ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1386 by gezelter, Fri Oct 23 18:41:09 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 55 | Line 55
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
58   #include "UseTheForce/doForces_interface.h"
59   #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
60   #include "utils/MemoryUtils.hpp"
61   #include "utils/simError.h"
62   #include "selection/SelectionManager.hpp"
63   #include "io/ForceFieldOptions.hpp"
64   #include "UseTheForce/ForceField.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67  
68   #ifdef IS_MPI
# Line 74 | Line 70
70   #include "UseTheForce/DarkSide/simParallel_interface.h"
71   #endif
72  
73 < namespace oopse {
74 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
73 > using namespace std;
74 > namespace OpenMD {
75    
76    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
77      forceField_(ff), simParams_(simParams),
# Line 93 | Line 81 | namespace oopse {
81      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
82      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
83      nConstraints_(0), sman_(NULL), fortranInitialized_(false),
84 <    calcBoxDipole_(false), useAtomicVirial_(true) {
85 <
86 <
87 <      MoleculeStamp* molStamp;
88 <      int nMolWithSameStamp;
89 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
90 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
91 <      CutoffGroupStamp* cgStamp;    
92 <      RigidBodyStamp* rbStamp;
93 <      int nRigidAtoms = 0;
94 <
95 <      std::vector<Component*> components = simParams->getComponents();
84 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
85 >    
86 >    MoleculeStamp* molStamp;
87 >    int nMolWithSameStamp;
88 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
90 >    CutoffGroupStamp* cgStamp;    
91 >    RigidBodyStamp* rbStamp;
92 >    int nRigidAtoms = 0;
93 >    
94 >    vector<Component*> components = simParams->getComponents();
95 >    
96 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      nMolWithSameStamp = (*i)->getNMol();
99        
100 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
101 <        molStamp = (*i)->getMoleculeStamp();
102 <        nMolWithSameStamp = (*i)->getNMol();
103 <        
104 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
105 <
106 <        //calculate atoms in molecules
107 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
108 <
109 <        //calculate atoms in cutoff groups
110 <        int nAtomsInGroups = 0;
111 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
112 <        
113 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
114 <          cgStamp = molStamp->getCutoffGroupStamp(j);
115 <          nAtomsInGroups += cgStamp->getNMembers();
116 <        }
117 <
118 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
119 <
120 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
121 <
122 <        //calculate atoms in rigid bodies
123 <        int nAtomsInRigidBodies = 0;
124 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
125 <        
126 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
127 <          rbStamp = molStamp->getRigidBodyStamp(j);
128 <          nAtomsInRigidBodies += rbStamp->getNMembers();
129 <        }
130 <
131 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
132 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
133 <        
134 <      }
135 <
136 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
137 <      //group therefore the total number of cutoff groups in the system is
138 <      //equal to the total number of atoms minus number of atoms belong to
139 <      //cutoff group defined in meta-data file plus the number of cutoff
140 <      //groups defined in meta-data file
141 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
142 <
143 <      //every free atom (atom does not belong to rigid bodies) is an
144 <      //integrable object therefore the total number of integrable objects
145 <      //in the system is equal to the total number of atoms minus number of
146 <      //atoms belong to rigid body defined in meta-data file plus the number
147 <      //of rigid bodies defined in meta-data file
148 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 <                                                + nGlobalRigidBodies_;
150 <  
160 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
162 <    }
163 <
100 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
101 >      
102 >      //calculate atoms in molecules
103 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 >      
105 >      //calculate atoms in cutoff groups
106 >      int nAtomsInGroups = 0;
107 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
108 >      
109 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
110 >        cgStamp = molStamp->getCutoffGroupStamp(j);
111 >        nAtomsInGroups += cgStamp->getNMembers();
112 >      }
113 >      
114 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
115 >      
116 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
117 >      
118 >      //calculate atoms in rigid bodies
119 >      int nAtomsInRigidBodies = 0;
120 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
121 >      
122 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
123 >        rbStamp = molStamp->getRigidBodyStamp(j);
124 >        nAtomsInRigidBodies += rbStamp->getNMembers();
125 >      }
126 >      
127 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
128 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
129 >      
130 >    }
131 >    
132 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
133 >    //group therefore the total number of cutoff groups in the system is
134 >    //equal to the total number of atoms minus number of atoms belong to
135 >    //cutoff group defined in meta-data file plus the number of cutoff
136 >    //groups defined in meta-data file
137 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
138 >    
139 >    //every free atom (atom does not belong to rigid bodies) is an
140 >    //integrable object therefore the total number of integrable objects
141 >    //in the system is equal to the total number of atoms minus number of
142 >    //atoms belong to rigid body defined in meta-data file plus the number
143 >    //of rigid bodies defined in meta-data file
144 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
145 >      + nGlobalRigidBodies_;
146 >    
147 >    nGlobalMols_ = molStampIds_.size();
148 >    molToProcMap_.resize(nGlobalMols_);
149 >  }
150 >  
151    SimInfo::~SimInfo() {
152 <    std::map<int, Molecule*>::iterator i;
152 >    map<int, Molecule*>::iterator i;
153      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154        delete i->second;
155      }
# Line 173 | Line 160 | namespace oopse {
160      delete forceField_;
161    }
162  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
163  
164    bool SimInfo::addMolecule(Molecule* mol) {
165      MoleculeIterator i;
166 <
166 >    
167      i = molecules_.find(mol->getGlobalIndex());
168      if (i == molecules_.end() ) {
169 <
170 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
171 <        
169 >      
170 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
171 >      
172        nAtoms_ += mol->getNAtoms();
173        nBonds_ += mol->getNBonds();
174        nBends_ += mol->getNBends();
# Line 201 | Line 178 | namespace oopse {
178        nIntegrableObjects_ += mol->getNIntegrableObjects();
179        nCutoffGroups_ += mol->getNCutoffGroups();
180        nConstraints_ += mol->getNConstraintPairs();
181 <
181 >      
182        addInteractionPairs(mol);
183 <  
183 >      
184        return true;
185      } else {
186        return false;
187      }
188    }
189 <
189 >  
190    bool SimInfo::removeMolecule(Molecule* mol) {
191      MoleculeIterator i;
192      i = molecules_.find(mol->getGlobalIndex());
# Line 237 | Line 214 | namespace oopse {
214      } else {
215        return false;
216      }
240
241
217    }    
218  
219          
# Line 256 | Line 231 | namespace oopse {
231    void SimInfo::calcNdf() {
232      int ndf_local;
233      MoleculeIterator i;
234 <    std::vector<StuntDouble*>::iterator j;
234 >    vector<StuntDouble*>::iterator j;
235      Molecule* mol;
236      StuntDouble* integrableObject;
237  
# Line 307 | Line 282 | namespace oopse {
282      int ndfRaw_local;
283  
284      MoleculeIterator i;
285 <    std::vector<StuntDouble*>::iterator j;
285 >    vector<StuntDouble*>::iterator j;
286      Molecule* mol;
287      StuntDouble* integrableObject;
288  
# Line 356 | Line 331 | namespace oopse {
331  
332    void SimInfo::addInteractionPairs(Molecule* mol) {
333      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
334 <    std::vector<Bond*>::iterator bondIter;
335 <    std::vector<Bend*>::iterator bendIter;
336 <    std::vector<Torsion*>::iterator torsionIter;
337 <    std::vector<Inversion*>::iterator inversionIter;
334 >    vector<Bond*>::iterator bondIter;
335 >    vector<Bend*>::iterator bendIter;
336 >    vector<Torsion*>::iterator torsionIter;
337 >    vector<Inversion*>::iterator inversionIter;
338      Bond* bond;
339      Bend* bend;
340      Torsion* torsion;
# Line 377 | Line 352 | namespace oopse {
352      // always be excluded.  These are done at the bottom of this
353      // function.
354  
355 <    std::map<int, std::set<int> > atomGroups;
355 >    map<int, set<int> > atomGroups;
356      Molecule::RigidBodyIterator rbIter;
357      RigidBody* rb;
358      Molecule::IntegrableObjectIterator ii;
# Line 389 | Line 364 | namespace oopse {
364        
365        if (integrableObject->isRigidBody()) {
366          rb = static_cast<RigidBody*>(integrableObject);
367 <        std::vector<Atom*> atoms = rb->getAtoms();
368 <        std::set<int> rigidAtoms;
367 >        vector<Atom*> atoms = rb->getAtoms();
368 >        set<int> rigidAtoms;
369          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370            rigidAtoms.insert(atoms[i]->getGlobalIndex());
371          }
372          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
373 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
373 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
374          }      
375        } else {
376 <        std::set<int> oneAtomSet;
376 >        set<int> oneAtomSet;
377          oneAtomSet.insert(integrableObject->getGlobalIndex());
378 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
378 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
379        }
380      }  
381            
# Line 503 | Line 478 | namespace oopse {
478  
479      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
480           rb = mol->nextRigidBody(rbIter)) {
481 <      std::vector<Atom*> atoms = rb->getAtoms();
481 >      vector<Atom*> atoms = rb->getAtoms();
482        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
483          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
484            a = atoms[i]->getGlobalIndex();
# Line 517 | Line 492 | namespace oopse {
492  
493    void SimInfo::removeInteractionPairs(Molecule* mol) {
494      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
495 <    std::vector<Bond*>::iterator bondIter;
496 <    std::vector<Bend*>::iterator bendIter;
497 <    std::vector<Torsion*>::iterator torsionIter;
498 <    std::vector<Inversion*>::iterator inversionIter;
495 >    vector<Bond*>::iterator bondIter;
496 >    vector<Bend*>::iterator bendIter;
497 >    vector<Torsion*>::iterator torsionIter;
498 >    vector<Inversion*>::iterator inversionIter;
499      Bond* bond;
500      Bend* bend;
501      Torsion* torsion;
# Line 530 | Line 505 | namespace oopse {
505      int c;
506      int d;
507  
508 <    std::map<int, std::set<int> > atomGroups;
508 >    map<int, set<int> > atomGroups;
509      Molecule::RigidBodyIterator rbIter;
510      RigidBody* rb;
511      Molecule::IntegrableObjectIterator ii;
# Line 542 | Line 517 | namespace oopse {
517        
518        if (integrableObject->isRigidBody()) {
519          rb = static_cast<RigidBody*>(integrableObject);
520 <        std::vector<Atom*> atoms = rb->getAtoms();
521 <        std::set<int> rigidAtoms;
520 >        vector<Atom*> atoms = rb->getAtoms();
521 >        set<int> rigidAtoms;
522          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523            rigidAtoms.insert(atoms[i]->getGlobalIndex());
524          }
525          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
526 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
526 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
527          }      
528        } else {
529 <        std::set<int> oneAtomSet;
529 >        set<int> oneAtomSet;
530          oneAtomSet.insert(integrableObject->getGlobalIndex());
531 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
531 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
532        }
533      }  
534  
# Line 656 | Line 631 | namespace oopse {
631  
632      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
633           rb = mol->nextRigidBody(rbIter)) {
634 <      std::vector<Atom*> atoms = rb->getAtoms();
634 >      vector<Atom*> atoms = rb->getAtoms();
635        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
636          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
637            a = atoms[i]->getGlobalIndex();
# Line 679 | Line 654 | namespace oopse {
654      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
655    }
656  
657 +
658 +  /**
659 +   * update
660 +   *
661 +   *  Performs the global checks and variable settings after the objects have been
662 +   *  created.
663 +   *
664 +   */
665    void SimInfo::update() {
666 +    
667 +    setupSimVariables();
668 +    setupCutoffs();
669 +    setupSwitching();
670 +    setupElectrostatics();
671 +    setupNeighborlists();
672  
684    setupSimType();
685
673   #ifdef IS_MPI
674      setupFortranParallel();
675   #endif
689
676      setupFortranSim();
677 +    fortranInitialized_ = true;
678  
692    //setup fortran force field
693    /** @deprecate */    
694    int isError = 0;
695    
696    setupCutoff();
697    
698    setupElectrostaticSummationMethod( isError );
699    setupSwitchingFunction();
700    setupAccumulateBoxDipole();
701
702    if(isError){
703      sprintf( painCave.errMsg,
704               "ForceField error: There was an error initializing the forceField in fortran.\n" );
705      painCave.isFatal = 1;
706      simError();
707    }
708
679      calcNdf();
680      calcNdfRaw();
681      calcNdfTrans();
712
713    fortranInitialized_ = true;
682    }
683 <
684 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
683 >  
684 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
685      SimInfo::MoleculeIterator mi;
686      Molecule* mol;
687      Molecule::AtomIterator ai;
688      Atom* atom;
689 <    std::set<AtomType*> atomTypes;
690 <
691 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
724 <
689 >    set<AtomType*> atomTypes;
690 >    
691 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
692        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
693          atomTypes.insert(atom->getAtomType());
694 <      }
695 <        
729 <    }
730 <
694 >      }      
695 >    }    
696      return atomTypes;        
697    }
698  
699 <  void SimInfo::setupSimType() {
700 <    std::set<AtomType*>::iterator i;
701 <    std::set<AtomType*> atomTypes;
702 <    atomTypes = getUniqueAtomTypes();
699 >  /**
700 >   * setupCutoffs
701 >   *
702 >   * Sets the values of cutoffRadius and cutoffMethod
703 >   *
704 >   * cutoffRadius : realType
705 >   *  If the cutoffRadius was explicitly set, use that value.
706 >   *  If the cutoffRadius was not explicitly set:
707 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
708 >   *      No electrostatic atoms?  Poll the atom types present in the
709 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
710 >   *      Use the maximum suggested value that was found.
711 >   *
712 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
713 >   *      If cutoffMethod was explicitly set, use that choice.
714 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
715 >   */
716 >  void SimInfo::setupCutoffs() {
717      
718 <    int useLennardJones = 0;
719 <    int useElectrostatic = 0;
720 <    int useEAM = 0;
721 <    int useSC = 0;
722 <    int useCharge = 0;
723 <    int useDirectional = 0;
724 <    int useDipole = 0;
725 <    int useGayBerne = 0;
726 <    int useSticky = 0;
727 <    int useStickyPower = 0;
728 <    int useShape = 0;
729 <    int useFLARB = 0; //it is not in AtomType yet
730 <    int useDirectionalAtom = 0;    
731 <    int useElectrostatics = 0;
732 <    //usePBC and useRF are from simParams
733 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
734 <    int useRF;
735 <    int useSF;
736 <    int useSP;
737 <    int useBoxDipole;
738 <
739 <    std::string myMethod;
740 <
741 <    // set the useRF logical
742 <    useRF = 0;
743 <    useSF = 0;
744 <    useSP = 0;
745 <    useBoxDipole = 0;
718 >    if (simParams_->haveCutoffRadius()) {
719 >      cutoffRadius_ = simParams_->getCutoffRadius();
720 >    } else {      
721 >      if (usesElectrostaticAtoms_) {
722 >        sprintf(painCave.errMsg,
723 >                "SimInfo: No value was set for the cutoffRadius.\n"
724 >                "\tOpenMD will use a default value of 12.0 angstroms"
725 >                "\tfor the cutoffRadius.\n");
726 >        painCave.isFatal = 0;
727 >        painCave.severity = OPENMD_INFO;
728 >        simError();
729 >        cutoffRadius_ = 12.0;
730 >      } else {
731 >        RealType thisCut;
732 >        set<AtomType*>::iterator i;
733 >        set<AtomType*> atomTypes;
734 >        atomTypes = getSimulatedAtomTypes();        
735 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
736 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
737 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
738 >        }
739 >        sprintf(painCave.errMsg,
740 >                "SimInfo: No value was set for the cutoffRadius.\n"
741 >                "\tOpenMD will use %lf angstroms.\n",
742 >                cutoffRadius_);
743 >        painCave.isFatal = 0;
744 >        painCave.severity = OPENMD_INFO;
745 >        simError();
746 >      }            
747 >    }
748  
749 +    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
750  
751 <    if (simParams_->haveElectrostaticSummationMethod()) {
752 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
753 <      toUpper(myMethod);
754 <      if (myMethod == "REACTION_FIELD"){
755 <        useRF = 1;
756 <      } else if (myMethod == "SHIFTED_FORCE"){
757 <        useSF = 1;
758 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
759 <        useSP = 1;
751 >    map<string, CutoffMethod> stringToCutoffMethod;
752 >    stringToCutoffMethod["HARD"] = HARD;
753 >    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
754 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
755 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
756 >  
757 >    if (simParams_->haveCutoffMethod()) {
758 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
759 >      map<string, CutoffMethod>::iterator i;
760 >      i = stringToCutoffMethod.find(cutMeth);
761 >      if (i == stringToCutoffMethod.end()) {
762 >        sprintf(painCave.errMsg,
763 >                "SimInfo: Could not find chosen cutoffMethod %s\n"
764 >                "\tShould be one of: "
765 >                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
766 >                cutMeth.c_str());
767 >        painCave.isFatal = 1;
768 >        painCave.severity = OPENMD_ERROR;
769 >        simError();
770 >      } else {
771 >        cutoffMethod_ = i->second;
772 >      }
773 >    } else {
774 >      sprintf(painCave.errMsg,
775 >              "SimInfo: No value was set for the cutoffMethod.\n"
776 >              "\tOpenMD will use SHIFTED_FORCE.\n");
777 >        painCave.isFatal = 0;
778 >        painCave.severity = OPENMD_INFO;
779 >        simError();
780 >        cutoffMethod_ = SHIFTED_FORCE;        
781 >    }
782 >
783 >    InteractionManager::Instance()->setCutoffMethod(cutoffMethod_);
784 >  }
785 >  
786 >  /**
787 >   * setupSwitching
788 >   *
789 >   * Sets the values of switchingRadius and
790 >   *  If the switchingRadius was explicitly set, use that value (but check it)
791 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
792 >   */
793 >  void SimInfo::setupSwitching() {
794 >    
795 >    if (simParams_->haveSwitchingRadius()) {
796 >      switchingRadius_ = simParams_->getSwitchingRadius();
797 >      if (switchingRadius_ > cutoffRadius_) {        
798 >        sprintf(painCave.errMsg,
799 >                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
800 >                switchingRadius_, cutoffRadius_);
801 >        painCave.isFatal = 1;
802 >        painCave.severity = OPENMD_ERROR;
803 >        simError();
804 >      }
805 >    } else {      
806 >      switchingRadius_ = 0.85 * cutoffRadius_;
807 >      sprintf(painCave.errMsg,
808 >              "SimInfo: No value was set for the switchingRadius.\n"
809 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
810 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
811 >      painCave.isFatal = 0;
812 >      painCave.severity = OPENMD_WARNING;
813 >      simError();
814 >    }          
815 >  
816 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
817 >
818 >    SwitchingFunctionType ft;
819 >    
820 >    if (simParams_->haveSwitchingFunctionType()) {
821 >      string funcType = simParams_->getSwitchingFunctionType();
822 >      toUpper(funcType);
823 >      if (funcType == "CUBIC") {
824 >        ft = cubic;
825 >      } else {
826 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
827 >          ft = fifth_order_poly;
828 >        } else {
829 >          // throw error        
830 >          sprintf( painCave.errMsg,
831 >                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
832 >                   "\tswitchingFunctionType must be one of: "
833 >                   "\"cubic\" or \"fifth_order_polynomial\".",
834 >                   funcType.c_str() );
835 >          painCave.isFatal = 1;
836 >          painCave.severity = OPENMD_ERROR;
837 >          simError();
838 >        }          
839        }
840      }
780    
781    if (simParams_->haveAccumulateBoxDipole())
782      if (simParams_->getAccumulateBoxDipole())
783        useBoxDipole = 1;
841  
842 +    InteractionManager::Instance()->setSwitchingFunctionType(ft);
843 +  }
844 +
845 +  /**
846 +   * setupSkinThickness
847 +   *
848 +   *  If the skinThickness was explicitly set, use that value (but check it)
849 +   *  If the skinThickness was not explicitly set: use 1.0 angstroms
850 +   */
851 +  void SimInfo::setupSkinThickness() {    
852 +    if (simParams_->haveSkinThickness()) {
853 +      skinThickness_ = simParams_->getSkinThickness();
854 +    } else {      
855 +      skinThickness_ = 1.0;
856 +      sprintf(painCave.errMsg,
857 +              "SimInfo Warning: No value was set for the skinThickness.\n"
858 +              "\tOpenMD will use a default value of %f Angstroms\n"
859 +              "\tfor this simulation\n", skinThickness_);
860 +      painCave.isFatal = 0;
861 +      simError();
862 +    }            
863 +  }
864 +
865 +  void SimInfo::setupSimType() {
866 +    set<AtomType*>::iterator i;
867 +    set<AtomType*> atomTypes;
868 +    atomTypes = getSimulatedAtomTypes();
869 +
870      useAtomicVirial_ = simParams_->getUseAtomicVirial();
871  
872 +    int usesElectrostatic = 0;
873 +    int usesMetallic = 0;
874 +    int usesDirectional = 0;
875      //loop over all of the atom types
876      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
877 <      useLennardJones |= (*i)->isLennardJones();
878 <      useElectrostatic |= (*i)->isElectrostatic();
879 <      useEAM |= (*i)->isEAM();
792 <      useSC |= (*i)->isSC();
793 <      useCharge |= (*i)->isCharge();
794 <      useDirectional |= (*i)->isDirectional();
795 <      useDipole |= (*i)->isDipole();
796 <      useGayBerne |= (*i)->isGayBerne();
797 <      useSticky |= (*i)->isSticky();
798 <      useStickyPower |= (*i)->isStickyPower();
799 <      useShape |= (*i)->isShape();
877 >      usesElectrostatic |= (*i)->isElectrostatic();
878 >      usesMetallic |= (*i)->isMetal();
879 >      usesDirectional |= (*i)->isDirectional();
880      }
881  
802    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
803      useDirectionalAtom = 1;
804    }
805
806    if (useCharge || useDipole) {
807      useElectrostatics = 1;
808    }
809
882   #ifdef IS_MPI    
883      int temp;
884 +    temp = usesDirectional;
885 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
886  
887 <    temp = usePBC;
888 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
815 <
816 <    temp = useDirectionalAtom;
817 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 <
819 <    temp = useLennardJones;
820 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
821 <
822 <    temp = useElectrostatics;
823 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
824 <
825 <    temp = useCharge;
826 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827 <
828 <    temp = useDipole;
829 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
830 <
831 <    temp = useSticky;
832 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
833 <
834 <    temp = useStickyPower;
835 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 <    
837 <    temp = useGayBerne;
838 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839 <
840 <    temp = useEAM;
841 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
842 <
843 <    temp = useSC;
844 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
845 <    
846 <    temp = useShape;
847 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
848 <
849 <    temp = useFLARB;
850 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851 <
852 <    temp = useRF;
853 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
854 <
855 <    temp = useSF;
856 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
857 <
858 <    temp = useSP;
859 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 <
861 <    temp = useBoxDipole;
862 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 <
864 <    temp = useAtomicVirial_;
865 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
887 >    temp = usesMetallic;
888 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
889  
890 +    temp = usesElectrostatic;
891 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
892   #endif
893 <
894 <    fInfo_.SIM_uses_PBC = usePBC;    
895 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
896 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
897 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
898 <    fInfo_.SIM_uses_Charges = useCharge;
874 <    fInfo_.SIM_uses_Dipoles = useDipole;
875 <    fInfo_.SIM_uses_Sticky = useSticky;
876 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
877 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
878 <    fInfo_.SIM_uses_EAM = useEAM;
879 <    fInfo_.SIM_uses_SC = useSC;
880 <    fInfo_.SIM_uses_Shapes = useShape;
881 <    fInfo_.SIM_uses_FLARB = useFLARB;
882 <    fInfo_.SIM_uses_RF = useRF;
883 <    fInfo_.SIM_uses_SF = useSF;
884 <    fInfo_.SIM_uses_SP = useSP;
885 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
886 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
893 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
894 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
895 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
896 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
897 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
898 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
899    }
900  
901    void SimInfo::setupFortranSim() {
902      int isError;
903      int nExclude, nOneTwo, nOneThree, nOneFour;
904 <    std::vector<int> fortranGlobalGroupMembership;
904 >    vector<int> fortranGlobalGroupMembership;
905      
906 +    notifyFortranSkinThickness(&skinThickness_);
907 +
908 +    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
909 +    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
910 +    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
911 +
912      isError = 0;
913  
914      //globalGroupMembership_ is filled by SimCreator    
# Line 899 | Line 917 | namespace oopse {
917      }
918  
919      //calculate mass ratio of cutoff group
920 <    std::vector<RealType> mfact;
920 >    vector<RealType> mfact;
921      SimInfo::MoleculeIterator mi;
922      Molecule* mol;
923      Molecule::CutoffGroupIterator ci;
# Line 926 | Line 944 | namespace oopse {
944      }
945  
946      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
947 <    std::vector<int> identArray;
947 >    vector<int> identArray;
948  
949      //to avoid memory reallocation, reserve enough space identArray
950      identArray.reserve(getNAtoms());
# Line 939 | Line 957 | namespace oopse {
957  
958      //fill molMembershipArray
959      //molMembershipArray is filled by SimCreator    
960 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
960 >    vector<int> molMembershipArray(nGlobalAtoms_);
961      for (int i = 0; i < nGlobalAtoms_; i++) {
962        molMembershipArray[i] = globalMolMembership_[i] + 1;
963      }
# Line 969 | Line 987 | namespace oopse {
987        sprintf( painCave.errMsg,
988                 "There was an error setting the simulation information in fortran.\n" );
989        painCave.isFatal = 1;
990 <      painCave.severity = OOPSE_ERROR;
990 >      painCave.severity = OPENMD_ERROR;
991        simError();
992      }
993      
# Line 992 | Line 1010 | namespace oopse {
1010    void SimInfo::setupFortranParallel() {
1011   #ifdef IS_MPI    
1012      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1013 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 <    std::vector<int> localToGlobalCutoffGroupIndex;
1013 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 >    vector<int> localToGlobalCutoffGroupIndex;
1015      SimInfo::MoleculeIterator mi;
1016      Molecule::AtomIterator ai;
1017      Molecule::CutoffGroupIterator ci;
# Line 1043 | Line 1061 | namespace oopse {
1061      errorCheckPoint();
1062  
1063   #endif
1046  }
1047
1048  void SimInfo::setupCutoff() {          
1049    
1050    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1051
1052    // Check the cutoff policy
1053    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1054
1055    // Set LJ shifting bools to false
1056    ljsp_ = 0;
1057    ljsf_ = 0;
1058
1059    std::string myPolicy;
1060    if (forceFieldOptions_.haveCutoffPolicy()){
1061      myPolicy = forceFieldOptions_.getCutoffPolicy();
1062    }else if (simParams_->haveCutoffPolicy()) {
1063      myPolicy = simParams_->getCutoffPolicy();
1064    }
1065
1066    if (!myPolicy.empty()){
1067      toUpper(myPolicy);
1068      if (myPolicy == "MIX") {
1069        cp = MIX_CUTOFF_POLICY;
1070      } else {
1071        if (myPolicy == "MAX") {
1072          cp = MAX_CUTOFF_POLICY;
1073        } else {
1074          if (myPolicy == "TRADITIONAL") {            
1075            cp = TRADITIONAL_CUTOFF_POLICY;
1076          } else {
1077            // throw error        
1078            sprintf( painCave.errMsg,
1079                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1080            painCave.isFatal = 1;
1081            simError();
1082          }    
1083        }          
1084      }
1085    }          
1086    notifyFortranCutoffPolicy(&cp);
1087
1088    // Check the Skin Thickness for neighborlists
1089    RealType skin;
1090    if (simParams_->haveSkinThickness()) {
1091      skin = simParams_->getSkinThickness();
1092      notifyFortranSkinThickness(&skin);
1093    }            
1094        
1095    // Check if the cutoff was set explicitly:
1096    if (simParams_->haveCutoffRadius()) {
1097      rcut_ = simParams_->getCutoffRadius();
1098      if (simParams_->haveSwitchingRadius()) {
1099        rsw_  = simParams_->getSwitchingRadius();
1100      } else {
1101        if (fInfo_.SIM_uses_Charges |
1102            fInfo_.SIM_uses_Dipoles |
1103            fInfo_.SIM_uses_RF) {
1104          
1105          rsw_ = 0.85 * rcut_;
1106          sprintf(painCave.errMsg,
1107                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1108                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1109                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1110        painCave.isFatal = 0;
1111        simError();
1112        } else {
1113          rsw_ = rcut_;
1114          sprintf(painCave.errMsg,
1115                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1116                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1117                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1118          painCave.isFatal = 0;
1119          simError();
1120        }
1121      }
1122
1123      if (simParams_->haveElectrostaticSummationMethod()) {
1124        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1125        toUpper(myMethod);
1126        
1127        if (myMethod == "SHIFTED_POTENTIAL") {
1128          ljsp_ = 1;
1129        } else if (myMethod == "SHIFTED_FORCE") {
1130          ljsf_ = 1;
1131        }
1132      }
1133
1134      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1135      
1136    } else {
1137      
1138      // For electrostatic atoms, we'll assume a large safe value:
1139      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1140        sprintf(painCave.errMsg,
1141                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1142                "\tOOPSE will use a default value of 15.0 angstroms"
1143                "\tfor the cutoffRadius.\n");
1144        painCave.isFatal = 0;
1145        simError();
1146        rcut_ = 15.0;
1147      
1148        if (simParams_->haveElectrostaticSummationMethod()) {
1149          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1150          toUpper(myMethod);
1151      
1152      // For the time being, we're tethering the LJ shifted behavior to the
1153      // electrostaticSummationMethod keyword options
1154          if (myMethod == "SHIFTED_POTENTIAL") {
1155            ljsp_ = 1;
1156          } else if (myMethod == "SHIFTED_FORCE") {
1157            ljsf_ = 1;
1158          }
1159          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1160            if (simParams_->haveSwitchingRadius()){
1161              sprintf(painCave.errMsg,
1162                      "SimInfo Warning: A value was set for the switchingRadius\n"
1163                      "\teven though the electrostaticSummationMethod was\n"
1164                      "\tset to %s\n", myMethod.c_str());
1165              painCave.isFatal = 1;
1166              simError();            
1167            }
1168          }
1169        }
1170      
1171        if (simParams_->haveSwitchingRadius()){
1172          rsw_ = simParams_->getSwitchingRadius();
1173        } else {        
1174          sprintf(painCave.errMsg,
1175                  "SimCreator Warning: No value was set for switchingRadius.\n"
1176                  "\tOOPSE will use a default value of\n"
1177                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1178          painCave.isFatal = 0;
1179          simError();
1180          rsw_ = 0.85 * rcut_;
1181        }
1182
1183        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1184
1185      } else {
1186        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1187        // We'll punt and let fortran figure out the cutoffs later.
1188        
1189        notifyFortranYouAreOnYourOwn();
1190
1191      }
1192    }
1064    }
1065  
1195  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1196    
1197    int errorOut;
1198    int esm =  NONE;
1199    int sm = UNDAMPED;
1200    RealType alphaVal;
1201    RealType dielectric;
1202    
1203    errorOut = isError;
1066  
1205    if (simParams_->haveElectrostaticSummationMethod()) {
1206      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1207      toUpper(myMethod);
1208      if (myMethod == "NONE") {
1209        esm = NONE;
1210      } else {
1211        if (myMethod == "SWITCHING_FUNCTION") {
1212          esm = SWITCHING_FUNCTION;
1213        } else {
1214          if (myMethod == "SHIFTED_POTENTIAL") {
1215            esm = SHIFTED_POTENTIAL;
1216          } else {
1217            if (myMethod == "SHIFTED_FORCE") {            
1218              esm = SHIFTED_FORCE;
1219            } else {
1220              if (myMethod == "REACTION_FIELD") {
1221                esm = REACTION_FIELD;
1222                dielectric = simParams_->getDielectric();
1223                if (!simParams_->haveDielectric()) {
1224                  // throw warning
1225                  sprintf( painCave.errMsg,
1226                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1227                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1228                  painCave.isFatal = 0;
1229                  simError();
1230                }
1231              } else {
1232                // throw error        
1233                sprintf( painCave.errMsg,
1234                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1235                         "\t(Input file specified %s .)\n"
1236                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1237                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1238                         "\t\"reaction_field\".\n", myMethod.c_str() );
1239                painCave.isFatal = 1;
1240                simError();
1241              }    
1242            }          
1243          }
1244        }
1245      }
1246    }
1247    
1248    if (simParams_->haveElectrostaticScreeningMethod()) {
1249      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1250      toUpper(myScreen);
1251      if (myScreen == "UNDAMPED") {
1252        sm = UNDAMPED;
1253      } else {
1254        if (myScreen == "DAMPED") {
1255          sm = DAMPED;
1256          if (!simParams_->haveDampingAlpha()) {
1257            // first set a cutoff dependent alpha value
1258            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1259            alphaVal = 0.5125 - rcut_* 0.025;
1260            // for values rcut > 20.5, alpha is zero
1261            if (alphaVal < 0) alphaVal = 0;
1262
1263            // throw warning
1264            sprintf( painCave.errMsg,
1265                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1266                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1267            painCave.isFatal = 0;
1268            simError();
1269          } else {
1270            alphaVal = simParams_->getDampingAlpha();
1271          }
1272          
1273        } else {
1274          // throw error        
1275          sprintf( painCave.errMsg,
1276                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1277                   "\t(Input file specified %s .)\n"
1278                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1279                   "or \"damped\".\n", myScreen.c_str() );
1280          painCave.isFatal = 1;
1281          simError();
1282        }
1283      }
1284    }
1285    
1286    // let's pass some summation method variables to fortran
1287    setElectrostaticSummationMethod( &esm );
1288    setFortranElectrostaticMethod( &esm );
1289    setScreeningMethod( &sm );
1290    setDampingAlpha( &alphaVal );
1291    setReactionFieldDielectric( &dielectric );
1292    initFortranFF( &errorOut );
1293  }
1294
1067    void SimInfo::setupSwitchingFunction() {    
1296    int ft = CUBIC;
1068  
1298    if (simParams_->haveSwitchingFunctionType()) {
1299      std::string funcType = simParams_->getSwitchingFunctionType();
1300      toUpper(funcType);
1301      if (funcType == "CUBIC") {
1302        ft = CUBIC;
1303      } else {
1304        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1305          ft = FIFTH_ORDER_POLY;
1306        } else {
1307          // throw error        
1308          sprintf( painCave.errMsg,
1309                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1310          painCave.isFatal = 1;
1311          simError();
1312        }          
1313      }
1314    }
1315
1316    // send switching function notification to switcheroo
1317    setFunctionType(&ft);
1318
1069    }
1070  
1071    void SimInfo::setupAccumulateBoxDipole() {    
# Line 1323 | Line 1073 | namespace oopse {
1073      // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1074      if ( simParams_->haveAccumulateBoxDipole() )
1075        if ( simParams_->getAccumulateBoxDipole() ) {
1326        setAccumulateBoxDipole();
1076          calcBoxDipole_ = true;
1077        }
1078  
# Line 1333 | Line 1082 | namespace oopse {
1082      properties_.addProperty(genData);  
1083    }
1084  
1085 <  void SimInfo::removeProperty(const std::string& propName) {
1085 >  void SimInfo::removeProperty(const string& propName) {
1086      properties_.removeProperty(propName);  
1087    }
1088  
# Line 1341 | Line 1090 | namespace oopse {
1090      properties_.clearProperties();
1091    }
1092  
1093 <  std::vector<std::string> SimInfo::getPropertyNames() {
1093 >  vector<string> SimInfo::getPropertyNames() {
1094      return properties_.getPropertyNames();  
1095    }
1096        
1097 <  std::vector<GenericData*> SimInfo::getProperties() {
1097 >  vector<GenericData*> SimInfo::getProperties() {
1098      return properties_.getProperties();
1099    }
1100  
1101 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1101 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1102      return properties_.getPropertyByName(propName);
1103    }
1104  
# Line 1432 | Line 1181 | namespace oopse {
1181  
1182    }        
1183  
1184 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1184 >  ostream& operator <<(ostream& o, SimInfo& info) {
1185  
1186      return o;
1187    }
# Line 1475 | Line 1224 | namespace oopse {
1224  
1225  
1226         [  Ixx -Ixy  -Ixz ]
1227 <  J =| -Iyx  Iyy  -Iyz |
1227 >    J =| -Iyx  Iyy  -Iyz |
1228         [ -Izx -Iyz   Izz ]
1229      */
1230  
# Line 1582 | Line 1331 | namespace oopse {
1331      return IOIndexToIntegrableObject.at(index);
1332    }
1333    
1334 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1334 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1335      IOIndexToIntegrableObject= v;
1336    }
1337  
# Line 1624 | Line 1373 | namespace oopse {
1373      return;
1374    }
1375   /*
1376 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1376 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1377        assert( v.size() == nAtoms_ + nRigidBodies_);
1378        sdByGlobalIndex_ = v;
1379      }
# Line 1634 | Line 1383 | namespace oopse {
1383        return sdByGlobalIndex_.at(index);
1384      }  
1385   */  
1386 < }//end namespace oopse
1386 >  int SimInfo::getNGlobalConstraints() {
1387 >    int nGlobalConstraints;
1388 > #ifdef IS_MPI
1389 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1390 >                  MPI_COMM_WORLD);    
1391 > #else
1392 >    nGlobalConstraints =  nConstraints_;
1393 > #endif
1394 >    return nGlobalConstraints;
1395 >  }
1396  
1397 + }//end namespace OpenMD
1398 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1386 by gezelter, Fri Oct 23 18:41:09 2009 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines