ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1597 by gezelter, Tue Jul 26 15:49:24 2011 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60   #include "io/ForceFieldOptions.hpp"
61   #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 <
72 < #ifdef IS_MPI
73 < #include "UseTheForce/mpiComponentPlan.h"
74 < #include "UseTheForce/DarkSide/simParallel_interface.h"
75 < #endif
76 <
64 > using namespace std;
65   namespace OpenMD {
78  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79    std::map<int, std::set<int> >::iterator i = container.find(index);
80    std::set<int> result;
81    if (i != container.end()) {
82        result = i->second;
83    }
84
85    return result;
86  }
66    
67    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68      forceField_(ff), simParams_(simParams),
# Line 92 | Line 71 | namespace OpenMD {
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 <    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
75 <    calcBoxDipole_(false), useAtomicVirial_(true) {
76 <
77 <
78 <      MoleculeStamp* molStamp;
79 <      int nMolWithSameStamp;
80 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
81 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
82 <      CutoffGroupStamp* cgStamp;    
83 <      RigidBodyStamp* rbStamp;
84 <      int nRigidAtoms = 0;
85 <
86 <      std::vector<Component*> components = simParams->getComponents();
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90        
91 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 <        molStamp = (*i)->getMoleculeStamp();
93 <        nMolWithSameStamp = (*i)->getNMol();
94 <        
95 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
96 <
97 <        //calculate atoms in molecules
98 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 <
100 <        //calculate atoms in cutoff groups
101 <        int nAtomsInGroups = 0;
102 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128  
129 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 +    
131 +    //every free atom (atom does not belong to rigid bodies) is an
132 +    //integrable object therefore the total number of integrable objects
133 +    //in the system is equal to the total number of atoms minus number of
134 +    //atoms belong to rigid body defined in meta-data file plus the number
135 +    //of rigid bodies defined in meta-data file
136 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 +      + nGlobalRigidBodies_;
138 +    
139 +    nGlobalMols_ = molStampIds_.size();
140 +    molToProcMap_.resize(nGlobalMols_);
141 +  }
142 +  
143    SimInfo::~SimInfo() {
144 <    std::map<int, Molecule*>::iterator i;
144 >    map<int, Molecule*>::iterator i;
145      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146        delete i->second;
147      }
# Line 173 | Line 152 | namespace OpenMD {
152      delete forceField_;
153    }
154  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
155  
156    bool SimInfo::addMolecule(Molecule* mol) {
157      MoleculeIterator i;
158 <
158 >    
159      i = molecules_.find(mol->getGlobalIndex());
160      if (i == molecules_.end() ) {
161 <
162 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
163 <        
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164        nAtoms_ += mol->getNAtoms();
165        nBonds_ += mol->getNBonds();
166        nBends_ += mol->getNBends();
# Line 201 | Line 170 | namespace OpenMD {
170        nIntegrableObjects_ += mol->getNIntegrableObjects();
171        nCutoffGroups_ += mol->getNCutoffGroups();
172        nConstraints_ += mol->getNConstraintPairs();
173 <
173 >      
174        addInteractionPairs(mol);
175 <  
175 >      
176        return true;
177      } else {
178        return false;
179      }
180    }
181 <
181 >  
182    bool SimInfo::removeMolecule(Molecule* mol) {
183      MoleculeIterator i;
184      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 206 | namespace OpenMD {
206      } else {
207        return false;
208      }
240
241
209    }    
210  
211          
# Line 256 | Line 223 | namespace OpenMD {
223    void SimInfo::calcNdf() {
224      int ndf_local;
225      MoleculeIterator i;
226 <    std::vector<StuntDouble*>::iterator j;
226 >    vector<StuntDouble*>::iterator j;
227      Molecule* mol;
228      StuntDouble* integrableObject;
229  
# Line 302 | Line 269 | namespace OpenMD {
269   #endif
270      return fdf_;
271    }
272 +  
273 +  unsigned int SimInfo::getNLocalCutoffGroups(){
274 +    int nLocalCutoffAtoms = 0;
275 +    Molecule* mol;
276 +    MoleculeIterator mi;
277 +    CutoffGroup* cg;
278 +    Molecule::CutoffGroupIterator ci;
279      
280 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 +      
282 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 +           cg = mol->nextCutoffGroup(ci)) {
284 +        nLocalCutoffAtoms += cg->getNumAtom();
285 +        
286 +      }        
287 +    }
288 +    
289 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 +  }
291 +    
292    void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
295      MoleculeIterator i;
296 <    std::vector<StuntDouble*>::iterator j;
296 >    vector<StuntDouble*>::iterator j;
297      Molecule* mol;
298      StuntDouble* integrableObject;
299  
# Line 356 | Line 342 | namespace OpenMD {
342  
343    void SimInfo::addInteractionPairs(Molecule* mol) {
344      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 <    std::vector<Bond*>::iterator bondIter;
346 <    std::vector<Bend*>::iterator bendIter;
347 <    std::vector<Torsion*>::iterator torsionIter;
348 <    std::vector<Inversion*>::iterator inversionIter;
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349      Bond* bond;
350      Bend* bend;
351      Torsion* torsion;
# Line 377 | Line 363 | namespace OpenMD {
363      // always be excluded.  These are done at the bottom of this
364      // function.
365  
366 <    std::map<int, std::set<int> > atomGroups;
366 >    map<int, set<int> > atomGroups;
367      Molecule::RigidBodyIterator rbIter;
368      RigidBody* rb;
369      Molecule::IntegrableObjectIterator ii;
# Line 389 | Line 375 | namespace OpenMD {
375        
376        if (integrableObject->isRigidBody()) {
377          rb = static_cast<RigidBody*>(integrableObject);
378 <        std::vector<Atom*> atoms = rb->getAtoms();
379 <        std::set<int> rigidAtoms;
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382          }
383          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385          }      
386        } else {
387 <        std::set<int> oneAtomSet;
387 >        set<int> oneAtomSet;
388          oneAtomSet.insert(integrableObject->getGlobalIndex());
389 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390        }
391      }  
392            
# Line 503 | Line 489 | namespace OpenMD {
489  
490      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491           rb = mol->nextRigidBody(rbIter)) {
492 <      std::vector<Atom*> atoms = rb->getAtoms();
492 >      vector<Atom*> atoms = rb->getAtoms();
493        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 503 | namespace OpenMD {
503  
504    void SimInfo::removeInteractionPairs(Molecule* mol) {
505      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 <    std::vector<Bond*>::iterator bondIter;
507 <    std::vector<Bend*>::iterator bendIter;
508 <    std::vector<Torsion*>::iterator torsionIter;
509 <    std::vector<Inversion*>::iterator inversionIter;
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
# Line 530 | Line 516 | namespace OpenMD {
516      int c;
517      int d;
518  
519 <    std::map<int, std::set<int> > atomGroups;
519 >    map<int, set<int> > atomGroups;
520      Molecule::RigidBodyIterator rbIter;
521      RigidBody* rb;
522      Molecule::IntegrableObjectIterator ii;
# Line 542 | Line 528 | namespace OpenMD {
528        
529        if (integrableObject->isRigidBody()) {
530          rb = static_cast<RigidBody*>(integrableObject);
531 <        std::vector<Atom*> atoms = rb->getAtoms();
532 <        std::set<int> rigidAtoms;
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534            rigidAtoms.insert(atoms[i]->getGlobalIndex());
535          }
536          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538          }      
539        } else {
540 <        std::set<int> oneAtomSet;
540 >        set<int> oneAtomSet;
541          oneAtomSet.insert(integrableObject->getGlobalIndex());
542 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543        }
544      }  
545  
# Line 656 | Line 642 | namespace OpenMD {
642  
643      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644           rb = mol->nextRigidBody(rbIter)) {
645 <      std::vector<Atom*> atoms = rb->getAtoms();
645 >      vector<Atom*> atoms = rb->getAtoms();
646        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 665 | namespace OpenMD {
665      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666    }
667  
682  void SimInfo::update() {
668  
669 <    setupSimType();
670 <
671 < #ifdef IS_MPI
672 <    setupFortranParallel();
673 < #endif
674 <
675 <    setupFortranSim();
676 <
677 <    //setup fortran force field
693 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
712
713    fortranInitialized_ = true;
681    }
682 <
683 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
682 >  
683 >  /**
684 >   * getSimulatedAtomTypes
685 >   *
686 >   * Returns an STL set of AtomType* that are actually present in this
687 >   * simulation.  Must query all processors to assemble this information.
688 >   *
689 >   */
690 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691      SimInfo::MoleculeIterator mi;
692      Molecule* mol;
693      Molecule::AtomIterator ai;
694      Atom* atom;
695 <    std::set<AtomType*> atomTypes;
696 <
695 >    set<AtomType*> atomTypes;
696 >    
697      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 <
699 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
698 >      for(atom = mol->beginAtom(ai); atom != NULL;
699 >          atom = mol->nextAtom(ai)) {
700          atomTypes.insert(atom->getAtomType());
701 <      }
702 <        
703 <    }
701 >      }      
702 >    }    
703 >    
704 > #ifdef IS_MPI
705  
706 <    return atomTypes;        
707 <  }
733 <
734 <  void SimInfo::setupSimType() {
735 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
706 >    // loop over the found atom types on this processor, and add their
707 >    // numerical idents to a vector:
708      
709 <    int useLennardJones = 0;
710 <    int useElectrostatic = 0;
711 <    int useEAM = 0;
712 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
709 >    vector<int> foundTypes;
710 >    set<AtomType*>::iterator i;
711 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
712 >      foundTypes.push_back( (*i)->getIdent() );
713  
714 <    std::string myMethod;
714 >    // count_local holds the number of found types on this processor
715 >    int count_local = foundTypes.size();
716  
717 <    // set the useRF logical
763 <    useRF = 0;
764 <    useSF = 0;
765 <    useSP = 0;
766 <    useBoxDipole = 0;
717 >    int nproc = MPI::COMM_WORLD.Get_size();
718  
719 +    // we need arrays to hold the counts and displacement vectors for
720 +    // all processors
721 +    vector<int> counts(nproc, 0);
722 +    vector<int> disps(nproc, 0);
723  
724 <    if (simParams_->haveElectrostaticSummationMethod()) {
725 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
726 <      toUpper(myMethod);
727 <      if (myMethod == "REACTION_FIELD"){
728 <        useRF = 1;
729 <      } else if (myMethod == "SHIFTED_FORCE"){
730 <        useSF = 1;
731 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
732 <        useSP = 1;
733 <      }
724 >    // fill the counts array
725 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 >                              1, MPI::INT);
727 >  
728 >    // use the processor counts to compute the displacement array
729 >    disps[0] = 0;    
730 >    int totalCount = counts[0];
731 >    for (int iproc = 1; iproc < nproc; iproc++) {
732 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 >      totalCount += counts[iproc];
734      }
735 +
736 +    // we need a (possibly redundant) set of all found types:
737 +    vector<int> ftGlobal(totalCount);
738      
739 <    if (simParams_->haveAccumulateBoxDipole())
740 <      if (simParams_->getAccumulateBoxDipole())
741 <        useBoxDipole = 1;
739 >    // now spray out the foundTypes to all the other processors:    
740 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 >                               &ftGlobal[0], &counts[0], &disps[0],
742 >                               MPI::INT);
743  
744 <    useAtomicVirial_ = simParams_->getUseAtomicVirial();
744 >    vector<int>::iterator j;
745  
746 <    //loop over all of the atom types
747 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
748 <      useLennardJones |= (*i)->isLennardJones();
790 <      useElectrostatic |= (*i)->isElectrostatic();
791 <      useEAM |= (*i)->isEAM();
792 <      useSC |= (*i)->isSC();
793 <      useCharge |= (*i)->isCharge();
794 <      useDirectional |= (*i)->isDirectional();
795 <      useDipole |= (*i)->isDipole();
796 <      useGayBerne |= (*i)->isGayBerne();
797 <      useSticky |= (*i)->isSticky();
798 <      useStickyPower |= (*i)->isStickyPower();
799 <      useShape |= (*i)->isShape();
800 <    }
746 >    // foundIdents is a stl set, so inserting an already found ident
747 >    // will have no effect.
748 >    set<int> foundIdents;
749  
750 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
751 <      useDirectionalAtom = 1;
752 <    }
750 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751 >      foundIdents.insert((*j));
752 >    
753 >    // now iterate over the foundIdents and get the actual atom types
754 >    // that correspond to these:
755 >    set<int>::iterator it;
756 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757 >      atomTypes.insert( forceField_->getAtomType((*it)) );
758 >
759 > #endif
760  
761 <    if (useCharge || useDipole) {
762 <      useElectrostatics = 1;
808 <    }
761 >    return atomTypes;        
762 >  }
763  
764 +  void SimInfo::setupSimVariables() {
765 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
766 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
767 +    calcBoxDipole_ = false;
768 +    if ( simParams_->haveAccumulateBoxDipole() )
769 +      if ( simParams_->getAccumulateBoxDipole() ) {
770 +        calcBoxDipole_ = true;      
771 +      }
772 +    
773 +    set<AtomType*>::iterator i;
774 +    set<AtomType*> atomTypes;
775 +    atomTypes = getSimulatedAtomTypes();    
776 +    int usesElectrostatic = 0;
777 +    int usesMetallic = 0;
778 +    int usesDirectional = 0;
779 +    //loop over all of the atom types
780 +    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
781 +      usesElectrostatic |= (*i)->isElectrostatic();
782 +      usesMetallic |= (*i)->isMetal();
783 +      usesDirectional |= (*i)->isDirectional();
784 +    }
785 +    
786   #ifdef IS_MPI    
787      int temp;
788 +    temp = usesDirectional;
789 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 +    
791 +    temp = usesMetallic;
792 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 +    
794 +    temp = usesElectrostatic;
795 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 + #else
797  
798 <    temp = usePBC;
799 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    usesDirectionalAtoms_ = usesDirectional;
799 >    usesMetallicAtoms_ = usesMetallic;
800 >    usesElectrostaticAtoms_ = usesElectrostatic;
801  
802 <    temp = useDirectionalAtom;
803 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 > #endif
803 >    
804 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
807 >  }
808  
819    temp = useLennardJones;
820    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809  
810 <    temp = useElectrostatics;
811 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >  vector<int> SimInfo::getGlobalAtomIndices() {
811 >    SimInfo::MoleculeIterator mi;
812 >    Molecule* mol;
813 >    Molecule::AtomIterator ai;
814 >    Atom* atom;
815  
816 <    temp = useCharge;
826 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 <
828 <    temp = useDipole;
829 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 <
831 <    temp = useSticky;
832 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 <
834 <    temp = useStickyPower;
835 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
817      
818 <    temp = useGayBerne;
819 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
819 >      
820 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 >        cerr << "LI = " << atom->getLocalIndex() << "GAI = " << GlobalAtomIndices[atom->getLocalIndex()] << "\n";
823 >      }
824 >    }
825 >    return GlobalAtomIndices;
826 >  }
827  
840    temp = useEAM;
841    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
828  
829 <    temp = useSC;
830 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
831 <    
832 <    temp = useShape;
833 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
829 >  vector<int> SimInfo::getGlobalGroupIndices() {
830 >    SimInfo::MoleculeIterator mi;
831 >    Molecule* mol;
832 >    Molecule::CutoffGroupIterator ci;
833 >    CutoffGroup* cg;
834  
835 <    temp = useFLARB;
836 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837 <
838 <    temp = useRF;
839 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 <
841 <    temp = useSF;
842 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
843 <
844 <    temp = useSP;
845 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
846 <
847 <    temp = useBoxDipole;
862 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 <
864 <    temp = useAtomicVirial_;
865 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866 <
867 < #endif
868 <
869 <    fInfo_.SIM_uses_PBC = usePBC;    
870 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
871 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
872 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
873 <    fInfo_.SIM_uses_Charges = useCharge;
874 <    fInfo_.SIM_uses_Dipoles = useDipole;
875 <    fInfo_.SIM_uses_Sticky = useSticky;
876 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
877 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
878 <    fInfo_.SIM_uses_EAM = useEAM;
879 <    fInfo_.SIM_uses_SC = useSC;
880 <    fInfo_.SIM_uses_Shapes = useShape;
881 <    fInfo_.SIM_uses_FLARB = useFLARB;
882 <    fInfo_.SIM_uses_RF = useRF;
883 <    fInfo_.SIM_uses_SF = useSF;
884 <    fInfo_.SIM_uses_SP = useSP;
885 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
835 >    vector<int> GlobalGroupIndices;
836 >    
837 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
838 >      
839 >      //local index of cutoff group is trivial, it only depends on the
840 >      //order of travesing
841 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
842 >           cg = mol->nextCutoffGroup(ci)) {
843 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
844 >        cerr << "LI, GGI = " << GlobalGroupIndices.size() << " " << cg->getGlobalIndex() << "\n";
845 >      }        
846 >    }
847 >    return GlobalGroupIndices;
848    }
849  
850 <  void SimInfo::setupFortranSim() {
851 <    int isError;
850 >
851 >  void SimInfo::prepareTopology() {
852      int nExclude, nOneTwo, nOneThree, nOneFour;
892    std::vector<int> fortranGlobalGroupMembership;
893    
894    isError = 0;
853  
896    //globalGroupMembership_ is filled by SimCreator    
897    for (int i = 0; i < nGlobalAtoms_; i++) {
898      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
899    }
900
854      //calculate mass ratio of cutoff group
902    std::vector<RealType> mfact;
855      SimInfo::MoleculeIterator mi;
856      Molecule* mol;
857      Molecule::CutoffGroupIterator ci;
# Line 908 | Line 860 | namespace OpenMD {
860      Atom* atom;
861      RealType totalMass;
862  
863 <    //to avoid memory reallocation, reserve enough space for mfact
864 <    mfact.reserve(getNCutoffGroups());
863 >    /**
864 >     * The mass factor is the relative mass of an atom to the total
865 >     * mass of the cutoff group it belongs to.  By default, all atoms
866 >     * are their own cutoff groups, and therefore have mass factors of
867 >     * 1.  We need some special handling for massless atoms, which
868 >     * will be treated as carrying the entire mass of the cutoff
869 >     * group.
870 >     */
871 >    massFactors_.clear();
872 >    massFactors_.resize(getNAtoms(), 1.0);
873      
874      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
875 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
875 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
876 >           cg = mol->nextCutoffGroup(ci)) {
877  
878          totalMass = cg->getMass();
879          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
880            // Check for massless groups - set mfact to 1 if true
881 <          if (totalMass != 0)
882 <            mfact.push_back(atom->getMass()/totalMass);
881 >          if (totalMass != 0)
882 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
883            else
884 <            mfact.push_back( 1.0 );
884 >            massFactors_[atom->getLocalIndex()] = 1.0;
885          }
886        }      
887      }
888  
889 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
929 <    std::vector<int> identArray;
889 >    // Build the identArray_
890  
891 <    //to avoid memory reallocation, reserve enough space identArray
892 <    identArray.reserve(getNAtoms());
933 <    
891 >    identArray_.clear();
892 >    identArray_.reserve(getNAtoms());    
893      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
894        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
895 <        identArray.push_back(atom->getIdent());
895 >        identArray_.push_back(atom->getIdent());
896        }
897      }    
939
940    //fill molMembershipArray
941    //molMembershipArray is filled by SimCreator    
942    std::vector<int> molMembershipArray(nGlobalAtoms_);
943    for (int i = 0; i < nGlobalAtoms_; i++) {
944      molMembershipArray[i] = globalMolMembership_[i] + 1;
945    }
898      
899 <    //setup fortran simulation
899 >    //scan topology
900  
901      nExclude = excludedInteractions_.getSize();
902      nOneTwo = oneTwoInteractions_.getSize();
# Line 956 | Line 908 | namespace OpenMD {
908      int* oneThreeList = oneThreeInteractions_.getPairList();
909      int* oneFourList = oneFourInteractions_.getPairList();
910  
911 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
960 <                   &nExclude, excludeList,
961 <                   &nOneTwo, oneTwoList,
962 <                   &nOneThree, oneThreeList,
963 <                   &nOneFour, oneFourList,
964 <                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
965 <                   &fortranGlobalGroupMembership[0], &isError);
966 <    
967 <    if( isError ){
968 <      
969 <      sprintf( painCave.errMsg,
970 <               "There was an error setting the simulation information in fortran.\n" );
971 <      painCave.isFatal = 1;
972 <      painCave.severity = OPENMD_ERROR;
973 <      simError();
974 <    }
975 <    
976 <    
977 <    sprintf( checkPointMsg,
978 <             "succesfully sent the simulation information to fortran.\n");
979 <    
980 <    errorCheckPoint();
981 <    
982 <    // Setup number of neighbors in neighbor list if present
983 <    if (simParams_->haveNeighborListNeighbors()) {
984 <      int nlistNeighbors = simParams_->getNeighborListNeighbors();
985 <      setNeighbors(&nlistNeighbors);
986 <    }
987 <  
988 <
989 <  }
990 <
991 <
992 <  void SimInfo::setupFortranParallel() {
993 < #ifdef IS_MPI    
994 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
995 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
996 <    std::vector<int> localToGlobalCutoffGroupIndex;
997 <    SimInfo::MoleculeIterator mi;
998 <    Molecule::AtomIterator ai;
999 <    Molecule::CutoffGroupIterator ci;
1000 <    Molecule* mol;
1001 <    Atom* atom;
1002 <    CutoffGroup* cg;
1003 <    mpiSimData parallelData;
1004 <    int isError;
1005 <
1006 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
1007 <
1008 <      //local index(index in DataStorge) of atom is important
1009 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
1010 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
1011 <      }
1012 <
1013 <      //local index of cutoff group is trivial, it only depends on the order of travesing
1014 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
1015 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
1016 <      }        
1017 <        
1018 <    }
1019 <
1020 <    //fill up mpiSimData struct
1021 <    parallelData.nMolGlobal = getNGlobalMolecules();
1022 <    parallelData.nMolLocal = getNMolecules();
1023 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
1024 <    parallelData.nAtomsLocal = getNAtoms();
1025 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
1026 <    parallelData.nGroupsLocal = getNCutoffGroups();
1027 <    parallelData.myNode = worldRank;
1028 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
1029 <
1030 <    //pass mpiSimData struct and index arrays to fortran
1031 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
1032 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
1033 <                    &localToGlobalCutoffGroupIndex[0], &isError);
1034 <
1035 <    if (isError) {
1036 <      sprintf(painCave.errMsg,
1037 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
1038 <      painCave.isFatal = 1;
1039 <      simError();
1040 <    }
1041 <
1042 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
1043 <    errorCheckPoint();
1044 <
1045 < #endif
1046 <  }
1047 <
1048 <  void SimInfo::setupCutoff() {          
1049 <    
1050 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1051 <
1052 <    // Check the cutoff policy
1053 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054 <
1055 <    // Set LJ shifting bools to false
1056 <    ljsp_ = 0;
1057 <    ljsf_ = 0;
1058 <
1059 <    std::string myPolicy;
1060 <    if (forceFieldOptions_.haveCutoffPolicy()){
1061 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 <    }else if (simParams_->haveCutoffPolicy()) {
1063 <      myPolicy = simParams_->getCutoffPolicy();
1064 <    }
1065 <
1066 <    if (!myPolicy.empty()){
1067 <      toUpper(myPolicy);
1068 <      if (myPolicy == "MIX") {
1069 <        cp = MIX_CUTOFF_POLICY;
1070 <      } else {
1071 <        if (myPolicy == "MAX") {
1072 <          cp = MAX_CUTOFF_POLICY;
1073 <        } else {
1074 <          if (myPolicy == "TRADITIONAL") {            
1075 <            cp = TRADITIONAL_CUTOFF_POLICY;
1076 <          } else {
1077 <            // throw error        
1078 <            sprintf( painCave.errMsg,
1079 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1080 <            painCave.isFatal = 1;
1081 <            simError();
1082 <          }    
1083 <        }          
1084 <      }
1085 <    }          
1086 <    notifyFortranCutoffPolicy(&cp);
1087 <
1088 <    // Check the Skin Thickness for neighborlists
1089 <    RealType skin;
1090 <    if (simParams_->haveSkinThickness()) {
1091 <      skin = simParams_->getSkinThickness();
1092 <      notifyFortranSkinThickness(&skin);
1093 <    }            
1094 <        
1095 <    // Check if the cutoff was set explicitly:
1096 <    if (simParams_->haveCutoffRadius()) {
1097 <      rcut_ = simParams_->getCutoffRadius();
1098 <      if (simParams_->haveSwitchingRadius()) {
1099 <        rsw_  = simParams_->getSwitchingRadius();
1100 <      } else {
1101 <        if (fInfo_.SIM_uses_Charges |
1102 <            fInfo_.SIM_uses_Dipoles |
1103 <            fInfo_.SIM_uses_RF) {
1104 <          
1105 <          rsw_ = 0.85 * rcut_;
1106 <          sprintf(painCave.errMsg,
1107 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1109 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 <        painCave.isFatal = 0;
1111 <        simError();
1112 <        } else {
1113 <          rsw_ = rcut_;
1114 <          sprintf(painCave.errMsg,
1115 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1117 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 <          painCave.isFatal = 0;
1119 <          simError();
1120 <        }
1121 <      }
1122 <
1123 <      if (simParams_->haveElectrostaticSummationMethod()) {
1124 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125 <        toUpper(myMethod);
1126 <        
1127 <        if (myMethod == "SHIFTED_POTENTIAL") {
1128 <          ljsp_ = 1;
1129 <        } else if (myMethod == "SHIFTED_FORCE") {
1130 <          ljsf_ = 1;
1131 <        }
1132 <      }
1133 <
1134 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1135 <      
1136 <    } else {
1137 <      
1138 <      // For electrostatic atoms, we'll assume a large safe value:
1139 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1140 <        sprintf(painCave.errMsg,
1141 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1142 <                "\tOpenMD will use a default value of 15.0 angstroms"
1143 <                "\tfor the cutoffRadius.\n");
1144 <        painCave.isFatal = 0;
1145 <        simError();
1146 <        rcut_ = 15.0;
1147 <      
1148 <        if (simParams_->haveElectrostaticSummationMethod()) {
1149 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1150 <          toUpper(myMethod);
1151 <      
1152 <      // For the time being, we're tethering the LJ shifted behavior to the
1153 <      // electrostaticSummationMethod keyword options
1154 <          if (myMethod == "SHIFTED_POTENTIAL") {
1155 <            ljsp_ = 1;
1156 <          } else if (myMethod == "SHIFTED_FORCE") {
1157 <            ljsf_ = 1;
1158 <          }
1159 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1160 <            if (simParams_->haveSwitchingRadius()){
1161 <              sprintf(painCave.errMsg,
1162 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1163 <                      "\teven though the electrostaticSummationMethod was\n"
1164 <                      "\tset to %s\n", myMethod.c_str());
1165 <              painCave.isFatal = 1;
1166 <              simError();            
1167 <            }
1168 <          }
1169 <        }
1170 <      
1171 <        if (simParams_->haveSwitchingRadius()){
1172 <          rsw_ = simParams_->getSwitchingRadius();
1173 <        } else {        
1174 <          sprintf(painCave.errMsg,
1175 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1176 <                  "\tOpenMD will use a default value of\n"
1177 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1178 <          painCave.isFatal = 0;
1179 <          simError();
1180 <          rsw_ = 0.85 * rcut_;
1181 <        }
1182 <
1183 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1184 <
1185 <      } else {
1186 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1187 <        // We'll punt and let fortran figure out the cutoffs later.
1188 <        
1189 <        notifyFortranYouAreOnYourOwn();
1190 <
1191 <      }
1192 <    }
911 >    topologyDone_ = true;
912    }
913  
1195  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1196    
1197    int errorOut;
1198    int esm =  NONE;
1199    int sm = UNDAMPED;
1200    RealType alphaVal;
1201    RealType dielectric;
1202    
1203    errorOut = isError;
1204
1205    if (simParams_->haveElectrostaticSummationMethod()) {
1206      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1207      toUpper(myMethod);
1208      if (myMethod == "NONE") {
1209        esm = NONE;
1210      } else {
1211        if (myMethod == "SWITCHING_FUNCTION") {
1212          esm = SWITCHING_FUNCTION;
1213        } else {
1214          if (myMethod == "SHIFTED_POTENTIAL") {
1215            esm = SHIFTED_POTENTIAL;
1216          } else {
1217            if (myMethod == "SHIFTED_FORCE") {            
1218              esm = SHIFTED_FORCE;
1219            } else {
1220              if (myMethod == "REACTION_FIELD") {
1221                esm = REACTION_FIELD;
1222                dielectric = simParams_->getDielectric();
1223                if (!simParams_->haveDielectric()) {
1224                  // throw warning
1225                  sprintf( painCave.errMsg,
1226                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1227                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1228                  painCave.isFatal = 0;
1229                  simError();
1230                }
1231              } else {
1232                // throw error        
1233                sprintf( painCave.errMsg,
1234                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1235                         "\t(Input file specified %s .)\n"
1236                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1237                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1238                         "\t\"reaction_field\".\n", myMethod.c_str() );
1239                painCave.isFatal = 1;
1240                simError();
1241              }    
1242            }          
1243          }
1244        }
1245      }
1246    }
1247    
1248    if (simParams_->haveElectrostaticScreeningMethod()) {
1249      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1250      toUpper(myScreen);
1251      if (myScreen == "UNDAMPED") {
1252        sm = UNDAMPED;
1253      } else {
1254        if (myScreen == "DAMPED") {
1255          sm = DAMPED;
1256          if (!simParams_->haveDampingAlpha()) {
1257            // first set a cutoff dependent alpha value
1258            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1259            alphaVal = 0.5125 - rcut_* 0.025;
1260            // for values rcut > 20.5, alpha is zero
1261            if (alphaVal < 0) alphaVal = 0;
1262
1263            // throw warning
1264            sprintf( painCave.errMsg,
1265                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1266                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1267            painCave.isFatal = 0;
1268            simError();
1269          } else {
1270            alphaVal = simParams_->getDampingAlpha();
1271          }
1272          
1273        } else {
1274          // throw error        
1275          sprintf( painCave.errMsg,
1276                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1277                   "\t(Input file specified %s .)\n"
1278                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1279                   "or \"damped\".\n", myScreen.c_str() );
1280          painCave.isFatal = 1;
1281          simError();
1282        }
1283      }
1284    }
1285    
1286    // let's pass some summation method variables to fortran
1287    setElectrostaticSummationMethod( &esm );
1288    setFortranElectrostaticMethod( &esm );
1289    setScreeningMethod( &sm );
1290    setDampingAlpha( &alphaVal );
1291    setReactionFieldDielectric( &dielectric );
1292    initFortranFF( &errorOut );
1293  }
1294
1295  void SimInfo::setupSwitchingFunction() {    
1296    int ft = CUBIC;
1297
1298    if (simParams_->haveSwitchingFunctionType()) {
1299      std::string funcType = simParams_->getSwitchingFunctionType();
1300      toUpper(funcType);
1301      if (funcType == "CUBIC") {
1302        ft = CUBIC;
1303      } else {
1304        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1305          ft = FIFTH_ORDER_POLY;
1306        } else {
1307          // throw error        
1308          sprintf( painCave.errMsg,
1309                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1310          painCave.isFatal = 1;
1311          simError();
1312        }          
1313      }
1314    }
1315
1316    // send switching function notification to switcheroo
1317    setFunctionType(&ft);
1318
1319  }
1320
1321  void SimInfo::setupAccumulateBoxDipole() {    
1322
1323    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1324    if ( simParams_->haveAccumulateBoxDipole() )
1325      if ( simParams_->getAccumulateBoxDipole() ) {
1326        setAccumulateBoxDipole();
1327        calcBoxDipole_ = true;
1328      }
1329
1330  }
1331
914    void SimInfo::addProperty(GenericData* genData) {
915      properties_.addProperty(genData);  
916    }
917  
918 <  void SimInfo::removeProperty(const std::string& propName) {
918 >  void SimInfo::removeProperty(const string& propName) {
919      properties_.removeProperty(propName);  
920    }
921  
# Line 1341 | Line 923 | namespace OpenMD {
923      properties_.clearProperties();
924    }
925  
926 <  std::vector<std::string> SimInfo::getPropertyNames() {
926 >  vector<string> SimInfo::getPropertyNames() {
927      return properties_.getPropertyNames();  
928    }
929        
930 <  std::vector<GenericData*> SimInfo::getProperties() {
930 >  vector<GenericData*> SimInfo::getProperties() {
931      return properties_.getProperties();
932    }
933  
934 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
934 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
935      return properties_.getPropertyByName(propName);
936    }
937  
# Line 1363 | Line 945 | namespace OpenMD {
945      Molecule* mol;
946      RigidBody* rb;
947      Atom* atom;
948 +    CutoffGroup* cg;
949      SimInfo::MoleculeIterator mi;
950      Molecule::RigidBodyIterator rbIter;
951 <    Molecule::AtomIterator atomIter;;
951 >    Molecule::AtomIterator atomIter;
952 >    Molecule::CutoffGroupIterator cgIter;
953  
954      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
955          
# Line 1376 | Line 960 | namespace OpenMD {
960        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
961          rb->setSnapshotManager(sman_);
962        }
963 +
964 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
965 +        cg->setSnapshotManager(sman_);
966 +      }
967      }    
968      
969    }
# Line 1432 | Line 1020 | namespace OpenMD {
1020  
1021    }        
1022  
1023 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1023 >  ostream& operator <<(ostream& o, SimInfo& info) {
1024  
1025      return o;
1026    }
# Line 1475 | Line 1063 | namespace OpenMD {
1063  
1064  
1065         [  Ixx -Ixy  -Ixz ]
1066 <  J =| -Iyx  Iyy  -Iyz |
1066 >    J =| -Iyx  Iyy  -Iyz |
1067         [ -Izx -Iyz   Izz ]
1068      */
1069  
# Line 1582 | Line 1170 | namespace OpenMD {
1170      return IOIndexToIntegrableObject.at(index);
1171    }
1172    
1173 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1173 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1174      IOIndexToIntegrableObject= v;
1175    }
1176  
# Line 1624 | Line 1212 | namespace OpenMD {
1212      return;
1213    }
1214   /*
1215 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1215 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1216        assert( v.size() == nAtoms_ + nRigidBodies_);
1217        sdByGlobalIndex_ = v;
1218      }
# Line 1634 | Line 1222 | namespace OpenMD {
1222        return sdByGlobalIndex_.at(index);
1223      }  
1224   */  
1225 +  int SimInfo::getNGlobalConstraints() {
1226 +    int nGlobalConstraints;
1227 + #ifdef IS_MPI
1228 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1229 +                  MPI_COMM_WORLD);    
1230 + #else
1231 +    nGlobalConstraints =  nConstraints_;
1232 + #endif
1233 +    return nGlobalConstraints;
1234 +  }
1235 +
1236   }//end namespace OpenMD
1237  

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1597 by gezelter, Tue Jul 26 15:49:24 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines