ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
57   #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
58 > #include "UseTheForce/doForces_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62   #include "io/ForceFieldOptions.hpp"
63   #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
71
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 + using namespace std;
72   namespace OpenMD {
78  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79    std::map<int, std::set<int> >::iterator i = container.find(index);
80    std::set<int> result;
81    if (i != container.end()) {
82        result = i->second;
83    }
84
85    return result;
86  }
73    
74    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75      forceField_(ff), simParams_(simParams),
# Line 93 | Line 79 | namespace OpenMD {
79      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81      nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 <    calcBoxDipole_(false), useAtomicVirial_(true) {
83 <
84 <
85 <      MoleculeStamp* molStamp;
86 <      int nMolWithSameStamp;
87 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
89 <      CutoffGroupStamp* cgStamp;    
90 <      RigidBodyStamp* rbStamp;
91 <      int nRigidAtoms = 0;
92 <
93 <      std::vector<Component*> components = simParams->getComponents();
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97        
98 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 <        molStamp = (*i)->getMoleculeStamp();
100 <        nMolWithSameStamp = (*i)->getNMol();
101 <        
102 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
103 <
104 <        //calculate atoms in molecules
105 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 <
107 <        //calculate atoms in cutoff groups
108 <        int nAtomsInGroups = 0;
109 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
113 <      //group therefore the total number of cutoff groups in the system is
114 <      //equal to the total number of atoms minus number of atoms belong to
115 <      //cutoff group defined in meta-data file plus the number of cutoff
116 <      //groups defined in meta-data file
117 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
118 <
119 <      //every free atom (atom does not belong to rigid bodies) is an
120 <      //integrable object therefore the total number of integrable objects
121 <      //in the system is equal to the total number of atoms minus number of
122 <      //atoms belong to rigid body defined in meta-data file plus the number
123 <      //of rigid bodies defined in meta-data file
124 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
125 <                                                + nGlobalRigidBodies_;
126 <  
127 <      nGlobalMols_ = molStampIds_.size();
128 <      molToProcMap_.resize(nGlobalMols_);
129 <    }
130 <
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128 >    }
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145 >    nGlobalMols_ = molStampIds_.size();
146 >    molToProcMap_.resize(nGlobalMols_);
147 >  }
148 >  
149    SimInfo::~SimInfo() {
150 <    std::map<int, Molecule*>::iterator i;
150 >    map<int, Molecule*>::iterator i;
151      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152        delete i->second;
153      }
# Line 173 | Line 158 | namespace OpenMD {
158      delete forceField_;
159    }
160  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
161  
162    bool SimInfo::addMolecule(Molecule* mol) {
163      MoleculeIterator i;
164 <
164 >    
165      i = molecules_.find(mol->getGlobalIndex());
166      if (i == molecules_.end() ) {
167 <
168 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
169 <        
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170        nAtoms_ += mol->getNAtoms();
171        nBonds_ += mol->getNBonds();
172        nBends_ += mol->getNBends();
# Line 201 | Line 176 | namespace OpenMD {
176        nIntegrableObjects_ += mol->getNIntegrableObjects();
177        nCutoffGroups_ += mol->getNCutoffGroups();
178        nConstraints_ += mol->getNConstraintPairs();
179 <
179 >      
180        addInteractionPairs(mol);
181 <  
181 >      
182        return true;
183      } else {
184        return false;
185      }
186    }
187 <
187 >  
188    bool SimInfo::removeMolecule(Molecule* mol) {
189      MoleculeIterator i;
190      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 212 | namespace OpenMD {
212      } else {
213        return false;
214      }
240
241
215    }    
216  
217          
# Line 256 | Line 229 | namespace OpenMD {
229    void SimInfo::calcNdf() {
230      int ndf_local;
231      MoleculeIterator i;
232 <    std::vector<StuntDouble*>::iterator j;
232 >    vector<StuntDouble*>::iterator j;
233      Molecule* mol;
234      StuntDouble* integrableObject;
235  
# Line 307 | Line 280 | namespace OpenMD {
280      int ndfRaw_local;
281  
282      MoleculeIterator i;
283 <    std::vector<StuntDouble*>::iterator j;
283 >    vector<StuntDouble*>::iterator j;
284      Molecule* mol;
285      StuntDouble* integrableObject;
286  
# Line 356 | Line 329 | namespace OpenMD {
329  
330    void SimInfo::addInteractionPairs(Molecule* mol) {
331      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 <    std::vector<Bond*>::iterator bondIter;
333 <    std::vector<Bend*>::iterator bendIter;
334 <    std::vector<Torsion*>::iterator torsionIter;
335 <    std::vector<Inversion*>::iterator inversionIter;
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336      Bond* bond;
337      Bend* bend;
338      Torsion* torsion;
# Line 377 | Line 350 | namespace OpenMD {
350      // always be excluded.  These are done at the bottom of this
351      // function.
352  
353 <    std::map<int, std::set<int> > atomGroups;
353 >    map<int, set<int> > atomGroups;
354      Molecule::RigidBodyIterator rbIter;
355      RigidBody* rb;
356      Molecule::IntegrableObjectIterator ii;
# Line 389 | Line 362 | namespace OpenMD {
362        
363        if (integrableObject->isRigidBody()) {
364          rb = static_cast<RigidBody*>(integrableObject);
365 <        std::vector<Atom*> atoms = rb->getAtoms();
366 <        std::set<int> rigidAtoms;
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368            rigidAtoms.insert(atoms[i]->getGlobalIndex());
369          }
370          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372          }      
373        } else {
374 <        std::set<int> oneAtomSet;
374 >        set<int> oneAtomSet;
375          oneAtomSet.insert(integrableObject->getGlobalIndex());
376 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377        }
378      }  
379            
# Line 503 | Line 476 | namespace OpenMD {
476  
477      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478           rb = mol->nextRigidBody(rbIter)) {
479 <      std::vector<Atom*> atoms = rb->getAtoms();
479 >      vector<Atom*> atoms = rb->getAtoms();
480        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 490 | namespace OpenMD {
490  
491    void SimInfo::removeInteractionPairs(Molecule* mol) {
492      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 <    std::vector<Bond*>::iterator bondIter;
494 <    std::vector<Bend*>::iterator bendIter;
495 <    std::vector<Torsion*>::iterator torsionIter;
496 <    std::vector<Inversion*>::iterator inversionIter;
493 >    vector<Bond*>::iterator bondIter;
494 >    vector<Bend*>::iterator bendIter;
495 >    vector<Torsion*>::iterator torsionIter;
496 >    vector<Inversion*>::iterator inversionIter;
497      Bond* bond;
498      Bend* bend;
499      Torsion* torsion;
# Line 530 | Line 503 | namespace OpenMD {
503      int c;
504      int d;
505  
506 <    std::map<int, std::set<int> > atomGroups;
506 >    map<int, set<int> > atomGroups;
507      Molecule::RigidBodyIterator rbIter;
508      RigidBody* rb;
509      Molecule::IntegrableObjectIterator ii;
# Line 542 | Line 515 | namespace OpenMD {
515        
516        if (integrableObject->isRigidBody()) {
517          rb = static_cast<RigidBody*>(integrableObject);
518 <        std::vector<Atom*> atoms = rb->getAtoms();
519 <        std::set<int> rigidAtoms;
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521            rigidAtoms.insert(atoms[i]->getGlobalIndex());
522          }
523          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525          }      
526        } else {
527 <        std::set<int> oneAtomSet;
527 >        set<int> oneAtomSet;
528          oneAtomSet.insert(integrableObject->getGlobalIndex());
529 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530        }
531      }  
532  
# Line 656 | Line 629 | namespace OpenMD {
629  
630      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631           rb = mol->nextRigidBody(rbIter)) {
632 <      std::vector<Atom*> atoms = rb->getAtoms();
632 >      vector<Atom*> atoms = rb->getAtoms();
633        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 652 | namespace OpenMD {
652      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653    }
654  
682  void SimInfo::update() {
655  
656 <    setupSimType();
657 <
658 < #ifdef IS_MPI
659 <    setupFortranParallel();
660 < #endif
661 <
662 <    setupFortranSim();
663 <
664 <    //setup fortran force field
693 <    /** @deprecate */    
694 <    int isError = 0;
695 <    
696 <    setupCutoff();
697 <    
698 <    setupElectrostaticSummationMethod( isError );
699 <    setupSwitchingFunction();
700 <    setupAccumulateBoxDipole();
701 <
702 <    if(isError){
703 <      sprintf( painCave.errMsg,
704 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705 <      painCave.isFatal = 1;
706 <      simError();
707 <    }
708 <
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the
660 >   *  objects have been created.
661 >   *
662 >   */
663 >  void SimInfo::update() {  
664 >    setupSimVariables();
665      calcNdf();
666      calcNdfRaw();
667      calcNdfTrans();
712
713    fortranInitialized_ = true;
668    }
669 <
670 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
669 >  
670 >  /**
671 >   * getSimulatedAtomTypes
672 >   *
673 >   * Returns an STL set of AtomType* that are actually present in this
674 >   * simulation.  Must query all processors to assemble this information.
675 >   *
676 >   */
677 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
678      SimInfo::MoleculeIterator mi;
679      Molecule* mol;
680      Molecule::AtomIterator ai;
681      Atom* atom;
682 <    std::set<AtomType*> atomTypes;
683 <
684 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724 <
682 >    set<AtomType*> atomTypes;
683 >    
684 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
685        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
686          atomTypes.insert(atom->getAtomType());
687 <      }
688 <        
729 <    }
687 >      }      
688 >    }    
689  
690 <    return atomTypes;        
732 <  }
690 > #ifdef IS_MPI
691  
692 <  void SimInfo::setupSimType() {
693 <    std::set<AtomType*>::iterator i;
736 <    std::set<AtomType*> atomTypes;
737 <    atomTypes = getUniqueAtomTypes();
738 <    
739 <    int useLennardJones = 0;
740 <    int useElectrostatic = 0;
741 <    int useEAM = 0;
742 <    int useSC = 0;
743 <    int useCharge = 0;
744 <    int useDirectional = 0;
745 <    int useDipole = 0;
746 <    int useGayBerne = 0;
747 <    int useSticky = 0;
748 <    int useStickyPower = 0;
749 <    int useShape = 0;
750 <    int useFLARB = 0; //it is not in AtomType yet
751 <    int useDirectionalAtom = 0;    
752 <    int useElectrostatics = 0;
753 <    //usePBC and useRF are from simParams
754 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
755 <    int useRF;
756 <    int useSF;
757 <    int useSP;
758 <    int useBoxDipole;
692 >    // loop over the found atom types on this processor, and add their
693 >    // numerical idents to a vector:
694  
695 <    std::string myMethod;
695 >    vector<int> foundTypes;
696 >    set<AtomType*>::iterator i;
697 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
698 >      foundTypes.push_back( (*i)->getIdent() );
699  
700 <    // set the useRF logical
701 <    useRF = 0;
764 <    useSF = 0;
765 <    useSP = 0;
766 <    useBoxDipole = 0;
700 >    // count_local holds the number of found types on this processor
701 >    int count_local = foundTypes.size();
702  
703 +    // count holds the total number of found types on all processors
704 +    // (some will be redundant with the ones found locally):
705 +    int count;
706 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
707  
708 <    if (simParams_->haveElectrostaticSummationMethod()) {
709 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
710 <      toUpper(myMethod);
711 <      if (myMethod == "REACTION_FIELD"){
712 <        useRF = 1;
713 <      } else if (myMethod == "SHIFTED_FORCE"){
714 <        useSF = 1;
715 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
716 <        useSP = 1;
717 <      }
718 <    }
708 >    // create a vector to hold the globally found types, and resize it:
709 >    vector<int> ftGlobal;
710 >    ftGlobal.resize(count);
711 >    vector<int> counts;
712 >
713 >    int nproc = MPI::COMM_WORLD.Get_size();
714 >    counts.resize(nproc);
715 >    vector<int> disps;
716 >    disps.resize(nproc);
717 >
718 >    // now spray out the foundTypes to all the other processors:
719      
720 <    if (simParams_->haveAccumulateBoxDipole())
721 <      if (simParams_->getAccumulateBoxDipole())
783 <        useBoxDipole = 1;
720 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
721 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
722  
723 +    // foundIdents is a stl set, so inserting an already found ident
724 +    // will have no effect.
725 +    set<int> foundIdents;
726 +    vector<int>::iterator j;
727 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
728 +      foundIdents.insert((*j));
729 +    
730 +    // now iterate over the foundIdents and get the actual atom types
731 +    // that correspond to these:
732 +    set<int>::iterator it;
733 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
734 +      atomTypes.insert( forceField_->getAtomType((*it)) );
735 +
736 + #endif
737 +    
738 +    return atomTypes;        
739 +  }
740 +
741 +  void SimInfo::setupSimVariables() {
742      useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
744 +    calcBoxDipole_ = false;
745 +    if ( simParams_->haveAccumulateBoxDipole() )
746 +      if ( simParams_->getAccumulateBoxDipole() ) {
747 +        calcBoxDipole_ = true;      
748 +      }
749  
750 +    set<AtomType*>::iterator i;
751 +    set<AtomType*> atomTypes;
752 +    atomTypes = getSimulatedAtomTypes();    
753 +    int usesElectrostatic = 0;
754 +    int usesMetallic = 0;
755 +    int usesDirectional = 0;
756      //loop over all of the atom types
757      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
758 <      useLennardJones |= (*i)->isLennardJones();
759 <      useElectrostatic |= (*i)->isElectrostatic();
760 <      useEAM |= (*i)->isEAM();
792 <      useSC |= (*i)->isSC();
793 <      useCharge |= (*i)->isCharge();
794 <      useDirectional |= (*i)->isDirectional();
795 <      useDipole |= (*i)->isDipole();
796 <      useGayBerne |= (*i)->isGayBerne();
797 <      useSticky |= (*i)->isSticky();
798 <      useStickyPower |= (*i)->isStickyPower();
799 <      useShape |= (*i)->isShape();
758 >      usesElectrostatic |= (*i)->isElectrostatic();
759 >      usesMetallic |= (*i)->isMetal();
760 >      usesDirectional |= (*i)->isDirectional();
761      }
762  
802    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
803      useDirectionalAtom = 1;
804    }
805
806    if (useCharge || useDipole) {
807      useElectrostatics = 1;
808    }
809
763   #ifdef IS_MPI    
764      int temp;
765 <
766 <    temp = usePBC;
814 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
815 <
816 <    temp = useDirectionalAtom;
817 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 <
819 <    temp = useLennardJones;
820 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 <
822 <    temp = useElectrostatics;
823 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
765 >    temp = usesDirectional;
766 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767  
768 <    temp = useCharge;
769 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
768 >    temp = usesMetallic;
769 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770  
771 <    temp = useDipole;
772 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 <
831 <    temp = useSticky;
832 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 <
834 <    temp = useStickyPower;
835 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 <    
837 <    temp = useGayBerne;
838 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839 <
840 <    temp = useEAM;
841 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
842 <
843 <    temp = useSC;
844 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845 <    
846 <    temp = useShape;
847 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
848 <
849 <    temp = useFLARB;
850 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851 <
852 <    temp = useRF;
853 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 <
855 <    temp = useSF;
856 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857 <
858 <    temp = useSP;
859 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 <
861 <    temp = useBoxDipole;
862 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 <
864 <    temp = useAtomicVirial_;
865 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
866 <
771 >    temp = usesElectrostatic;
772 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773   #endif
774 <
775 <    fInfo_.SIM_uses_PBC = usePBC;    
776 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
777 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
778 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
779 <    fInfo_.SIM_uses_Charges = useCharge;
874 <    fInfo_.SIM_uses_Dipoles = useDipole;
875 <    fInfo_.SIM_uses_Sticky = useSticky;
876 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
877 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
878 <    fInfo_.SIM_uses_EAM = useEAM;
879 <    fInfo_.SIM_uses_SC = useSC;
880 <    fInfo_.SIM_uses_Shapes = useShape;
881 <    fInfo_.SIM_uses_FLARB = useFLARB;
882 <    fInfo_.SIM_uses_RF = useRF;
883 <    fInfo_.SIM_uses_SF = useSF;
884 <    fInfo_.SIM_uses_SP = useSP;
885 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
774 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
775 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
776 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
777 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
779 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
780    }
781  
782 <  void SimInfo::setupFortranSim() {
782 >  void SimInfo::setupFortran() {
783      int isError;
784      int nExclude, nOneTwo, nOneThree, nOneFour;
785 <    std::vector<int> fortranGlobalGroupMembership;
785 >    vector<int> fortranGlobalGroupMembership;
786      
787      isError = 0;
788  
# Line 899 | Line 792 | namespace OpenMD {
792      }
793  
794      //calculate mass ratio of cutoff group
795 <    std::vector<RealType> mfact;
795 >    vector<RealType> mfact;
796      SimInfo::MoleculeIterator mi;
797      Molecule* mol;
798      Molecule::CutoffGroupIterator ci;
# Line 925 | Line 818 | namespace OpenMD {
818        }      
819      }
820  
821 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
822 <    std::vector<int> identArray;
821 >    //fill ident array of local atoms (it is actually ident of
822 >    //AtomType, it is so confusing !!!)
823 >    vector<int> identArray;
824  
825      //to avoid memory reallocation, reserve enough space identArray
826      identArray.reserve(getNAtoms());
# Line 939 | Line 833 | namespace OpenMD {
833  
834      //fill molMembershipArray
835      //molMembershipArray is filled by SimCreator    
836 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
836 >    vector<int> molMembershipArray(nGlobalAtoms_);
837      for (int i = 0; i < nGlobalAtoms_; i++) {
838        molMembershipArray[i] = globalMolMembership_[i] + 1;
839      }
# Line 985 | Line 879 | namespace OpenMD {
879        setNeighbors(&nlistNeighbors);
880      }
881    
988
989  }
990
991
992  void SimInfo::setupFortranParallel() {
882   #ifdef IS_MPI    
883 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
884 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
885 <    std::vector<int> localToGlobalCutoffGroupIndex;
886 <    SimInfo::MoleculeIterator mi;
998 <    Molecule::AtomIterator ai;
999 <    Molecule::CutoffGroupIterator ci;
1000 <    Molecule* mol;
1001 <    Atom* atom;
1002 <    CutoffGroup* cg;
883 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
884 >    //localToGlobalGroupIndex
885 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
886 >    vector<int> localToGlobalCutoffGroupIndex;
887      mpiSimData parallelData;
1004    int isError;
888  
889      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
890  
# Line 1041 | Line 924 | namespace OpenMD {
924  
925      sprintf(checkPointMsg, " mpiRefresh successful.\n");
926      errorCheckPoint();
1044
927   #endif
1046  }
928  
929 <  void SimInfo::setupCutoff() {          
930 <    
931 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
932 <
933 <    // Check the cutoff policy
934 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054 <
1055 <    // Set LJ shifting bools to false
1056 <    ljsp_ = 0;
1057 <    ljsf_ = 0;
1058 <
1059 <    std::string myPolicy;
1060 <    if (forceFieldOptions_.haveCutoffPolicy()){
1061 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062 <    }else if (simParams_->haveCutoffPolicy()) {
1063 <      myPolicy = simParams_->getCutoffPolicy();
929 >    initFortranFF(&isError);
930 >    if (isError) {
931 >      sprintf(painCave.errMsg,
932 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
933 >      painCave.isFatal = 1;
934 >      simError();
935      }
936 <
1066 <    if (!myPolicy.empty()){
1067 <      toUpper(myPolicy);
1068 <      if (myPolicy == "MIX") {
1069 <        cp = MIX_CUTOFF_POLICY;
1070 <      } else {
1071 <        if (myPolicy == "MAX") {
1072 <          cp = MAX_CUTOFF_POLICY;
1073 <        } else {
1074 <          if (myPolicy == "TRADITIONAL") {            
1075 <            cp = TRADITIONAL_CUTOFF_POLICY;
1076 <          } else {
1077 <            // throw error        
1078 <            sprintf( painCave.errMsg,
1079 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1080 <            painCave.isFatal = 1;
1081 <            simError();
1082 <          }    
1083 <        }          
1084 <      }
1085 <    }          
1086 <    notifyFortranCutoffPolicy(&cp);
1087 <
1088 <    // Check the Skin Thickness for neighborlists
1089 <    RealType skin;
1090 <    if (simParams_->haveSkinThickness()) {
1091 <      skin = simParams_->getSkinThickness();
1092 <      notifyFortranSkinThickness(&skin);
1093 <    }            
1094 <        
1095 <    // Check if the cutoff was set explicitly:
1096 <    if (simParams_->haveCutoffRadius()) {
1097 <      rcut_ = simParams_->getCutoffRadius();
1098 <      if (simParams_->haveSwitchingRadius()) {
1099 <        rsw_  = simParams_->getSwitchingRadius();
1100 <      } else {
1101 <        if (fInfo_.SIM_uses_Charges |
1102 <            fInfo_.SIM_uses_Dipoles |
1103 <            fInfo_.SIM_uses_RF) {
1104 <          
1105 <          rsw_ = 0.85 * rcut_;
1106 <          sprintf(painCave.errMsg,
1107 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1109 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110 <        painCave.isFatal = 0;
1111 <        simError();
1112 <        } else {
1113 <          rsw_ = rcut_;
1114 <          sprintf(painCave.errMsg,
1115 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1117 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118 <          painCave.isFatal = 0;
1119 <          simError();
1120 <        }
1121 <      }
1122 <
1123 <      if (simParams_->haveElectrostaticSummationMethod()) {
1124 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125 <        toUpper(myMethod);
1126 <        
1127 <        if (myMethod == "SHIFTED_POTENTIAL") {
1128 <          ljsp_ = 1;
1129 <        } else if (myMethod == "SHIFTED_FORCE") {
1130 <          ljsf_ = 1;
1131 <        }
1132 <      }
1133 <
1134 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1135 <      
1136 <    } else {
1137 <      
1138 <      // For electrostatic atoms, we'll assume a large safe value:
1139 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1140 <        sprintf(painCave.errMsg,
1141 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1142 <                "\tOpenMD will use a default value of 15.0 angstroms"
1143 <                "\tfor the cutoffRadius.\n");
1144 <        painCave.isFatal = 0;
1145 <        simError();
1146 <        rcut_ = 15.0;
1147 <      
1148 <        if (simParams_->haveElectrostaticSummationMethod()) {
1149 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1150 <          toUpper(myMethod);
1151 <      
1152 <      // For the time being, we're tethering the LJ shifted behavior to the
1153 <      // electrostaticSummationMethod keyword options
1154 <          if (myMethod == "SHIFTED_POTENTIAL") {
1155 <            ljsp_ = 1;
1156 <          } else if (myMethod == "SHIFTED_FORCE") {
1157 <            ljsf_ = 1;
1158 <          }
1159 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1160 <            if (simParams_->haveSwitchingRadius()){
1161 <              sprintf(painCave.errMsg,
1162 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1163 <                      "\teven though the electrostaticSummationMethod was\n"
1164 <                      "\tset to %s\n", myMethod.c_str());
1165 <              painCave.isFatal = 1;
1166 <              simError();            
1167 <            }
1168 <          }
1169 <        }
1170 <      
1171 <        if (simParams_->haveSwitchingRadius()){
1172 <          rsw_ = simParams_->getSwitchingRadius();
1173 <        } else {        
1174 <          sprintf(painCave.errMsg,
1175 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1176 <                  "\tOpenMD will use a default value of\n"
1177 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1178 <          painCave.isFatal = 0;
1179 <          simError();
1180 <          rsw_ = 0.85 * rcut_;
1181 <        }
1182 <
1183 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1184 <
1185 <      } else {
1186 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1187 <        // We'll punt and let fortran figure out the cutoffs later.
1188 <        
1189 <        notifyFortranYouAreOnYourOwn();
1190 <
1191 <      }
1192 <    }
1193 <  }
1194 <
1195 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1196 <    
1197 <    int errorOut;
1198 <    int esm =  NONE;
1199 <    int sm = UNDAMPED;
1200 <    RealType alphaVal;
1201 <    RealType dielectric;
1202 <    
1203 <    errorOut = isError;
1204 <
1205 <    if (simParams_->haveElectrostaticSummationMethod()) {
1206 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1207 <      toUpper(myMethod);
1208 <      if (myMethod == "NONE") {
1209 <        esm = NONE;
1210 <      } else {
1211 <        if (myMethod == "SWITCHING_FUNCTION") {
1212 <          esm = SWITCHING_FUNCTION;
1213 <        } else {
1214 <          if (myMethod == "SHIFTED_POTENTIAL") {
1215 <            esm = SHIFTED_POTENTIAL;
1216 <          } else {
1217 <            if (myMethod == "SHIFTED_FORCE") {            
1218 <              esm = SHIFTED_FORCE;
1219 <            } else {
1220 <              if (myMethod == "REACTION_FIELD") {
1221 <                esm = REACTION_FIELD;
1222 <                dielectric = simParams_->getDielectric();
1223 <                if (!simParams_->haveDielectric()) {
1224 <                  // throw warning
1225 <                  sprintf( painCave.errMsg,
1226 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1227 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1228 <                  painCave.isFatal = 0;
1229 <                  simError();
1230 <                }
1231 <              } else {
1232 <                // throw error        
1233 <                sprintf( painCave.errMsg,
1234 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1235 <                         "\t(Input file specified %s .)\n"
1236 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1237 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1238 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1239 <                painCave.isFatal = 1;
1240 <                simError();
1241 <              }    
1242 <            }          
1243 <          }
1244 <        }
1245 <      }
1246 <    }
1247 <    
1248 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1249 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1250 <      toUpper(myScreen);
1251 <      if (myScreen == "UNDAMPED") {
1252 <        sm = UNDAMPED;
1253 <      } else {
1254 <        if (myScreen == "DAMPED") {
1255 <          sm = DAMPED;
1256 <          if (!simParams_->haveDampingAlpha()) {
1257 <            // first set a cutoff dependent alpha value
1258 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1259 <            alphaVal = 0.5125 - rcut_* 0.025;
1260 <            // for values rcut > 20.5, alpha is zero
1261 <            if (alphaVal < 0) alphaVal = 0;
1262 <
1263 <            // throw warning
1264 <            sprintf( painCave.errMsg,
1265 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1266 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1267 <            painCave.isFatal = 0;
1268 <            simError();
1269 <          } else {
1270 <            alphaVal = simParams_->getDampingAlpha();
1271 <          }
1272 <          
1273 <        } else {
1274 <          // throw error        
1275 <          sprintf( painCave.errMsg,
1276 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1277 <                   "\t(Input file specified %s .)\n"
1278 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1279 <                   "or \"damped\".\n", myScreen.c_str() );
1280 <          painCave.isFatal = 1;
1281 <          simError();
1282 <        }
1283 <      }
1284 <    }
1285 <    
1286 <    // let's pass some summation method variables to fortran
1287 <    setElectrostaticSummationMethod( &esm );
1288 <    setFortranElectrostaticMethod( &esm );
1289 <    setScreeningMethod( &sm );
1290 <    setDampingAlpha( &alphaVal );
1291 <    setReactionFieldDielectric( &dielectric );
1292 <    initFortranFF( &errorOut );
1293 <  }
1294 <
1295 <  void SimInfo::setupSwitchingFunction() {    
1296 <    int ft = CUBIC;
1297 <
1298 <    if (simParams_->haveSwitchingFunctionType()) {
1299 <      std::string funcType = simParams_->getSwitchingFunctionType();
1300 <      toUpper(funcType);
1301 <      if (funcType == "CUBIC") {
1302 <        ft = CUBIC;
1303 <      } else {
1304 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1305 <          ft = FIFTH_ORDER_POLY;
1306 <        } else {
1307 <          // throw error        
1308 <          sprintf( painCave.errMsg,
1309 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1310 <          painCave.isFatal = 1;
1311 <          simError();
1312 <        }          
1313 <      }
1314 <    }
1315 <
1316 <    // send switching function notification to switcheroo
1317 <    setFunctionType(&ft);
1318 <
936 >    fortranInitialized_ = true;
937    }
938  
1321  void SimInfo::setupAccumulateBoxDipole() {    
1322
1323    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1324    if ( simParams_->haveAccumulateBoxDipole() )
1325      if ( simParams_->getAccumulateBoxDipole() ) {
1326        setAccumulateBoxDipole();
1327        calcBoxDipole_ = true;
1328      }
1329
1330  }
1331
939    void SimInfo::addProperty(GenericData* genData) {
940      properties_.addProperty(genData);  
941    }
942  
943 <  void SimInfo::removeProperty(const std::string& propName) {
943 >  void SimInfo::removeProperty(const string& propName) {
944      properties_.removeProperty(propName);  
945    }
946  
# Line 1341 | Line 948 | namespace OpenMD {
948      properties_.clearProperties();
949    }
950  
951 <  std::vector<std::string> SimInfo::getPropertyNames() {
951 >  vector<string> SimInfo::getPropertyNames() {
952      return properties_.getPropertyNames();  
953    }
954        
955 <  std::vector<GenericData*> SimInfo::getProperties() {
955 >  vector<GenericData*> SimInfo::getProperties() {
956      return properties_.getProperties();
957    }
958  
959 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960      return properties_.getPropertyByName(propName);
961    }
962  
# Line 1432 | Line 1039 | namespace OpenMD {
1039  
1040    }        
1041  
1042 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1042 >  ostream& operator <<(ostream& o, SimInfo& info) {
1043  
1044      return o;
1045    }
# Line 1475 | Line 1082 | namespace OpenMD {
1082  
1083  
1084         [  Ixx -Ixy  -Ixz ]
1085 <  J =| -Iyx  Iyy  -Iyz |
1085 >    J =| -Iyx  Iyy  -Iyz |
1086         [ -Izx -Iyz   Izz ]
1087      */
1088  
# Line 1582 | Line 1189 | namespace OpenMD {
1189      return IOIndexToIntegrableObject.at(index);
1190    }
1191    
1192 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1192 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193      IOIndexToIntegrableObject= v;
1194    }
1195  
# Line 1624 | Line 1231 | namespace OpenMD {
1231      return;
1232    }
1233   /*
1234 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1234 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235        assert( v.size() == nAtoms_ + nRigidBodies_);
1236        sdByGlobalIndex_ = v;
1237      }
# Line 1634 | Line 1241 | namespace OpenMD {
1241        return sdByGlobalIndex_.at(index);
1242      }  
1243   */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253 +  }
1254 +
1255   }//end namespace OpenMD
1256  

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines