ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 > #include "UseTheForce/doForces_interface.h"
59 > #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61 < #include "UseTheForce/DarkSide/simulation_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
61 > #include "selection/SelectionManager.hpp"
62 > #include "io/ForceFieldOptions.hpp"
63 > #include "UseTheForce/ForceField.hpp"
64 > #include "nonbonded/SwitchingFunction.hpp"
65  
66 < //#include "UseTheForce/fortranWrappers.hpp"
66 > #ifdef IS_MPI
67 > #include "UseTheForce/mpiComponentPlan.h"
68 > #include "UseTheForce/DarkSide/simParallel_interface.h"
69 > #endif
70  
71 < #include "math/MatVec3.h"
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128 >    }
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145 >    nGlobalMols_ = molStampIds_.size();
146 >    molToProcMap_.resize(nGlobalMols_);
147 >  }
148 >  
149 >  SimInfo::~SimInfo() {
150 >    map<int, Molecule*>::iterator i;
151 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152 >      delete i->second;
153 >    }
154 >    molecules_.clear();
155 >      
156 >    delete sman_;
157 >    delete simParams_;
158 >    delete forceField_;
159 >  }
160  
19 #ifdef IS_MPI
20 #include "brains/mpiSimulation.hpp"
21 #endif
161  
162 < inline double roundMe( double x ){
163 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
164 < }
165 <          
166 < inline double min( double a, double b ){
167 <  return (a < b ) ? a : b;
168 < }
162 >  bool SimInfo::addMolecule(Molecule* mol) {
163 >    MoleculeIterator i;
164 >    
165 >    i = molecules_.find(mol->getGlobalIndex());
166 >    if (i == molecules_.end() ) {
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170 >      nAtoms_ += mol->getNAtoms();
171 >      nBonds_ += mol->getNBonds();
172 >      nBends_ += mol->getNBends();
173 >      nTorsions_ += mol->getNTorsions();
174 >      nInversions_ += mol->getNInversions();
175 >      nRigidBodies_ += mol->getNRigidBodies();
176 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
177 >      nCutoffGroups_ += mol->getNCutoffGroups();
178 >      nConstraints_ += mol->getNConstraintPairs();
179 >      
180 >      addInteractionPairs(mol);
181 >      
182 >      return true;
183 >    } else {
184 >      return false;
185 >    }
186 >  }
187 >  
188 >  bool SimInfo::removeMolecule(Molecule* mol) {
189 >    MoleculeIterator i;
190 >    i = molecules_.find(mol->getGlobalIndex());
191  
192 < SimInfo* currentInfo;
192 >    if (i != molecules_.end() ) {
193  
194 < SimInfo::SimInfo(){
194 >      assert(mol == i->second);
195 >        
196 >      nAtoms_ -= mol->getNAtoms();
197 >      nBonds_ -= mol->getNBonds();
198 >      nBends_ -= mol->getNBends();
199 >      nTorsions_ -= mol->getNTorsions();
200 >      nInversions_ -= mol->getNInversions();
201 >      nRigidBodies_ -= mol->getNRigidBodies();
202 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
203 >      nCutoffGroups_ -= mol->getNCutoffGroups();
204 >      nConstraints_ -= mol->getNConstraintPairs();
205  
206 <  n_constraints = 0;
207 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
206 >      removeInteractionPairs(mol);
207 >      molecules_.erase(mol->getGlobalIndex());
208  
209 <  haveRcut = 0;
210 <  haveRsw = 0;
211 <  boxIsInit = 0;
212 <  
213 <  resetTime = 1e99;
209 >      delete mol;
210 >        
211 >      return true;
212 >    } else {
213 >      return false;
214 >    }
215 >  }    
216  
217 <  orthoRhombic = 0;
218 <  orthoTolerance = 1E-6;
219 <  useInitXSstate = true;
217 >        
218 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
219 >    i = molecules_.begin();
220 >    return i == molecules_.end() ? NULL : i->second;
221 >  }    
222  
223 <  usePBC = 0;
224 <  useDirectionalAtoms = 0;
225 <  useLennardJones = 0;
226 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
223 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
224 >    ++i;
225 >    return i == molecules_.end() ? NULL : i->second;    
226 >  }
227  
71  useSolidThermInt = 0;
72  useLiquidThermInt = 0;
228  
229 <  haveCutoffGroups = false;
229 >  void SimInfo::calcNdf() {
230 >    int ndf_local;
231 >    MoleculeIterator i;
232 >    vector<StuntDouble*>::iterator j;
233 >    Molecule* mol;
234 >    StuntDouble* integrableObject;
235  
236 <  excludes = Exclude::Instance();
236 >    ndf_local = 0;
237 >    
238 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
239 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 >           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 <  myConfiguration = new SimState();
242 >        ndf_local += 3;
243  
244 <  has_minimizer = false;
245 <  the_minimizer =NULL;
244 >        if (integrableObject->isDirectional()) {
245 >          if (integrableObject->isLinear()) {
246 >            ndf_local += 2;
247 >          } else {
248 >            ndf_local += 3;
249 >          }
250 >        }
251 >            
252 >      }
253 >    }
254 >    
255 >    // n_constraints is local, so subtract them on each processor
256 >    ndf_local -= nConstraints_;
257  
258 <  ngroup = 0;
258 > #ifdef IS_MPI
259 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
260 > #else
261 >    ndf_ = ndf_local;
262 > #endif
263  
264 < }
264 >    // nZconstraints_ is global, as are the 3 COM translations for the
265 >    // entire system:
266 >    ndf_ = ndf_ - 3 - nZconstraint_;
267  
268 +  }
269  
270 < SimInfo::~SimInfo(){
270 >  int SimInfo::getFdf() {
271 > #ifdef IS_MPI
272 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    fdf_ = fdf_local;
275 > #endif
276 >    return fdf_;
277 >  }
278 >    
279 >  void SimInfo::calcNdfRaw() {
280 >    int ndfRaw_local;
281  
282 <  delete myConfiguration;
282 >    MoleculeIterator i;
283 >    vector<StuntDouble*>::iterator j;
284 >    Molecule* mol;
285 >    StuntDouble* integrableObject;
286  
287 <  map<string, GenericData*>::iterator i;
288 <  
289 <  for(i = properties.begin(); i != properties.end(); i++)
290 <    delete (*i).second;
287 >    // Raw degrees of freedom that we have to set
288 >    ndfRaw_local = 0;
289 >    
290 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 < }
294 >        ndfRaw_local += 3;
295  
296 < void SimInfo::setBox(double newBox[3]) {
297 <  
298 <  int i, j;
299 <  double tempMat[3][3];
300 <
301 <  for(i=0; i<3; i++)
302 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
303 <
304 <  tempMat[0][0] = newBox[0];
108 <  tempMat[1][1] = newBox[1];
109 <  tempMat[2][2] = newBox[2];
110 <
111 <  setBoxM( tempMat );
112 <
113 < }
114 <
115 < void SimInfo::setBoxM( double theBox[3][3] ){
116 <  
117 <  int i, j;
118 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
119 <                         // ordering in the array is as follows:
120 <                         // [ 0 3 6 ]
121 <                         // [ 1 4 7 ]
122 <                         // [ 2 5 8 ]
123 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
124 <
125 <  if( !boxIsInit ) boxIsInit = 1;
126 <
127 <  for(i=0; i < 3; i++)
128 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
129 <  
130 <  calcBoxL();
131 <  calcHmatInv();
132 <
133 <  for(i=0; i < 3; i++) {
134 <    for (j=0; j < 3; j++) {
135 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303 >            
304 >      }
305      }
306 +    
307 + #ifdef IS_MPI
308 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
309 + #else
310 +    ndfRaw_ = ndfRaw_local;
311 + #endif
312    }
313  
314 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
315 <
142 < }
143 <
314 >  void SimInfo::calcNdfTrans() {
315 >    int ndfTrans_local;
316  
317 < void SimInfo::getBoxM (double theBox[3][3]) {
317 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
318  
147  int i, j;
148  for(i=0; i<3; i++)
149    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
150 }
319  
320 + #ifdef IS_MPI
321 +    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 + #else
323 +    ndfTrans_ = ndfTrans_local;
324 + #endif
325  
326 < void SimInfo::scaleBox(double scale) {
327 <  double theBox[3][3];
328 <  int i, j;
326 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327 >
328 >  }
329  
330 <  // cerr << "Scaling box by " << scale << "\n";
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336 >    Bond* bond;
337 >    Bend* bend;
338 >    Torsion* torsion;
339 >    Inversion* inversion;
340 >    int a;
341 >    int b;
342 >    int c;
343 >    int d;
344  
345 <  for(i=0; i<3; i++)
346 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
345 >    // atomGroups can be used to add special interaction maps between
346 >    // groups of atoms that are in two separate rigid bodies.
347 >    // However, most site-site interactions between two rigid bodies
348 >    // are probably not special, just the ones between the physically
349 >    // bonded atoms.  Interactions *within* a single rigid body should
350 >    // always be excluded.  These are done at the bottom of this
351 >    // function.
352  
353 <  setBoxM(theBox);
354 <
355 < }
356 <
357 < void SimInfo::calcHmatInv( void ) {
358 <  
359 <  int oldOrtho;
360 <  int i,j;
361 <  double smallDiag;
362 <  double tol;
363 <  double sanity[3][3];
364 <
365 <  invertMat3( Hmat, HmatInv );
366 <
367 <  // check to see if Hmat is orthorhombic
368 <  
369 <  oldOrtho = orthoRhombic;
370 <
371 <  smallDiag = fabs(Hmat[0][0]);
372 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
373 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
374 <  tol = smallDiag * orthoTolerance;
375 <
376 <  orthoRhombic = 1;
186 <  
187 <  for (i = 0; i < 3; i++ ) {
188 <    for (j = 0 ; j < 3; j++) {
189 <      if (i != j) {
190 <        if (orthoRhombic) {
191 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
192 <        }        
353 >    map<int, set<int> > atomGroups;
354 >    Molecule::RigidBodyIterator rbIter;
355 >    RigidBody* rb;
356 >    Molecule::IntegrableObjectIterator ii;
357 >    StuntDouble* integrableObject;
358 >    
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377        }
378 <    }
379 <  }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382  
383 <  if( oldOrtho != orthoRhombic ){
383 >      a = bond->getAtomA()->getGlobalIndex();
384 >      b = bond->getAtomB()->getGlobalIndex();  
385      
386 <    if( orthoRhombic ) {
387 <      sprintf( painCave.errMsg,
388 <               "OOPSE is switching from the default Non-Orthorhombic\n"
389 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
390 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391      }
210    else {
211      sprintf( painCave.errMsg,
212               "OOPSE is switching from the faster Orthorhombic to the more\n"
213               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214               "\tThis is usually because the box has deformed under\n"
215               "\tNPTf integration. If you wan't to live on the edge with\n"
216               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217               "\tvariable ( currently set to %G ) larger.\n",
218               orthoTolerance);
219      painCave.severity = OOPSE_WARNING;
220      simError();
221    }
222  }
223 }
392  
393 < void SimInfo::calcBoxL( void ){
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395  
396 <  double dx, dy, dz, dsq;
396 >      a = bend->getAtomA()->getGlobalIndex();
397 >      b = bend->getAtomB()->getGlobalIndex();        
398 >      c = bend->getAtomC()->getGlobalIndex();
399 >      
400 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 >        oneTwoInteractions_.addPair(a, b);      
402 >        oneTwoInteractions_.addPair(b, c);
403 >      } else {
404 >        excludedInteractions_.addPair(a, b);
405 >        excludedInteractions_.addPair(b, c);
406 >      }
407  
408 <  // boxVol = Determinant of Hmat
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413 >    }
414  
415 <  boxVol = matDet3( Hmat );
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417  
418 <  // boxLx
419 <  
420 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
421 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422  
423 <  // boxLy
424 <  
425 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
426 <  dsq = dx*dx + dy*dy + dz*dz;
427 <  boxL[1] = sqrt( dsq );
428 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432  
433 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 +        oneThreeInteractions_.addPair(a, c);      
435 +        oneThreeInteractions_.addPair(b, d);      
436 +      } else {
437 +        excludedInteractions_.addPair(a, c);
438 +        excludedInteractions_.addPair(b, d);
439 +      }
440  
441 <  // boxLz
442 <  
443 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
444 <  dsq = dx*dx + dy*dy + dz*dz;
445 <  boxL[2] = sqrt( dsq );
446 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446 >    }
447  
448 <  //calculate the max cutoff
449 <  maxCutoff =  calcMaxCutOff();
257 <  
258 <  checkCutOffs();
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450  
451 < }
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455  
456 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 +        oneTwoInteractions_.addPair(a, b);      
458 +        oneTwoInteractions_.addPair(a, c);
459 +        oneTwoInteractions_.addPair(a, d);
460 +      } else {
461 +        excludedInteractions_.addPair(a, b);
462 +        excludedInteractions_.addPair(a, c);
463 +        excludedInteractions_.addPair(a, d);
464 +      }
465  
466 < double SimInfo::calcMaxCutOff(){
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476  
477 <  double ri[3], rj[3], rk[3];
478 <  double rij[3], rjk[3], rki[3];
479 <  double minDist;
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482 >          a = atoms[i]->getGlobalIndex();
483 >          b = atoms[j]->getGlobalIndex();
484 >          excludedInteractions_.addPair(a, b);
485 >        }
486 >      }
487 >    }        
488  
489 <  ri[0] = Hmat[0][0];
270 <  ri[1] = Hmat[1][0];
271 <  ri[2] = Hmat[2][0];
489 >  }
490  
491 <  rj[0] = Hmat[0][1];
492 <  rj[1] = Hmat[1][1];
493 <  rj[2] = Hmat[2][1];
491 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497 >    Bond* bond;
498 >    Bend* bend;
499 >    Torsion* torsion;
500 >    Inversion* inversion;
501 >    int a;
502 >    int b;
503 >    int c;
504 >    int d;
505  
506 <  rk[0] = Hmat[0][2];
507 <  rk[1] = Hmat[1][2];
508 <  rk[2] = Hmat[2][2];
506 >    map<int, set<int> > atomGroups;
507 >    Molecule::RigidBodyIterator rbIter;
508 >    RigidBody* rb;
509 >    Molecule::IntegrableObjectIterator ii;
510 >    StuntDouble* integrableObject;
511      
512 <  crossProduct3(ri, rj, rij);
513 <  distXY = dotProduct3(rk,rij) / norm3(rij);
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532  
533 <  crossProduct3(rj,rk, rjk);
534 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536 >      a = bond->getAtomA()->getGlobalIndex();
537 >      b = bond->getAtomB()->getGlobalIndex();  
538 >    
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544 >    }
545  
546 <  crossProduct3(rk,ri, rki);
547 <  distZX = dotProduct3(rj,rki) / norm3(rki);
546 >    for (bend= mol->beginBend(bendIter); bend != NULL;
547 >         bend = mol->nextBend(bendIter)) {
548  
549 <  minDist = min(min(distXY, distYZ), distZX);
550 <  return minDist/2;
551 <  
552 < }
549 >      a = bend->getAtomA()->getGlobalIndex();
550 >      b = bend->getAtomB()->getGlobalIndex();        
551 >      c = bend->getAtomC()->getGlobalIndex();
552 >      
553 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 >        oneTwoInteractions_.removePair(a, b);      
555 >        oneTwoInteractions_.removePair(b, c);
556 >      } else {
557 >        excludedInteractions_.removePair(a, b);
558 >        excludedInteractions_.removePair(b, c);
559 >      }
560  
561 < void SimInfo::wrapVector( double thePos[3] ){
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566 >    }
567  
568 <  int i;
569 <  double scaled[3];
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570  
571 <  if( !orthoRhombic ){
572 <    // calc the scaled coordinates.
571 >      a = torsion->getAtomA()->getGlobalIndex();
572 >      b = torsion->getAtomB()->getGlobalIndex();        
573 >      c = torsion->getAtomC()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575    
576 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 +        oneTwoInteractions_.removePair(a, b);      
578 +        oneTwoInteractions_.removePair(b, c);
579 +        oneTwoInteractions_.removePair(c, d);
580 +      } else {
581 +        excludedInteractions_.removePair(a, b);
582 +        excludedInteractions_.removePair(b, c);
583 +        excludedInteractions_.removePair(c, d);
584 +      }
585  
586 <    matVecMul3(HmatInv, thePos, scaled);
587 <    
588 <    for(i=0; i<3; i++)
589 <      scaled[i] -= roundMe(scaled[i]);
590 <    
591 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
592 <    
311 <    matVecMul3(Hmat, scaled, thePos);
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593  
594 <  }
595 <  else{
596 <    // calc the scaled coordinates.
597 <    
598 <    for(i=0; i<3; i++)
599 <      scaled[i] = thePos[i]*HmatInv[i][i];
319 <    
320 <    // wrap the scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
331 < }
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599 >    }
600  
601 +    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 +         inversion = mol->nextInversion(inversionIter)) {
603  
604 < int SimInfo::getNDF(){
605 <  int ndf_local;
604 >      a = inversion->getAtomA()->getGlobalIndex();
605 >      b = inversion->getAtomB()->getGlobalIndex();        
606 >      c = inversion->getAtomC()->getGlobalIndex();        
607 >      d = inversion->getAtomD()->getGlobalIndex();        
608  
609 <  ndf_local = 0;
610 <  
611 <  for(int i = 0; i < integrableObjects.size(); i++){
612 <    ndf_local += 3;
613 <    if (integrableObjects[i]->isDirectional()) {
614 <      if (integrableObjects[i]->isLinear())
615 <        ndf_local += 2;
616 <      else
617 <        ndf_local += 3;
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618 >
619 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 >        oneThreeInteractions_.removePair(b, c);    
621 >        oneThreeInteractions_.removePair(b, d);    
622 >        oneThreeInteractions_.removePair(c, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(b, d);
626 >        excludedInteractions_.removePair(c, d);
627 >      }
628      }
629 +
630 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 +         rb = mol->nextRigidBody(rbIter)) {
632 +      vector<Atom*> atoms = rb->getAtoms();
633 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635 +          a = atoms[i]->getGlobalIndex();
636 +          b = atoms[j]->getGlobalIndex();
637 +          excludedInteractions_.removePair(a, b);
638 +        }
639 +      }
640 +    }        
641 +    
642    }
643 +  
644 +  
645 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646 +    int curStampId;
647 +    
648 +    //index from 0
649 +    curStampId = moleculeStamps_.size();
650  
651 <  // n_constraints is local, so subtract them on each processor:
651 >    moleculeStamps_.push_back(molStamp);
652 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653 >  }
654  
655 <  ndf_local -= n_constraints;
655 >
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the
660 >   *  objects have been created.
661 >   *
662 >   */
663 >  void SimInfo::update() {  
664 >    setupSimVariables();
665 >    calcNdf();
666 >    calcNdfRaw();
667 >    calcNdfTrans();
668 >  }
669 >  
670 >  /**
671 >   * getSimulatedAtomTypes
672 >   *
673 >   * Returns an STL set of AtomType* that are actually present in this
674 >   * simulation.  Must query all processors to assemble this information.
675 >   *
676 >   */
677 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
678 >    SimInfo::MoleculeIterator mi;
679 >    Molecule* mol;
680 >    Molecule::AtomIterator ai;
681 >    Atom* atom;
682 >    set<AtomType*> atomTypes;
683 >    
684 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
685 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
686 >        atomTypes.insert(atom->getAtomType());
687 >      }      
688 >    }    
689  
690   #ifdef IS_MPI
354  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
355 #else
356  ndf = ndf_local;
357 #endif
691  
692 <  // nZconstraints is global, as are the 3 COM translations for the
693 <  // entire system:
692 >    // loop over the found atom types on this processor, and add their
693 >    // numerical idents to a vector:
694  
695 <  ndf = ndf - 3 - nZconstraints;
695 >    vector<int> foundTypes;
696 >    set<AtomType*>::iterator i;
697 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
698 >      foundTypes.push_back( (*i)->getIdent() );
699  
700 <  return ndf;
701 < }
700 >    // count_local holds the number of found types on this processor
701 >    int count_local = foundTypes.size();
702  
703 < int SimInfo::getNDFraw() {
704 <  int ndfRaw_local;
703 >    // count holds the total number of found types on all processors
704 >    // (some will be redundant with the ones found locally):
705 >    int count;
706 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
707  
708 <  // Raw degrees of freedom that we have to set
709 <  ndfRaw_local = 0;
708 >    // create a vector to hold the globally found types, and resize it:
709 >    vector<int> ftGlobal;
710 >    ftGlobal.resize(count);
711 >    vector<int> counts;
712  
713 <  for(int i = 0; i < integrableObjects.size(); i++){
714 <    ndfRaw_local += 3;
715 <    if (integrableObjects[i]->isDirectional()) {
716 <       if (integrableObjects[i]->isLinear())
717 <        ndfRaw_local += 2;
718 <      else
379 <        ndfRaw_local += 3;
380 <    }
381 <  }
713 >    int nproc = MPI::COMM_WORLD.Get_size();
714 >    counts.resize(nproc);
715 >    vector<int> disps;
716 >    disps.resize(nproc);
717 >
718 >    // now spray out the foundTypes to all the other processors:
719      
720 < #ifdef IS_MPI
721 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
722 < #else
723 <  ndfRaw = ndfRaw_local;
720 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
721 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
722 >
723 >    // foundIdents is a stl set, so inserting an already found ident
724 >    // will have no effect.
725 >    set<int> foundIdents;
726 >    vector<int>::iterator j;
727 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
728 >      foundIdents.insert((*j));
729 >    
730 >    // now iterate over the foundIdents and get the actual atom types
731 >    // that correspond to these:
732 >    set<int>::iterator it;
733 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
734 >      atomTypes.insert( forceField_->getAtomType((*it)) );
735 >
736   #endif
737 +    
738 +    return atomTypes;        
739 +  }
740  
741 <  return ndfRaw;
742 < }
741 >  void SimInfo::setupSimVariables() {
742 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
744 >    calcBoxDipole_ = false;
745 >    if ( simParams_->haveAccumulateBoxDipole() )
746 >      if ( simParams_->getAccumulateBoxDipole() ) {
747 >        calcBoxDipole_ = true;      
748 >      }
749  
750 < int SimInfo::getNDFtranslational() {
751 <  int ndfTrans_local;
750 >    set<AtomType*>::iterator i;
751 >    set<AtomType*> atomTypes;
752 >    atomTypes = getSimulatedAtomTypes();    
753 >    int usesElectrostatic = 0;
754 >    int usesMetallic = 0;
755 >    int usesDirectional = 0;
756 >    //loop over all of the atom types
757 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
758 >      usesElectrostatic |= (*i)->isElectrostatic();
759 >      usesMetallic |= (*i)->isMetal();
760 >      usesDirectional |= (*i)->isDirectional();
761 >    }
762  
763 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
763 > #ifdef IS_MPI    
764 >    int temp;
765 >    temp = usesDirectional;
766 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767  
768 +    temp = usesMetallic;
769 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770  
771 < #ifdef IS_MPI
772 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
400 < #else
401 <  ndfTrans = ndfTrans_local;
771 >    temp = usesElectrostatic;
772 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773   #endif
774 +    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
775 +    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
776 +    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
777 +    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
778 +    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
779 +    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
780 +  }
781  
782 <  ndfTrans = ndfTrans - 3 - nZconstraints;
782 >  void SimInfo::setupFortran() {
783 >    int isError;
784 >    int nExclude, nOneTwo, nOneThree, nOneFour;
785 >    vector<int> fortranGlobalGroupMembership;
786 >    
787 >    isError = 0;
788  
789 <  return ndfTrans;
790 < }
789 >    //globalGroupMembership_ is filled by SimCreator    
790 >    for (int i = 0; i < nGlobalAtoms_; i++) {
791 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 >    }
793  
794 < int SimInfo::getTotIntegrableObjects() {
795 <  int nObjs_local;
796 <  int nObjs;
794 >    //calculate mass ratio of cutoff group
795 >    vector<RealType> mfact;
796 >    SimInfo::MoleculeIterator mi;
797 >    Molecule* mol;
798 >    Molecule::CutoffGroupIterator ci;
799 >    CutoffGroup* cg;
800 >    Molecule::AtomIterator ai;
801 >    Atom* atom;
802 >    RealType totalMass;
803  
804 <  nObjs_local =  integrableObjects.size();
804 >    //to avoid memory reallocation, reserve enough space for mfact
805 >    mfact.reserve(getNCutoffGroups());
806 >    
807 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
808 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
809  
810 +        totalMass = cg->getMass();
811 +        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 +          // Check for massless groups - set mfact to 1 if true
813 +          if (totalMass != 0)
814 +            mfact.push_back(atom->getMass()/totalMass);
815 +          else
816 +            mfact.push_back( 1.0 );
817 +        }
818 +      }      
819 +    }
820  
821 < #ifdef IS_MPI
822 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
823 < #else
419 <  nObjs = nObjs_local;
420 < #endif
821 >    //fill ident array of local atoms (it is actually ident of
822 >    //AtomType, it is so confusing !!!)
823 >    vector<int> identArray;
824  
825 +    //to avoid memory reallocation, reserve enough space identArray
826 +    identArray.reserve(getNAtoms());
827 +    
828 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
829 +      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 +        identArray.push_back(atom->getIdent());
831 +      }
832 +    }    
833  
834 <  return nObjs;
835 < }
834 >    //fill molMembershipArray
835 >    //molMembershipArray is filled by SimCreator    
836 >    vector<int> molMembershipArray(nGlobalAtoms_);
837 >    for (int i = 0; i < nGlobalAtoms_; i++) {
838 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
839 >    }
840 >    
841 >    //setup fortran simulation
842  
843 < void SimInfo::refreshSim(){
843 >    nExclude = excludedInteractions_.getSize();
844 >    nOneTwo = oneTwoInteractions_.getSize();
845 >    nOneThree = oneThreeInteractions_.getSize();
846 >    nOneFour = oneFourInteractions_.getSize();
847  
848 <  simtype fInfo;
849 <  int isError;
850 <  int n_global;
851 <  int* excl;
848 >    int* excludeList = excludedInteractions_.getPairList();
849 >    int* oneTwoList = oneTwoInteractions_.getPairList();
850 >    int* oneThreeList = oneThreeInteractions_.getPairList();
851 >    int* oneFourList = oneFourInteractions_.getPairList();
852  
853 <  fInfo.dielect = 0.0;
853 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
854 >                   &nExclude, excludeList,
855 >                   &nOneTwo, oneTwoList,
856 >                   &nOneThree, oneThreeList,
857 >                   &nOneFour, oneFourList,
858 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
859 >                   &fortranGlobalGroupMembership[0], &isError);
860 >    
861 >    if( isError ){
862 >      
863 >      sprintf( painCave.errMsg,
864 >               "There was an error setting the simulation information in fortran.\n" );
865 >      painCave.isFatal = 1;
866 >      painCave.severity = OPENMD_ERROR;
867 >      simError();
868 >    }
869 >    
870 >    
871 >    sprintf( checkPointMsg,
872 >             "succesfully sent the simulation information to fortran.\n");
873 >    
874 >    errorCheckPoint();
875 >    
876 >    // Setup number of neighbors in neighbor list if present
877 >    if (simParams_->haveNeighborListNeighbors()) {
878 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
879 >      setNeighbors(&nlistNeighbors);
880 >    }
881 >  
882 > #ifdef IS_MPI    
883 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
884 >    //localToGlobalGroupIndex
885 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
886 >    vector<int> localToGlobalCutoffGroupIndex;
887 >    mpiSimData parallelData;
888  
889 <  if( useDipoles ){
436 <    if( useReactionField )fInfo.dielect = dielectric;
437 <  }
889 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
890  
891 <  fInfo.SIM_uses_PBC = usePBC;
891 >      //local index(index in DataStorge) of atom is important
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
894 >      }
895  
896 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
897 <    useDirectionalAtoms = 1;
898 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
899 <  }
896 >      //local index of cutoff group is trivial, it only depends on the order of travesing
897 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
898 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
899 >      }        
900 >        
901 >    }
902  
903 <  fInfo.SIM_uses_LennardJones = useLennardJones;
903 >    //fill up mpiSimData struct
904 >    parallelData.nMolGlobal = getNGlobalMolecules();
905 >    parallelData.nMolLocal = getNMolecules();
906 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
907 >    parallelData.nAtomsLocal = getNAtoms();
908 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
909 >    parallelData.nGroupsLocal = getNCutoffGroups();
910 >    parallelData.myNode = worldRank;
911 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
912  
913 <  if (useCharges || useDipoles) {
914 <    useElectrostatics = 1;
915 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
916 <  }
913 >    //pass mpiSimData struct and index arrays to fortran
914 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
915 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
916 >                    &localToGlobalCutoffGroupIndex[0], &isError);
917  
918 <  fInfo.SIM_uses_Charges = useCharges;
919 <  fInfo.SIM_uses_Dipoles = useDipoles;
920 <  fInfo.SIM_uses_Sticky = useSticky;
921 <  fInfo.SIM_uses_GayBerne = useGayBerne;
922 <  fInfo.SIM_uses_EAM = useEAM;
923 <  fInfo.SIM_uses_Shapes = useShapes;
459 <  fInfo.SIM_uses_FLARB = useFLARB;
460 <  fInfo.SIM_uses_RF = useReactionField;
918 >    if (isError) {
919 >      sprintf(painCave.errMsg,
920 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
921 >      painCave.isFatal = 1;
922 >      simError();
923 >    }
924  
925 <  n_exclude = excludes->getSize();
926 <  excl = excludes->getFortranArray();
464 <  
465 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
925 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
926 >    errorCheckPoint();
927   #endif
470  
471  isError = 0;
472  
473  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474  //it may not be a good idea to pass the address of first element in vector
475  //since c++ standard does not require vector to be stored continuously in meomory
476  //Most of the compilers will organize the memory of vector continuously
477  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
928  
929 <  if( isError ){
930 <    
931 <    sprintf( painCave.errMsg,
932 <             "There was an error setting the simulation information in fortran.\n" );
933 <    painCave.isFatal = 1;
934 <    painCave.severity = OOPSE_ERROR;
935 <    simError();
929 >    initFortranFF(&isError);
930 >    if (isError) {
931 >      sprintf(painCave.errMsg,
932 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
933 >      painCave.isFatal = 1;
934 >      simError();
935 >    }
936 >    fortranInitialized_ = true;
937    }
489  
490 #ifdef IS_MPI
491  sprintf( checkPointMsg,
492           "succesfully sent the simulation information to fortran.\n");
493  MPIcheckPoint();
494 #endif // is_mpi
495  
496  this->ndf = this->getNDF();
497  this->ndfRaw = this->getNDFraw();
498  this->ndfTrans = this->getNDFtranslational();
499 }
938  
939 < void SimInfo::setDefaultRcut( double theRcut ){
940 <  
941 <  haveRcut = 1;
504 <  rCut = theRcut;
505 <  rList = rCut + 1.0;
506 <  
507 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
508 < }
939 >  void SimInfo::addProperty(GenericData* genData) {
940 >    properties_.addProperty(genData);  
941 >  }
942  
943 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
943 >  void SimInfo::removeProperty(const string& propName) {
944 >    properties_.removeProperty(propName);  
945 >  }
946  
947 <  rSw = theRsw;
948 <  setDefaultRcut( theRcut );
949 < }
947 >  void SimInfo::clearProperties() {
948 >    properties_.clearProperties();
949 >  }
950  
951 +  vector<string> SimInfo::getPropertyNames() {
952 +    return properties_.getPropertyNames();  
953 +  }
954 +      
955 +  vector<GenericData*> SimInfo::getProperties() {
956 +    return properties_.getProperties();
957 +  }
958  
959 < void SimInfo::checkCutOffs( void ){
960 <  
961 <  if( boxIsInit ){
962 <    
963 <    //we need to check cutOffs against the box
964 <    
965 <    if( rCut > maxCutoff ){
966 <      sprintf( painCave.errMsg,
967 <               "cutoffRadius is too large for the current periodic box.\n"
968 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
969 <               "\tThis is larger than half of at least one of the\n"
970 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
971 <               "\n"
972 <               "\t[ %G %G %G ]\n"
973 <               "\t[ %G %G %G ]\n"
974 <               "\t[ %G %G %G ]\n",
975 <               rCut, currentTime,
976 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
977 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
978 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
979 <      painCave.severity = OOPSE_ERROR;
980 <      painCave.isFatal = 1;
981 <      simError();
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960 >    return properties_.getPropertyByName(propName);
961 >  }
962 >
963 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
964 >    if (sman_ == sman) {
965 >      return;
966 >    }    
967 >    delete sman_;
968 >    sman_ = sman;
969 >
970 >    Molecule* mol;
971 >    RigidBody* rb;
972 >    Atom* atom;
973 >    SimInfo::MoleculeIterator mi;
974 >    Molecule::RigidBodyIterator rbIter;
975 >    Molecule::AtomIterator atomIter;;
976 >
977 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
978 >        
979 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 >        atom->setSnapshotManager(sman_);
981 >      }
982 >        
983 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
984 >        rb->setSnapshotManager(sman_);
985 >      }
986      }    
987 <  } else {
542 <    // initialize this stuff before using it, OK?
543 <    sprintf( painCave.errMsg,
544 <             "Trying to check cutoffs without a box.\n"
545 <             "\tOOPSE should have better programmers than that.\n" );
546 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
987 >    
988    }
550  
551 }
989  
990 < void SimInfo::addProperty(GenericData* prop){
990 >  Vector3d SimInfo::getComVel(){
991 >    SimInfo::MoleculeIterator i;
992 >    Molecule* mol;
993  
994 <  map<string, GenericData*>::iterator result;
995 <  result = properties.find(prop->getID());
557 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
994 >    Vector3d comVel(0.0);
995 >    RealType totalMass = 0.0;
996      
997 <    delete (*result).second;
998 <    (*result).second = prop;
999 <      
997 >
998 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 >      RealType mass = mol->getMass();
1000 >      totalMass += mass;
1001 >      comVel += mass * mol->getComVel();
1002 >    }  
1003 >
1004 > #ifdef IS_MPI
1005 >    RealType tmpMass = totalMass;
1006 >    Vector3d tmpComVel(comVel);    
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009 > #endif
1010 >
1011 >    comVel /= totalMass;
1012 >
1013 >    return comVel;
1014    }
567  else{
1015  
1016 <    properties[prop->getID()] = prop;
1016 >  Vector3d SimInfo::getCom(){
1017 >    SimInfo::MoleculeIterator i;
1018 >    Molecule* mol;
1019  
1020 +    Vector3d com(0.0);
1021 +    RealType totalMass = 0.0;
1022 +    
1023 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 +      RealType mass = mol->getMass();
1025 +      totalMass += mass;
1026 +      com += mass * mol->getCom();
1027 +    }  
1028 +
1029 + #ifdef IS_MPI
1030 +    RealType tmpMass = totalMass;
1031 +    Vector3d tmpCom(com);    
1032 +    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 +    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034 + #endif
1035 +
1036 +    com /= totalMass;
1037 +
1038 +    return com;
1039 +
1040 +  }        
1041 +
1042 +  ostream& operator <<(ostream& o, SimInfo& info) {
1043 +
1044 +    return o;
1045    }
1046 +  
1047 +  
1048 +   /*
1049 +   Returns center of mass and center of mass velocity in one function call.
1050 +   */
1051 +  
1052 +   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1053 +      SimInfo::MoleculeIterator i;
1054 +      Molecule* mol;
1055 +      
1056      
1057 < }
1057 >      RealType totalMass = 0.0;
1058 >    
1059  
1060 < GenericData* SimInfo::getProperty(const string& propName){
1061 <
1062 <  map<string, GenericData*>::iterator result;
1063 <  
1064 <  //string lowerCaseName = ();
1065 <  
1066 <  result = properties.find(propName);
1067 <  
1068 <  if(result != properties.end())
1069 <    return (*result).second;  
1070 <  else  
1071 <    return NULL;  
1072 < }
1060 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 >         RealType mass = mol->getMass();
1062 >         totalMass += mass;
1063 >         com += mass * mol->getCom();
1064 >         comVel += mass * mol->getComVel();          
1065 >      }  
1066 >      
1067 > #ifdef IS_MPI
1068 >      RealType tmpMass = totalMass;
1069 >      Vector3d tmpCom(com);  
1070 >      Vector3d tmpComVel(comVel);
1071 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 > #endif
1075 >      
1076 >      com /= totalMass;
1077 >      comVel /= totalMass;
1078 >   }        
1079 >  
1080 >   /*
1081 >   Return intertia tensor for entire system and angular momentum Vector.
1082  
1083  
1084 < void SimInfo::getFortranGroupArrays(SimInfo* info,
1085 <                                    vector<int>& FglobalGroupMembership,
1086 <                                    vector<double>& mfact){
1087 <  
594 <  Molecule* myMols;
595 <  Atom** myAtoms;
596 <  int numAtom;
597 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
1084 >       [  Ixx -Ixy  -Ixz ]
1085 >    J =| -Iyx  Iyy  -Iyz |
1086 >       [ -Izx -Iyz   Izz ]
1087 >    */
1088  
1089 <  // Fix the silly fortran indexing problem
1089 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090 >      
1091 >
1092 >      RealType xx = 0.0;
1093 >      RealType yy = 0.0;
1094 >      RealType zz = 0.0;
1095 >      RealType xy = 0.0;
1096 >      RealType xz = 0.0;
1097 >      RealType yz = 0.0;
1098 >      Vector3d com(0.0);
1099 >      Vector3d comVel(0.0);
1100 >      
1101 >      getComAll(com, comVel);
1102 >      
1103 >      SimInfo::MoleculeIterator i;
1104 >      Molecule* mol;
1105 >      
1106 >      Vector3d thisq(0.0);
1107 >      Vector3d thisv(0.0);
1108 >
1109 >      RealType thisMass = 0.0;
1110 >    
1111 >      
1112 >      
1113 >  
1114 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115 >        
1116 >         thisq = mol->getCom()-com;
1117 >         thisv = mol->getComVel()-comVel;
1118 >         thisMass = mol->getMass();
1119 >         // Compute moment of intertia coefficients.
1120 >         xx += thisq[0]*thisq[0]*thisMass;
1121 >         yy += thisq[1]*thisq[1]*thisMass;
1122 >         zz += thisq[2]*thisq[2]*thisMass;
1123 >        
1124 >         // compute products of intertia
1125 >         xy += thisq[0]*thisq[1]*thisMass;
1126 >         xz += thisq[0]*thisq[2]*thisMass;
1127 >         yz += thisq[1]*thisq[2]*thisMass;
1128 >            
1129 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1130 >            
1131 >      }  
1132 >      
1133 >      
1134 >      inertiaTensor(0,0) = yy + zz;
1135 >      inertiaTensor(0,1) = -xy;
1136 >      inertiaTensor(0,2) = -xz;
1137 >      inertiaTensor(1,0) = -xy;
1138 >      inertiaTensor(1,1) = xx + zz;
1139 >      inertiaTensor(1,2) = -yz;
1140 >      inertiaTensor(2,0) = -xz;
1141 >      inertiaTensor(2,1) = -yz;
1142 >      inertiaTensor(2,2) = xx + yy;
1143 >      
1144   #ifdef IS_MPI
1145 <  numAtom = mpiSim->getNAtomsGlobal();
1146 < #else
1147 <  numAtom = n_atoms;
1145 >      Mat3x3d tmpI(inertiaTensor);
1146 >      Vector3d tmpAngMom;
1147 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149   #endif
1150 <  for (int i = 0; i < numAtom; i++)
1151 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
1152 <  
1150 >              
1151 >      return;
1152 >   }
1153  
1154 <  myMols = info->molecules;
1155 <  numMol = info->n_mol;
623 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
628 <
629 <      totalMass = myCutoffGroup->getMass();
1154 >   //Returns the angular momentum of the system
1155 >   Vector3d SimInfo::getAngularMomentum(){
1156        
1157 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1158 <          cutoffAtom != NULL;
1159 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1160 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1157 >      Vector3d com(0.0);
1158 >      Vector3d comVel(0.0);
1159 >      Vector3d angularMomentum(0.0);
1160 >      
1161 >      getComAll(com,comVel);
1162 >      
1163 >      SimInfo::MoleculeIterator i;
1164 >      Molecule* mol;
1165 >      
1166 >      Vector3d thisr(0.0);
1167 >      Vector3d thisp(0.0);
1168 >      
1169 >      RealType thisMass;
1170 >      
1171 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172 >        thisMass = mol->getMass();
1173 >        thisr = mol->getCom()-com;
1174 >        thisp = (mol->getComVel()-comVel)*thisMass;
1175 >        
1176 >        angularMomentum += cross( thisr, thisp );
1177 >        
1178        }  
1179 +      
1180 + #ifdef IS_MPI
1181 +      Vector3d tmpAngMom;
1182 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183 + #endif
1184 +      
1185 +      return angularMomentum;
1186 +   }
1187 +  
1188 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 +    return IOIndexToIntegrableObject.at(index);
1190 +  }
1191 +  
1192 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 +    IOIndexToIntegrableObject= v;
1194 +  }
1195 +
1196 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 +  */
1201 +  void SimInfo::getGyrationalVolume(RealType &volume){
1202 +    Mat3x3d intTensor;
1203 +    RealType det;
1204 +    Vector3d dummyAngMom;
1205 +    RealType sysconstants;
1206 +    RealType geomCnst;
1207 +
1208 +    geomCnst = 3.0/2.0;
1209 +    /* Get the inertial tensor and angular momentum for free*/
1210 +    getInertiaTensor(intTensor,dummyAngMom);
1211 +    
1212 +    det = intTensor.determinant();
1213 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1215 +    return;
1216 +  }
1217 +
1218 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 +    Mat3x3d intTensor;
1220 +    Vector3d dummyAngMom;
1221 +    RealType sysconstants;
1222 +    RealType geomCnst;
1223 +
1224 +    geomCnst = 3.0/2.0;
1225 +    /* Get the inertial tensor and angular momentum for free*/
1226 +    getInertiaTensor(intTensor,dummyAngMom);
1227 +    
1228 +    detI = intTensor.determinant();
1229 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1231 +    return;
1232 +  }
1233 + /*
1234 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1236 +      sdByGlobalIndex_ = v;
1237      }
1238 +
1239 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 +      //assert(index < nAtoms_ + nRigidBodies_);
1241 +      return sdByGlobalIndex_.at(index);
1242 +    }  
1243 + */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253    }
1254  
1255 < }
1255 > }//end namespace OpenMD
1256 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines