j; |
231 |
> |
vector<StuntDouble*>::iterator j; |
232 |
|
Molecule* mol; |
233 |
|
StuntDouble* integrableObject; |
234 |
|
|
279 |
|
int ndfRaw_local; |
280 |
|
|
281 |
|
MoleculeIterator i; |
282 |
< |
std::vector<StuntDouble*>::iterator j; |
282 |
> |
vector<StuntDouble*>::iterator j; |
283 |
|
Molecule* mol; |
284 |
|
StuntDouble* integrableObject; |
285 |
|
|
328 |
|
|
329 |
|
void SimInfo::addInteractionPairs(Molecule* mol) { |
330 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
331 |
< |
std::vector<Bond*>::iterator bondIter; |
332 |
< |
std::vector<Bend*>::iterator bendIter; |
333 |
< |
std::vector<Torsion*>::iterator torsionIter; |
334 |
< |
std::vector<Inversion*>::iterator inversionIter; |
331 |
> |
vector<Bond*>::iterator bondIter; |
332 |
> |
vector<Bend*>::iterator bendIter; |
333 |
> |
vector<Torsion*>::iterator torsionIter; |
334 |
> |
vector<Inversion*>::iterator inversionIter; |
335 |
|
Bond* bond; |
336 |
|
Bend* bend; |
337 |
|
Torsion* torsion; |
349 |
|
// always be excluded. These are done at the bottom of this |
350 |
|
// function. |
351 |
|
|
352 |
< |
std::map<int, std::set<int> > atomGroups; |
352 |
> |
map<int, set<int> > atomGroups; |
353 |
|
Molecule::RigidBodyIterator rbIter; |
354 |
|
RigidBody* rb; |
355 |
|
Molecule::IntegrableObjectIterator ii; |
361 |
|
|
362 |
|
if (integrableObject->isRigidBody()) { |
363 |
|
rb = static_cast<RigidBody*>(integrableObject); |
364 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
365 |
< |
std::set<int> rigidAtoms; |
364 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
365 |
> |
set<int> rigidAtoms; |
366 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
367 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
368 |
|
} |
369 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
370 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
370 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
371 |
|
} |
372 |
|
} else { |
373 |
< |
std::set<int> oneAtomSet; |
373 |
> |
set<int> oneAtomSet; |
374 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
375 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
375 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
376 |
|
} |
377 |
|
} |
378 |
|
|
475 |
|
|
476 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
477 |
|
rb = mol->nextRigidBody(rbIter)) { |
478 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
478 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
479 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
480 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
481 |
|
a = atoms[i]->getGlobalIndex(); |
489 |
|
|
490 |
|
void SimInfo::removeInteractionPairs(Molecule* mol) { |
491 |
|
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
492 |
< |
std::vector<Bond*>::iterator bondIter; |
493 |
< |
std::vector<Bend*>::iterator bendIter; |
494 |
< |
std::vector<Torsion*>::iterator torsionIter; |
495 |
< |
std::vector<Inversion*>::iterator inversionIter; |
492 |
> |
vector<Bond*>::iterator bondIter; |
493 |
> |
vector<Bend*>::iterator bendIter; |
494 |
> |
vector<Torsion*>::iterator torsionIter; |
495 |
> |
vector<Inversion*>::iterator inversionIter; |
496 |
|
Bond* bond; |
497 |
|
Bend* bend; |
498 |
|
Torsion* torsion; |
502 |
|
int c; |
503 |
|
int d; |
504 |
|
|
505 |
< |
std::map<int, std::set<int> > atomGroups; |
505 |
> |
map<int, set<int> > atomGroups; |
506 |
|
Molecule::RigidBodyIterator rbIter; |
507 |
|
RigidBody* rb; |
508 |
|
Molecule::IntegrableObjectIterator ii; |
514 |
|
|
515 |
|
if (integrableObject->isRigidBody()) { |
516 |
|
rb = static_cast<RigidBody*>(integrableObject); |
517 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
518 |
< |
std::set<int> rigidAtoms; |
517 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
518 |
> |
set<int> rigidAtoms; |
519 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
520 |
|
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
521 |
|
} |
522 |
|
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
523 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
523 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
524 |
|
} |
525 |
|
} else { |
526 |
< |
std::set<int> oneAtomSet; |
526 |
> |
set<int> oneAtomSet; |
527 |
|
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
528 |
< |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
528 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
529 |
|
} |
530 |
|
} |
531 |
|
|
628 |
|
|
629 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
630 |
|
rb = mol->nextRigidBody(rbIter)) { |
631 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
631 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
632 |
|
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
633 |
|
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
634 |
|
a = atoms[i]->getGlobalIndex(); |
651 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
652 |
|
} |
653 |
|
|
682 |
– |
void SimInfo::update() { |
654 |
|
|
655 |
< |
setupSimType(); |
656 |
< |
|
657 |
< |
#ifdef IS_MPI |
658 |
< |
setupFortranParallel(); |
659 |
< |
#endif |
660 |
< |
|
661 |
< |
setupFortranSim(); |
662 |
< |
|
663 |
< |
//setup fortran force field |
693 |
< |
/** @deprecate */ |
694 |
< |
int isError = 0; |
695 |
< |
|
696 |
< |
setupCutoff(); |
697 |
< |
|
698 |
< |
setupElectrostaticSummationMethod( isError ); |
699 |
< |
setupSwitchingFunction(); |
700 |
< |
setupAccumulateBoxDipole(); |
701 |
< |
|
702 |
< |
if(isError){ |
703 |
< |
sprintf( painCave.errMsg, |
704 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
705 |
< |
painCave.isFatal = 1; |
706 |
< |
simError(); |
707 |
< |
} |
708 |
< |
|
655 |
> |
/** |
656 |
> |
* update |
657 |
> |
* |
658 |
> |
* Performs the global checks and variable settings after the |
659 |
> |
* objects have been created. |
660 |
> |
* |
661 |
> |
*/ |
662 |
> |
void SimInfo::update() { |
663 |
> |
setupSimVariables(); |
664 |
|
calcNdf(); |
665 |
|
calcNdfRaw(); |
666 |
|
calcNdfTrans(); |
712 |
– |
|
713 |
– |
fortranInitialized_ = true; |
667 |
|
} |
668 |
< |
|
669 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
668 |
> |
|
669 |
> |
/** |
670 |
> |
* getSimulatedAtomTypes |
671 |
> |
* |
672 |
> |
* Returns an STL set of AtomType* that are actually present in this |
673 |
> |
* simulation. Must query all processors to assemble this information. |
674 |
> |
* |
675 |
> |
*/ |
676 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
677 |
|
SimInfo::MoleculeIterator mi; |
678 |
|
Molecule* mol; |
679 |
|
Molecule::AtomIterator ai; |
680 |
|
Atom* atom; |
681 |
< |
std::set<AtomType*> atomTypes; |
682 |
< |
|
683 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
724 |
< |
|
681 |
> |
set<AtomType*> atomTypes; |
682 |
> |
|
683 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
684 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
685 |
|
atomTypes.insert(atom->getAtomType()); |
686 |
< |
} |
687 |
< |
|
729 |
< |
} |
686 |
> |
} |
687 |
> |
} |
688 |
|
|
689 |
< |
return atomTypes; |
732 |
< |
} |
689 |
> |
#ifdef IS_MPI |
690 |
|
|
691 |
< |
void SimInfo::setupSimType() { |
692 |
< |
std::set<AtomType*>::iterator i; |
736 |
< |
std::set<AtomType*> atomTypes; |
737 |
< |
atomTypes = getUniqueAtomTypes(); |
738 |
< |
|
739 |
< |
int useLennardJones = 0; |
740 |
< |
int useElectrostatic = 0; |
741 |
< |
int useEAM = 0; |
742 |
< |
int useSC = 0; |
743 |
< |
int useCharge = 0; |
744 |
< |
int useDirectional = 0; |
745 |
< |
int useDipole = 0; |
746 |
< |
int useGayBerne = 0; |
747 |
< |
int useSticky = 0; |
748 |
< |
int useStickyPower = 0; |
749 |
< |
int useShape = 0; |
750 |
< |
int useFLARB = 0; //it is not in AtomType yet |
751 |
< |
int useDirectionalAtom = 0; |
752 |
< |
int useElectrostatics = 0; |
753 |
< |
//usePBC and useRF are from simParams |
754 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
755 |
< |
int useRF; |
756 |
< |
int useSF; |
757 |
< |
int useSP; |
758 |
< |
int useBoxDipole; |
691 |
> |
// loop over the found atom types on this processor, and add their |
692 |
> |
// numerical idents to a vector: |
693 |
|
|
694 |
< |
std::string myMethod; |
694 |
> |
vector<int> foundTypes; |
695 |
> |
set<AtomType*>::iterator i; |
696 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
697 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
698 |
|
|
699 |
< |
// set the useRF logical |
700 |
< |
useRF = 0; |
764 |
< |
useSF = 0; |
765 |
< |
useSP = 0; |
766 |
< |
useBoxDipole = 0; |
699 |
> |
// count_local holds the number of found types on this processor |
700 |
> |
int count_local = foundTypes.size(); |
701 |
|
|
702 |
+ |
// count holds the total number of found types on all processors |
703 |
+ |
// (some will be redundant with the ones found locally): |
704 |
+ |
int count; |
705 |
+ |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
706 |
|
|
707 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
708 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
709 |
< |
toUpper(myMethod); |
710 |
< |
if (myMethod == "REACTION_FIELD"){ |
711 |
< |
useRF = 1; |
712 |
< |
} else if (myMethod == "SHIFTED_FORCE"){ |
713 |
< |
useSF = 1; |
714 |
< |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
715 |
< |
useSP = 1; |
716 |
< |
} |
717 |
< |
} |
707 |
> |
// create a vector to hold the globally found types, and resize it: |
708 |
> |
vector<int> ftGlobal; |
709 |
> |
ftGlobal.resize(count); |
710 |
> |
vector<int> counts; |
711 |
> |
|
712 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
713 |
> |
counts.resize(nproc); |
714 |
> |
vector<int> disps; |
715 |
> |
disps.resize(nproc); |
716 |
> |
|
717 |
> |
// now spray out the foundTypes to all the other processors: |
718 |
|
|
719 |
< |
if (simParams_->haveAccumulateBoxDipole()) |
720 |
< |
if (simParams_->getAccumulateBoxDipole()) |
783 |
< |
useBoxDipole = 1; |
719 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
720 |
> |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
721 |
|
|
722 |
+ |
// foundIdents is a stl set, so inserting an already found ident |
723 |
+ |
// will have no effect. |
724 |
+ |
set<int> foundIdents; |
725 |
+ |
vector<int>::iterator j; |
726 |
+ |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
727 |
+ |
foundIdents.insert((*j)); |
728 |
+ |
|
729 |
+ |
// now iterate over the foundIdents and get the actual atom types |
730 |
+ |
// that correspond to these: |
731 |
+ |
set<int>::iterator it; |
732 |
+ |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
733 |
+ |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
734 |
+ |
|
735 |
+ |
#endif |
736 |
+ |
|
737 |
+ |
return atomTypes; |
738 |
+ |
} |
739 |
+ |
|
740 |
+ |
void SimInfo::setupSimVariables() { |
741 |
|
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
742 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
743 |
+ |
calcBoxDipole_ = false; |
744 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
745 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
746 |
+ |
calcBoxDipole_ = true; |
747 |
+ |
} |
748 |
|
|
749 |
+ |
set<AtomType*>::iterator i; |
750 |
+ |
set<AtomType*> atomTypes; |
751 |
+ |
atomTypes = getSimulatedAtomTypes(); |
752 |
+ |
int usesElectrostatic = 0; |
753 |
+ |
int usesMetallic = 0; |
754 |
+ |
int usesDirectional = 0; |
755 |
|
//loop over all of the atom types |
756 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
757 |
< |
useLennardJones |= (*i)->isLennardJones(); |
758 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
759 |
< |
useEAM |= (*i)->isEAM(); |
792 |
< |
useSC |= (*i)->isSC(); |
793 |
< |
useCharge |= (*i)->isCharge(); |
794 |
< |
useDirectional |= (*i)->isDirectional(); |
795 |
< |
useDipole |= (*i)->isDipole(); |
796 |
< |
useGayBerne |= (*i)->isGayBerne(); |
797 |
< |
useSticky |= (*i)->isSticky(); |
798 |
< |
useStickyPower |= (*i)->isStickyPower(); |
799 |
< |
useShape |= (*i)->isShape(); |
757 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
758 |
> |
usesMetallic |= (*i)->isMetal(); |
759 |
> |
usesDirectional |= (*i)->isDirectional(); |
760 |
|
} |
761 |
|
|
802 |
– |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
803 |
– |
useDirectionalAtom = 1; |
804 |
– |
} |
805 |
– |
|
806 |
– |
if (useCharge || useDipole) { |
807 |
– |
useElectrostatics = 1; |
808 |
– |
} |
809 |
– |
|
762 |
|
#ifdef IS_MPI |
763 |
|
int temp; |
764 |
+ |
temp = usesDirectional; |
765 |
+ |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
766 |
|
|
767 |
< |
temp = usePBC; |
768 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
767 |
> |
temp = usesMetallic; |
768 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
769 |
|
|
770 |
< |
temp = useDirectionalAtom; |
771 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
770 |
> |
temp = usesElectrostatic; |
771 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
772 |
> |
#endif |
773 |
> |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
774 |
> |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
775 |
> |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
776 |
> |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
777 |
> |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
778 |
> |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
779 |
> |
} |
780 |
|
|
819 |
– |
temp = useLennardJones; |
820 |
– |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
781 |
|
|
782 |
< |
temp = useElectrostatics; |
783 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
782 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
783 |
> |
SimInfo::MoleculeIterator mi; |
784 |
> |
Molecule* mol; |
785 |
> |
Molecule::AtomIterator ai; |
786 |
> |
Atom* atom; |
787 |
|
|
788 |
< |
temp = useCharge; |
826 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
827 |
< |
|
828 |
< |
temp = useDipole; |
829 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
830 |
< |
|
831 |
< |
temp = useSticky; |
832 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
833 |
< |
|
834 |
< |
temp = useStickyPower; |
835 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
788 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
789 |
|
|
790 |
< |
temp = useGayBerne; |
791 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
790 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
791 |
> |
|
792 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
793 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
794 |
> |
} |
795 |
> |
} |
796 |
> |
return GlobalAtomIndices; |
797 |
> |
} |
798 |
|
|
840 |
– |
temp = useEAM; |
841 |
– |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
799 |
|
|
800 |
< |
temp = useSC; |
801 |
< |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
802 |
< |
|
803 |
< |
temp = useShape; |
804 |
< |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
800 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
801 |
> |
SimInfo::MoleculeIterator mi; |
802 |
> |
Molecule* mol; |
803 |
> |
Molecule::CutoffGroupIterator ci; |
804 |
> |
CutoffGroup* cg; |
805 |
|
|
806 |
< |
temp = useFLARB; |
807 |
< |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
808 |
< |
|
809 |
< |
temp = useRF; |
810 |
< |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
811 |
< |
|
812 |
< |
temp = useSF; |
813 |
< |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
814 |
< |
|
815 |
< |
temp = useSP; |
816 |
< |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
817 |
< |
|
861 |
< |
temp = useBoxDipole; |
862 |
< |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 |
< |
|
864 |
< |
temp = useAtomicVirial_; |
865 |
< |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
866 |
< |
|
867 |
< |
#endif |
868 |
< |
|
869 |
< |
fInfo_.SIM_uses_PBC = usePBC; |
870 |
< |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
871 |
< |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
872 |
< |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
873 |
< |
fInfo_.SIM_uses_Charges = useCharge; |
874 |
< |
fInfo_.SIM_uses_Dipoles = useDipole; |
875 |
< |
fInfo_.SIM_uses_Sticky = useSticky; |
876 |
< |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
877 |
< |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
878 |
< |
fInfo_.SIM_uses_EAM = useEAM; |
879 |
< |
fInfo_.SIM_uses_SC = useSC; |
880 |
< |
fInfo_.SIM_uses_Shapes = useShape; |
881 |
< |
fInfo_.SIM_uses_FLARB = useFLARB; |
882 |
< |
fInfo_.SIM_uses_RF = useRF; |
883 |
< |
fInfo_.SIM_uses_SF = useSF; |
884 |
< |
fInfo_.SIM_uses_SP = useSP; |
885 |
< |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
886 |
< |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
806 |
> |
vector<int> GlobalGroupIndices; |
807 |
> |
|
808 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
809 |
> |
|
810 |
> |
//local index of cutoff group is trivial, it only depends on the |
811 |
> |
//order of travesing |
812 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
813 |
> |
cg = mol->nextCutoffGroup(ci)) { |
814 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
815 |
> |
} |
816 |
> |
} |
817 |
> |
return GlobalGroupIndices; |
818 |
|
} |
819 |
|
|
820 |
< |
void SimInfo::setupFortranSim() { |
820 |
> |
|
821 |
> |
void SimInfo::setupFortran() { |
822 |
|
int isError; |
823 |
|
int nExclude, nOneTwo, nOneThree, nOneFour; |
824 |
< |
std::vector<int> fortranGlobalGroupMembership; |
824 |
> |
vector<int> fortranGlobalGroupMembership; |
825 |
|
|
826 |
|
isError = 0; |
827 |
|
|
831 |
|
} |
832 |
|
|
833 |
|
//calculate mass ratio of cutoff group |
834 |
< |
std::vector<RealType> mfact; |
834 |
> |
vector<RealType> mfact; |
835 |
|
SimInfo::MoleculeIterator mi; |
836 |
|
Molecule* mol; |
837 |
|
Molecule::CutoffGroupIterator ci; |
857 |
|
} |
858 |
|
} |
859 |
|
|
860 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
929 |
< |
std::vector<int> identArray; |
860 |
> |
// Build the identArray_ |
861 |
|
|
862 |
< |
//to avoid memory reallocation, reserve enough space identArray |
863 |
< |
identArray.reserve(getNAtoms()); |
933 |
< |
|
862 |
> |
identArray_.clear(); |
863 |
> |
identArray_.reserve(getNAtoms()); |
864 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
865 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
866 |
< |
identArray.push_back(atom->getIdent()); |
866 |
> |
identArray_.push_back(atom->getIdent()); |
867 |
|
} |
868 |
|
} |
869 |
|
|
870 |
|
//fill molMembershipArray |
871 |
|
//molMembershipArray is filled by SimCreator |
872 |
< |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
872 |
> |
vector<int> molMembershipArray(nGlobalAtoms_); |
873 |
|
for (int i = 0; i < nGlobalAtoms_; i++) { |
874 |
|
molMembershipArray[i] = globalMolMembership_[i] + 1; |
875 |
|
} |
886 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
887 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
888 |
|
|
889 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
890 |
< |
&nExclude, excludeList, |
891 |
< |
&nOneTwo, oneTwoList, |
892 |
< |
&nOneThree, oneThreeList, |
893 |
< |
&nOneFour, oneFourList, |
894 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
895 |
< |
&fortranGlobalGroupMembership[0], &isError); |
889 |
> |
//setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
890 |
> |
// &nExclude, excludeList, |
891 |
> |
// &nOneTwo, oneTwoList, |
892 |
> |
// &nOneThree, oneThreeList, |
893 |
> |
// &nOneFour, oneFourList, |
894 |
> |
// &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
895 |
> |
// &fortranGlobalGroupMembership[0], &isError); |
896 |
|
|
897 |
< |
if( isError ){ |
898 |
< |
|
899 |
< |
sprintf( painCave.errMsg, |
900 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
901 |
< |
painCave.isFatal = 1; |
902 |
< |
painCave.severity = OPENMD_ERROR; |
903 |
< |
simError(); |
904 |
< |
} |
897 |
> |
// if( isError ){ |
898 |
> |
// |
899 |
> |
// sprintf( painCave.errMsg, |
900 |
> |
// "There was an error setting the simulation information in fortran.\n" ); |
901 |
> |
// painCave.isFatal = 1; |
902 |
> |
// painCave.severity = OPENMD_ERROR; |
903 |
> |
// simError(); |
904 |
> |
//} |
905 |
|
|
906 |
|
|
907 |
< |
sprintf( checkPointMsg, |
908 |
< |
"succesfully sent the simulation information to fortran.\n"); |
907 |
> |
// sprintf( checkPointMsg, |
908 |
> |
// "succesfully sent the simulation information to fortran.\n"); |
909 |
|
|
910 |
< |
errorCheckPoint(); |
910 |
> |
// errorCheckPoint(); |
911 |
|
|
912 |
|
// Setup number of neighbors in neighbor list if present |
913 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
914 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
915 |
< |
setNeighbors(&nlistNeighbors); |
916 |
< |
} |
913 |
> |
//if (simParams_->haveNeighborListNeighbors()) { |
914 |
> |
// int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
915 |
> |
// setNeighbors(&nlistNeighbors); |
916 |
> |
//} |
917 |
|
|
988 |
– |
|
989 |
– |
} |
990 |
– |
|
991 |
– |
|
992 |
– |
void SimInfo::setupFortranParallel() { |
918 |
|
#ifdef IS_MPI |
919 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
995 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
996 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
997 |
< |
SimInfo::MoleculeIterator mi; |
998 |
< |
Molecule::AtomIterator ai; |
999 |
< |
Molecule::CutoffGroupIterator ci; |
1000 |
< |
Molecule* mol; |
1001 |
< |
Atom* atom; |
1002 |
< |
CutoffGroup* cg; |
1003 |
< |
mpiSimData parallelData; |
1004 |
< |
int isError; |
919 |
> |
// mpiSimData parallelData; |
920 |
|
|
1006 |
– |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1007 |
– |
|
1008 |
– |
//local index(index in DataStorge) of atom is important |
1009 |
– |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
1010 |
– |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
1011 |
– |
} |
1012 |
– |
|
1013 |
– |
//local index of cutoff group is trivial, it only depends on the order of travesing |
1014 |
– |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
1015 |
– |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
1016 |
– |
} |
1017 |
– |
|
1018 |
– |
} |
1019 |
– |
|
921 |
|
//fill up mpiSimData struct |
922 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
923 |
< |
parallelData.nMolLocal = getNMolecules(); |
924 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
925 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
926 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
927 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
928 |
< |
parallelData.myNode = worldRank; |
929 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
922 |
> |
// parallelData.nMolGlobal = getNGlobalMolecules(); |
923 |
> |
// parallelData.nMolLocal = getNMolecules(); |
924 |
> |
// parallelData.nAtomsGlobal = getNGlobalAtoms(); |
925 |
> |
// parallelData.nAtomsLocal = getNAtoms(); |
926 |
> |
// parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
927 |
> |
// parallelData.nGroupsLocal = getNCutoffGroups(); |
928 |
> |
// parallelData.myNode = worldRank; |
929 |
> |
// MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
930 |
|
|
931 |
|
//pass mpiSimData struct and index arrays to fortran |
932 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
933 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
934 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
932 |
> |
//setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
933 |
> |
// &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
934 |
> |
// &localToGlobalCutoffGroupIndex[0], &isError); |
935 |
|
|
936 |
< |
if (isError) { |
937 |
< |
sprintf(painCave.errMsg, |
938 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
939 |
< |
painCave.isFatal = 1; |
940 |
< |
simError(); |
941 |
< |
} |
936 |
> |
// if (isError) { |
937 |
> |
// sprintf(painCave.errMsg, |
938 |
> |
// "mpiRefresh errror: fortran didn't like something we gave it.\n"); |
939 |
> |
// painCave.isFatal = 1; |
940 |
> |
// simError(); |
941 |
> |
// } |
942 |
|
|
943 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
944 |
< |
errorCheckPoint(); |
1044 |
< |
|
943 |
> |
// sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
944 |
> |
// errorCheckPoint(); |
945 |
|
#endif |
1046 |
– |
} |
946 |
|
|
947 |
< |
void SimInfo::setupCutoff() { |
948 |
< |
|
949 |
< |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
950 |
< |
|
951 |
< |
// Check the cutoff policy |
952 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
953 |
< |
|
954 |
< |
// Set LJ shifting bools to false |
1056 |
< |
ljsp_ = 0; |
1057 |
< |
ljsf_ = 0; |
1058 |
< |
|
1059 |
< |
std::string myPolicy; |
1060 |
< |
if (forceFieldOptions_.haveCutoffPolicy()){ |
1061 |
< |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1062 |
< |
}else if (simParams_->haveCutoffPolicy()) { |
1063 |
< |
myPolicy = simParams_->getCutoffPolicy(); |
1064 |
< |
} |
1065 |
< |
|
1066 |
< |
if (!myPolicy.empty()){ |
1067 |
< |
toUpper(myPolicy); |
1068 |
< |
if (myPolicy == "MIX") { |
1069 |
< |
cp = MIX_CUTOFF_POLICY; |
1070 |
< |
} else { |
1071 |
< |
if (myPolicy == "MAX") { |
1072 |
< |
cp = MAX_CUTOFF_POLICY; |
1073 |
< |
} else { |
1074 |
< |
if (myPolicy == "TRADITIONAL") { |
1075 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
1076 |
< |
} else { |
1077 |
< |
// throw error |
1078 |
< |
sprintf( painCave.errMsg, |
1079 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1080 |
< |
painCave.isFatal = 1; |
1081 |
< |
simError(); |
1082 |
< |
} |
1083 |
< |
} |
1084 |
< |
} |
1085 |
< |
} |
1086 |
< |
notifyFortranCutoffPolicy(&cp); |
1087 |
< |
|
1088 |
< |
// Check the Skin Thickness for neighborlists |
1089 |
< |
RealType skin; |
1090 |
< |
if (simParams_->haveSkinThickness()) { |
1091 |
< |
skin = simParams_->getSkinThickness(); |
1092 |
< |
notifyFortranSkinThickness(&skin); |
1093 |
< |
} |
1094 |
< |
|
1095 |
< |
// Check if the cutoff was set explicitly: |
1096 |
< |
if (simParams_->haveCutoffRadius()) { |
1097 |
< |
rcut_ = simParams_->getCutoffRadius(); |
1098 |
< |
if (simParams_->haveSwitchingRadius()) { |
1099 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1100 |
< |
} else { |
1101 |
< |
if (fInfo_.SIM_uses_Charges | |
1102 |
< |
fInfo_.SIM_uses_Dipoles | |
1103 |
< |
fInfo_.SIM_uses_RF) { |
1104 |
< |
|
1105 |
< |
rsw_ = 0.85 * rcut_; |
1106 |
< |
sprintf(painCave.errMsg, |
1107 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1108 |
< |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1109 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1110 |
< |
painCave.isFatal = 0; |
1111 |
< |
simError(); |
1112 |
< |
} else { |
1113 |
< |
rsw_ = rcut_; |
1114 |
< |
sprintf(painCave.errMsg, |
1115 |
< |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1116 |
< |
"\tOpenMD will use the same value as the cutoffRadius.\n" |
1117 |
< |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1118 |
< |
painCave.isFatal = 0; |
1119 |
< |
simError(); |
1120 |
< |
} |
1121 |
< |
} |
1122 |
< |
|
1123 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1124 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1125 |
< |
toUpper(myMethod); |
1126 |
< |
|
1127 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1128 |
< |
ljsp_ = 1; |
1129 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1130 |
< |
ljsf_ = 1; |
1131 |
< |
} |
1132 |
< |
} |
1133 |
< |
|
1134 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1135 |
< |
|
1136 |
< |
} else { |
1137 |
< |
|
1138 |
< |
// For electrostatic atoms, we'll assume a large safe value: |
1139 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1140 |
< |
sprintf(painCave.errMsg, |
1141 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1142 |
< |
"\tOpenMD will use a default value of 15.0 angstroms" |
1143 |
< |
"\tfor the cutoffRadius.\n"); |
1144 |
< |
painCave.isFatal = 0; |
1145 |
< |
simError(); |
1146 |
< |
rcut_ = 15.0; |
1147 |
< |
|
1148 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1149 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1150 |
< |
toUpper(myMethod); |
1151 |
< |
|
1152 |
< |
// For the time being, we're tethering the LJ shifted behavior to the |
1153 |
< |
// electrostaticSummationMethod keyword options |
1154 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1155 |
< |
ljsp_ = 1; |
1156 |
< |
} else if (myMethod == "SHIFTED_FORCE") { |
1157 |
< |
ljsf_ = 1; |
1158 |
< |
} |
1159 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1160 |
< |
if (simParams_->haveSwitchingRadius()){ |
1161 |
< |
sprintf(painCave.errMsg, |
1162 |
< |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1163 |
< |
"\teven though the electrostaticSummationMethod was\n" |
1164 |
< |
"\tset to %s\n", myMethod.c_str()); |
1165 |
< |
painCave.isFatal = 1; |
1166 |
< |
simError(); |
1167 |
< |
} |
1168 |
< |
} |
1169 |
< |
} |
1170 |
< |
|
1171 |
< |
if (simParams_->haveSwitchingRadius()){ |
1172 |
< |
rsw_ = simParams_->getSwitchingRadius(); |
1173 |
< |
} else { |
1174 |
< |
sprintf(painCave.errMsg, |
1175 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1176 |
< |
"\tOpenMD will use a default value of\n" |
1177 |
< |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1178 |
< |
painCave.isFatal = 0; |
1179 |
< |
simError(); |
1180 |
< |
rsw_ = 0.85 * rcut_; |
1181 |
< |
} |
1182 |
< |
|
1183 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1184 |
< |
|
1185 |
< |
} else { |
1186 |
< |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1187 |
< |
// We'll punt and let fortran figure out the cutoffs later. |
1188 |
< |
|
1189 |
< |
notifyFortranYouAreOnYourOwn(); |
1190 |
< |
|
1191 |
< |
} |
1192 |
< |
} |
1193 |
< |
} |
1194 |
< |
|
1195 |
< |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1196 |
< |
|
1197 |
< |
int errorOut; |
1198 |
< |
int esm = NONE; |
1199 |
< |
int sm = UNDAMPED; |
1200 |
< |
RealType alphaVal; |
1201 |
< |
RealType dielectric; |
1202 |
< |
|
1203 |
< |
errorOut = isError; |
1204 |
< |
|
1205 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
1206 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1207 |
< |
toUpper(myMethod); |
1208 |
< |
if (myMethod == "NONE") { |
1209 |
< |
esm = NONE; |
1210 |
< |
} else { |
1211 |
< |
if (myMethod == "SWITCHING_FUNCTION") { |
1212 |
< |
esm = SWITCHING_FUNCTION; |
1213 |
< |
} else { |
1214 |
< |
if (myMethod == "SHIFTED_POTENTIAL") { |
1215 |
< |
esm = SHIFTED_POTENTIAL; |
1216 |
< |
} else { |
1217 |
< |
if (myMethod == "SHIFTED_FORCE") { |
1218 |
< |
esm = SHIFTED_FORCE; |
1219 |
< |
} else { |
1220 |
< |
if (myMethod == "REACTION_FIELD") { |
1221 |
< |
esm = REACTION_FIELD; |
1222 |
< |
dielectric = simParams_->getDielectric(); |
1223 |
< |
if (!simParams_->haveDielectric()) { |
1224 |
< |
// throw warning |
1225 |
< |
sprintf( painCave.errMsg, |
1226 |
< |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1227 |
< |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1228 |
< |
painCave.isFatal = 0; |
1229 |
< |
simError(); |
1230 |
< |
} |
1231 |
< |
} else { |
1232 |
< |
// throw error |
1233 |
< |
sprintf( painCave.errMsg, |
1234 |
< |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1235 |
< |
"\t(Input file specified %s .)\n" |
1236 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1237 |
< |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1238 |
< |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1239 |
< |
painCave.isFatal = 1; |
1240 |
< |
simError(); |
1241 |
< |
} |
1242 |
< |
} |
1243 |
< |
} |
1244 |
< |
} |
1245 |
< |
} |
1246 |
< |
} |
1247 |
< |
|
1248 |
< |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1249 |
< |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1250 |
< |
toUpper(myScreen); |
1251 |
< |
if (myScreen == "UNDAMPED") { |
1252 |
< |
sm = UNDAMPED; |
1253 |
< |
} else { |
1254 |
< |
if (myScreen == "DAMPED") { |
1255 |
< |
sm = DAMPED; |
1256 |
< |
if (!simParams_->haveDampingAlpha()) { |
1257 |
< |
// first set a cutoff dependent alpha value |
1258 |
< |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1259 |
< |
alphaVal = 0.5125 - rcut_* 0.025; |
1260 |
< |
// for values rcut > 20.5, alpha is zero |
1261 |
< |
if (alphaVal < 0) alphaVal = 0; |
1262 |
< |
|
1263 |
< |
// throw warning |
1264 |
< |
sprintf( painCave.errMsg, |
1265 |
< |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1266 |
< |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1267 |
< |
painCave.isFatal = 0; |
1268 |
< |
simError(); |
1269 |
< |
} else { |
1270 |
< |
alphaVal = simParams_->getDampingAlpha(); |
1271 |
< |
} |
1272 |
< |
|
1273 |
< |
} else { |
1274 |
< |
// throw error |
1275 |
< |
sprintf( painCave.errMsg, |
1276 |
< |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1277 |
< |
"\t(Input file specified %s .)\n" |
1278 |
< |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1279 |
< |
"or \"damped\".\n", myScreen.c_str() ); |
1280 |
< |
painCave.isFatal = 1; |
1281 |
< |
simError(); |
1282 |
< |
} |
1283 |
< |
} |
1284 |
< |
} |
1285 |
< |
|
1286 |
< |
// let's pass some summation method variables to fortran |
1287 |
< |
setElectrostaticSummationMethod( &esm ); |
1288 |
< |
setFortranElectrostaticMethod( &esm ); |
1289 |
< |
setScreeningMethod( &sm ); |
1290 |
< |
setDampingAlpha( &alphaVal ); |
1291 |
< |
setReactionFieldDielectric( &dielectric ); |
1292 |
< |
initFortranFF( &errorOut ); |
1293 |
< |
} |
1294 |
< |
|
1295 |
< |
void SimInfo::setupSwitchingFunction() { |
1296 |
< |
int ft = CUBIC; |
1297 |
< |
|
1298 |
< |
if (simParams_->haveSwitchingFunctionType()) { |
1299 |
< |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1300 |
< |
toUpper(funcType); |
1301 |
< |
if (funcType == "CUBIC") { |
1302 |
< |
ft = CUBIC; |
1303 |
< |
} else { |
1304 |
< |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1305 |
< |
ft = FIFTH_ORDER_POLY; |
1306 |
< |
} else { |
1307 |
< |
// throw error |
1308 |
< |
sprintf( painCave.errMsg, |
1309 |
< |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1310 |
< |
painCave.isFatal = 1; |
1311 |
< |
simError(); |
1312 |
< |
} |
1313 |
< |
} |
1314 |
< |
} |
1315 |
< |
|
1316 |
< |
// send switching function notification to switcheroo |
1317 |
< |
setFunctionType(&ft); |
1318 |
< |
|
947 |
> |
// initFortranFF(&isError); |
948 |
> |
// if (isError) { |
949 |
> |
// sprintf(painCave.errMsg, |
950 |
> |
// "initFortranFF errror: fortran didn't like something we gave it.\n"); |
951 |
> |
// painCave.isFatal = 1; |
952 |
> |
// simError(); |
953 |
> |
// } |
954 |
> |
// fortranInitialized_ = true; |
955 |
|
} |
956 |
|
|
1321 |
– |
void SimInfo::setupAccumulateBoxDipole() { |
1322 |
– |
|
1323 |
– |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1324 |
– |
if ( simParams_->haveAccumulateBoxDipole() ) |
1325 |
– |
if ( simParams_->getAccumulateBoxDipole() ) { |
1326 |
– |
setAccumulateBoxDipole(); |
1327 |
– |
calcBoxDipole_ = true; |
1328 |
– |
} |
1329 |
– |
|
1330 |
– |
} |
1331 |
– |
|
957 |
|
void SimInfo::addProperty(GenericData* genData) { |
958 |
|
properties_.addProperty(genData); |
959 |
|
} |
960 |
|
|
961 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
961 |
> |
void SimInfo::removeProperty(const string& propName) { |
962 |
|
properties_.removeProperty(propName); |
963 |
|
} |
964 |
|
|
966 |
|
properties_.clearProperties(); |
967 |
|
} |
968 |
|
|
969 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
969 |
> |
vector<string> SimInfo::getPropertyNames() { |
970 |
|
return properties_.getPropertyNames(); |
971 |
|
} |
972 |
|
|
973 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
973 |
> |
vector<GenericData*> SimInfo::getProperties() { |
974 |
|
return properties_.getProperties(); |
975 |
|
} |
976 |
|
|
977 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
977 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
978 |
|
return properties_.getPropertyByName(propName); |
979 |
|
} |
980 |
|
|
988 |
|
Molecule* mol; |
989 |
|
RigidBody* rb; |
990 |
|
Atom* atom; |
991 |
+ |
CutoffGroup* cg; |
992 |
|
SimInfo::MoleculeIterator mi; |
993 |
|
Molecule::RigidBodyIterator rbIter; |
994 |
< |
Molecule::AtomIterator atomIter;; |
994 |
> |
Molecule::AtomIterator atomIter; |
995 |
> |
Molecule::CutoffGroupIterator cgIter; |
996 |
|
|
997 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
998 |
|
|
1003 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1004 |
|
rb->setSnapshotManager(sman_); |
1005 |
|
} |
1006 |
+ |
|
1007 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
1008 |
+ |
cg->setSnapshotManager(sman_); |
1009 |
+ |
} |
1010 |
|
} |
1011 |
|
|
1012 |
|
} |
1063 |
|
|
1064 |
|
} |
1065 |
|
|
1066 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1066 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1067 |
|
|
1068 |
|
return o; |
1069 |
|
} |
1106 |
|
|
1107 |
|
|
1108 |
|
[ Ixx -Ixy -Ixz ] |
1109 |
< |
J =| -Iyx Iyy -Iyz | |
1109 |
> |
J =| -Iyx Iyy -Iyz | |
1110 |
|
[ -Izx -Iyz Izz ] |
1111 |
|
*/ |
1112 |
|
|
1213 |
|
return IOIndexToIntegrableObject.at(index); |
1214 |
|
} |
1215 |
|
|
1216 |
< |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1216 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1217 |
|
IOIndexToIntegrableObject= v; |
1218 |
|
} |
1219 |
|
|
1255 |
|
return; |
1256 |
|
} |
1257 |
|
/* |
1258 |
< |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1258 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1259 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |
1260 |
|
sdByGlobalIndex_ = v; |
1261 |
|
} |
1265 |
|
return sdByGlobalIndex_.at(index); |
1266 |
|
} |
1267 |
|
*/ |
1268 |
+ |
int SimInfo::getNGlobalConstraints() { |
1269 |
+ |
int nGlobalConstraints; |
1270 |
+ |
#ifdef IS_MPI |
1271 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1272 |
+ |
MPI_COMM_WORLD); |
1273 |
+ |
#else |
1274 |
+ |
nGlobalConstraints = nConstraints_; |
1275 |
+ |
#endif |
1276 |
+ |
return nGlobalConstraints; |
1277 |
+ |
} |
1278 |
+ |
|
1279 |
|
}//end namespace OpenMD |
1280 |
|
|