ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 55 | Line 55
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
58   #include "UseTheForce/doForces_interface.h"
59   #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
60   #include "utils/MemoryUtils.hpp"
61   #include "utils/simError.h"
62   #include "selection/SelectionManager.hpp"
63   #include "io/ForceFieldOptions.hpp"
64   #include "UseTheForce/ForceField.hpp"
65 + #include "nonbonded/SwitchingFunction.hpp"
66  
67  
68   #ifdef IS_MPI
# Line 74 | Line 70
70   #include "UseTheForce/DarkSide/simParallel_interface.h"
71   #endif
72  
73 < namespace oopse {
74 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
73 > using namespace std;
74 > namespace OpenMD {
75    
76    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
77      forceField_(ff), simParams_(simParams),
# Line 93 | Line 81 | namespace oopse {
81      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
82      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
83      nConstraints_(0), sman_(NULL), fortranInitialized_(false),
84 <    calcBoxDipole_(false), useAtomicVirial_(true) {
85 <
86 <
87 <      MoleculeStamp* molStamp;
88 <      int nMolWithSameStamp;
89 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
90 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
91 <      CutoffGroupStamp* cgStamp;    
92 <      RigidBodyStamp* rbStamp;
93 <      int nRigidAtoms = 0;
94 <
95 <      std::vector<Component*> components = simParams->getComponents();
84 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
85 >    
86 >    MoleculeStamp* molStamp;
87 >    int nMolWithSameStamp;
88 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
90 >    CutoffGroupStamp* cgStamp;    
91 >    RigidBodyStamp* rbStamp;
92 >    int nRigidAtoms = 0;
93 >    
94 >    vector<Component*> components = simParams->getComponents();
95 >    
96 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
97 >      molStamp = (*i)->getMoleculeStamp();
98 >      nMolWithSameStamp = (*i)->getNMol();
99        
100 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
101 <        molStamp = (*i)->getMoleculeStamp();
102 <        nMolWithSameStamp = (*i)->getNMol();
103 <        
104 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
105 <
106 <        //calculate atoms in molecules
107 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
108 <
109 <        //calculate atoms in cutoff groups
110 <        int nAtomsInGroups = 0;
111 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
121 <        
122 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
123 <          cgStamp = molStamp->getCutoffGroupStamp(j);
124 <          nAtomsInGroups += cgStamp->getNMembers();
125 <        }
126 <
127 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
128 <
129 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
130 <
131 <        //calculate atoms in rigid bodies
132 <        int nAtomsInRigidBodies = 0;
133 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
134 <        
135 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
136 <          rbStamp = molStamp->getRigidBodyStamp(j);
137 <          nAtomsInRigidBodies += rbStamp->getNMembers();
138 <        }
139 <
140 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
141 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
142 <        
100 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
101 >      
102 >      //calculate atoms in molecules
103 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
104 >      
105 >      //calculate atoms in cutoff groups
106 >      int nAtomsInGroups = 0;
107 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
108 >      
109 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
110 >        cgStamp = molStamp->getCutoffGroupStamp(j);
111 >        nAtomsInGroups += cgStamp->getNMembers();
112        }
113 <
114 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
115 <      //group therefore the total number of cutoff groups in the system is
116 <      //equal to the total number of atoms minus number of atoms belong to
117 <      //cutoff group defined in meta-data file plus the number of cutoff
118 <      //groups defined in meta-data file
119 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
120 <
121 <      //every free atom (atom does not belong to rigid bodies) is an
122 <      //integrable object therefore the total number of integrable objects
123 <      //in the system is equal to the total number of atoms minus number of
124 <      //atoms belong to rigid body defined in meta-data file plus the number
125 <      //of rigid bodies defined in meta-data file
126 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
127 <                                                + nGlobalRigidBodies_;
128 <  
129 <      nGlobalMols_ = molStampIds_.size();
161 <      molToProcMap_.resize(nGlobalMols_);
113 >      
114 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
115 >      
116 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
117 >      
118 >      //calculate atoms in rigid bodies
119 >      int nAtomsInRigidBodies = 0;
120 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
121 >      
122 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
123 >        rbStamp = molStamp->getRigidBodyStamp(j);
124 >        nAtomsInRigidBodies += rbStamp->getNMembers();
125 >      }
126 >      
127 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
128 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
129 >      
130      }
131 <
131 >    
132 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
133 >    //group therefore the total number of cutoff groups in the system is
134 >    //equal to the total number of atoms minus number of atoms belong to
135 >    //cutoff group defined in meta-data file plus the number of cutoff
136 >    //groups defined in meta-data file
137 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
138 >    
139 >    //every free atom (atom does not belong to rigid bodies) is an
140 >    //integrable object therefore the total number of integrable objects
141 >    //in the system is equal to the total number of atoms minus number of
142 >    //atoms belong to rigid body defined in meta-data file plus the number
143 >    //of rigid bodies defined in meta-data file
144 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
145 >      + nGlobalRigidBodies_;
146 >    
147 >    nGlobalMols_ = molStampIds_.size();
148 >    molToProcMap_.resize(nGlobalMols_);
149 >  }
150 >  
151    SimInfo::~SimInfo() {
152 <    std::map<int, Molecule*>::iterator i;
152 >    map<int, Molecule*>::iterator i;
153      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
154        delete i->second;
155      }
# Line 173 | Line 160 | namespace oopse {
160      delete forceField_;
161    }
162  
176  int SimInfo::getNGlobalConstraints() {
177    int nGlobalConstraints;
178 #ifdef IS_MPI
179    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
180                  MPI_COMM_WORLD);    
181 #else
182    nGlobalConstraints =  nConstraints_;
183 #endif
184    return nGlobalConstraints;
185  }
163  
164    bool SimInfo::addMolecule(Molecule* mol) {
165      MoleculeIterator i;
166 <
166 >    
167      i = molecules_.find(mol->getGlobalIndex());
168      if (i == molecules_.end() ) {
169 <
170 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
171 <        
169 >      
170 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
171 >      
172        nAtoms_ += mol->getNAtoms();
173        nBonds_ += mol->getNBonds();
174        nBends_ += mol->getNBends();
# Line 201 | Line 178 | namespace oopse {
178        nIntegrableObjects_ += mol->getNIntegrableObjects();
179        nCutoffGroups_ += mol->getNCutoffGroups();
180        nConstraints_ += mol->getNConstraintPairs();
181 <
182 <      addExcludePairs(mol);
183 <        
181 >      
182 >      addInteractionPairs(mol);
183 >      
184        return true;
185      } else {
186        return false;
187      }
188    }
189 <
189 >  
190    bool SimInfo::removeMolecule(Molecule* mol) {
191      MoleculeIterator i;
192      i = molecules_.find(mol->getGlobalIndex());
# Line 228 | Line 205 | namespace oopse {
205        nCutoffGroups_ -= mol->getNCutoffGroups();
206        nConstraints_ -= mol->getNConstraintPairs();
207  
208 <      removeExcludePairs(mol);
208 >      removeInteractionPairs(mol);
209        molecules_.erase(mol->getGlobalIndex());
210  
211        delete mol;
# Line 237 | Line 214 | namespace oopse {
214      } else {
215        return false;
216      }
240
241
217    }    
218  
219          
# Line 256 | Line 231 | namespace oopse {
231    void SimInfo::calcNdf() {
232      int ndf_local;
233      MoleculeIterator i;
234 <    std::vector<StuntDouble*>::iterator j;
234 >    vector<StuntDouble*>::iterator j;
235      Molecule* mol;
236      StuntDouble* integrableObject;
237  
# Line 307 | Line 282 | namespace oopse {
282      int ndfRaw_local;
283  
284      MoleculeIterator i;
285 <    std::vector<StuntDouble*>::iterator j;
285 >    vector<StuntDouble*>::iterator j;
286      Molecule* mol;
287      StuntDouble* integrableObject;
288  
# Line 354 | Line 329 | namespace oopse {
329  
330    }
331  
332 <  void SimInfo::addExcludePairs(Molecule* mol) {
333 <    std::vector<Bond*>::iterator bondIter;
334 <    std::vector<Bend*>::iterator bendIter;
335 <    std::vector<Torsion*>::iterator torsionIter;
336 <    std::vector<Inversion*>::iterator inversionIter;
332 >  void SimInfo::addInteractionPairs(Molecule* mol) {
333 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
334 >    vector<Bond*>::iterator bondIter;
335 >    vector<Bend*>::iterator bendIter;
336 >    vector<Torsion*>::iterator torsionIter;
337 >    vector<Inversion*>::iterator inversionIter;
338      Bond* bond;
339      Bend* bend;
340      Torsion* torsion;
# Line 368 | Line 344 | namespace oopse {
344      int c;
345      int d;
346  
347 <    std::map<int, std::set<int> > atomGroups;
347 >    // atomGroups can be used to add special interaction maps between
348 >    // groups of atoms that are in two separate rigid bodies.
349 >    // However, most site-site interactions between two rigid bodies
350 >    // are probably not special, just the ones between the physically
351 >    // bonded atoms.  Interactions *within* a single rigid body should
352 >    // always be excluded.  These are done at the bottom of this
353 >    // function.
354  
355 +    map<int, set<int> > atomGroups;
356      Molecule::RigidBodyIterator rbIter;
357      RigidBody* rb;
358      Molecule::IntegrableObjectIterator ii;
359      StuntDouble* integrableObject;
360      
361 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
362 <           integrableObject = mol->nextIntegrableObject(ii)) {
363 <
361 >    for (integrableObject = mol->beginIntegrableObject(ii);
362 >         integrableObject != NULL;
363 >         integrableObject = mol->nextIntegrableObject(ii)) {
364 >      
365        if (integrableObject->isRigidBody()) {
366 <          rb = static_cast<RigidBody*>(integrableObject);
367 <          std::vector<Atom*> atoms = rb->getAtoms();
368 <          std::set<int> rigidAtoms;
369 <          for (int i = 0; i < atoms.size(); ++i) {
370 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
371 <          }
372 <          for (int i = 0; i < atoms.size(); ++i) {
373 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
374 <          }      
366 >        rb = static_cast<RigidBody*>(integrableObject);
367 >        vector<Atom*> atoms = rb->getAtoms();
368 >        set<int> rigidAtoms;
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
371 >        }
372 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
373 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
374 >        }      
375        } else {
376 <        std::set<int> oneAtomSet;
376 >        set<int> oneAtomSet;
377          oneAtomSet.insert(integrableObject->getGlobalIndex());
378 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
378 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
379        }
380      }  
381 +          
382 +    for (bond= mol->beginBond(bondIter); bond != NULL;
383 +         bond = mol->nextBond(bondIter)) {
384  
398    
399    
400    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
385        a = bond->getAtomA()->getGlobalIndex();
386 <      b = bond->getAtomB()->getGlobalIndex();        
387 <      exclude_.addPair(a, b);
386 >      b = bond->getAtomB()->getGlobalIndex();  
387 >    
388 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
389 >        oneTwoInteractions_.addPair(a, b);
390 >      } else {
391 >        excludedInteractions_.addPair(a, b);
392 >      }
393      }
394  
395 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
395 >    for (bend= mol->beginBend(bendIter); bend != NULL;
396 >         bend = mol->nextBend(bendIter)) {
397 >
398        a = bend->getAtomA()->getGlobalIndex();
399        b = bend->getAtomB()->getGlobalIndex();        
400        c = bend->getAtomC()->getGlobalIndex();
410      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
411      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
412      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
413
414      exclude_.addPairs(rigidSetA, rigidSetB);
415      exclude_.addPairs(rigidSetA, rigidSetC);
416      exclude_.addPairs(rigidSetB, rigidSetC);
401        
402 <      //exclude_.addPair(a, b);
403 <      //exclude_.addPair(a, c);
404 <      //exclude_.addPair(b, c);        
402 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
403 >        oneTwoInteractions_.addPair(a, b);      
404 >        oneTwoInteractions_.addPair(b, c);
405 >      } else {
406 >        excludedInteractions_.addPair(a, b);
407 >        excludedInteractions_.addPair(b, c);
408 >      }
409 >
410 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
411 >        oneThreeInteractions_.addPair(a, c);      
412 >      } else {
413 >        excludedInteractions_.addPair(a, c);
414 >      }
415      }
416  
417 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
417 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
418 >         torsion = mol->nextTorsion(torsionIter)) {
419 >
420        a = torsion->getAtomA()->getGlobalIndex();
421        b = torsion->getAtomB()->getGlobalIndex();        
422        c = torsion->getAtomC()->getGlobalIndex();        
423 <      d = torsion->getAtomD()->getGlobalIndex();        
428 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
429 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
430 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
431 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
423 >      d = torsion->getAtomD()->getGlobalIndex();      
424  
425 <      exclude_.addPairs(rigidSetA, rigidSetB);
426 <      exclude_.addPairs(rigidSetA, rigidSetC);
427 <      exclude_.addPairs(rigidSetA, rigidSetD);
428 <      exclude_.addPairs(rigidSetB, rigidSetC);
429 <      exclude_.addPairs(rigidSetB, rigidSetD);
430 <      exclude_.addPairs(rigidSetC, rigidSetD);
425 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
426 >        oneTwoInteractions_.addPair(a, b);      
427 >        oneTwoInteractions_.addPair(b, c);
428 >        oneTwoInteractions_.addPair(c, d);
429 >      } else {
430 >        excludedInteractions_.addPair(a, b);
431 >        excludedInteractions_.addPair(b, c);
432 >        excludedInteractions_.addPair(c, d);
433 >      }
434  
435 <      /*
436 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442 <        
443 <      
444 <      exclude_.addPair(a, b);
445 <      exclude_.addPair(a, c);
446 <      exclude_.addPair(a, d);
447 <      exclude_.addPair(b, c);
453 <      exclude_.addPair(b, d);
454 <      exclude_.addPair(c, d);        
455 <      */
435 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
436 >        oneThreeInteractions_.addPair(a, c);      
437 >        oneThreeInteractions_.addPair(b, d);      
438 >      } else {
439 >        excludedInteractions_.addPair(a, c);
440 >        excludedInteractions_.addPair(b, d);
441 >      }
442 >
443 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
444 >        oneFourInteractions_.addPair(a, d);      
445 >      } else {
446 >        excludedInteractions_.addPair(a, d);
447 >      }
448      }
449  
450      for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
451           inversion = mol->nextInversion(inversionIter)) {
452 +
453        a = inversion->getAtomA()->getGlobalIndex();
454        b = inversion->getAtomB()->getGlobalIndex();        
455        c = inversion->getAtomC()->getGlobalIndex();        
456        d = inversion->getAtomD()->getGlobalIndex();        
464      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
465      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
466      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
467      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
457  
458 <      exclude_.addPairs(rigidSetA, rigidSetB);
459 <      exclude_.addPairs(rigidSetA, rigidSetC);
460 <      exclude_.addPairs(rigidSetA, rigidSetD);
461 <      exclude_.addPairs(rigidSetB, rigidSetC);
462 <      exclude_.addPairs(rigidSetB, rigidSetD);
463 <      exclude_.addPairs(rigidSetC, rigidSetD);
458 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
459 >        oneTwoInteractions_.addPair(a, b);      
460 >        oneTwoInteractions_.addPair(a, c);
461 >        oneTwoInteractions_.addPair(a, d);
462 >      } else {
463 >        excludedInteractions_.addPair(a, b);
464 >        excludedInteractions_.addPair(a, c);
465 >        excludedInteractions_.addPair(a, d);
466 >      }
467  
468 <      /*
469 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
470 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
471 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
472 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
473 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
474 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
475 <        
476 <      
485 <      exclude_.addPair(a, b);
486 <      exclude_.addPair(a, c);
487 <      exclude_.addPair(a, d);
488 <      exclude_.addPair(b, c);
489 <      exclude_.addPair(b, d);
490 <      exclude_.addPair(c, d);        
491 <      */
468 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
469 >        oneThreeInteractions_.addPair(b, c);    
470 >        oneThreeInteractions_.addPair(b, d);    
471 >        oneThreeInteractions_.addPair(c, d);      
472 >      } else {
473 >        excludedInteractions_.addPair(b, c);
474 >        excludedInteractions_.addPair(b, d);
475 >        excludedInteractions_.addPair(c, d);
476 >      }
477      }
478  
479 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
480 <      std::vector<Atom*> atoms = rb->getAtoms();
481 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
482 <        for (int j = i + 1; j < atoms.size(); ++j) {
479 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
480 >         rb = mol->nextRigidBody(rbIter)) {
481 >      vector<Atom*> atoms = rb->getAtoms();
482 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
483 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
484            a = atoms[i]->getGlobalIndex();
485            b = atoms[j]->getGlobalIndex();
486 <          exclude_.addPair(a, b);
486 >          excludedInteractions_.addPair(a, b);
487          }
488        }
489      }        
490  
491    }
492  
493 <  void SimInfo::removeExcludePairs(Molecule* mol) {
494 <    std::vector<Bond*>::iterator bondIter;
495 <    std::vector<Bend*>::iterator bendIter;
496 <    std::vector<Torsion*>::iterator torsionIter;
497 <    std::vector<Inversion*>::iterator inversionIter;
493 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
494 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
495 >    vector<Bond*>::iterator bondIter;
496 >    vector<Bend*>::iterator bendIter;
497 >    vector<Torsion*>::iterator torsionIter;
498 >    vector<Inversion*>::iterator inversionIter;
499      Bond* bond;
500      Bend* bend;
501      Torsion* torsion;
# Line 518 | Line 505 | namespace oopse {
505      int c;
506      int d;
507  
508 <    std::map<int, std::set<int> > atomGroups;
522 <
508 >    map<int, set<int> > atomGroups;
509      Molecule::RigidBodyIterator rbIter;
510      RigidBody* rb;
511      Molecule::IntegrableObjectIterator ii;
512      StuntDouble* integrableObject;
513      
514 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
515 <           integrableObject = mol->nextIntegrableObject(ii)) {
516 <
514 >    for (integrableObject = mol->beginIntegrableObject(ii);
515 >         integrableObject != NULL;
516 >         integrableObject = mol->nextIntegrableObject(ii)) {
517 >      
518        if (integrableObject->isRigidBody()) {
519 <          rb = static_cast<RigidBody*>(integrableObject);
520 <          std::vector<Atom*> atoms = rb->getAtoms();
521 <          std::set<int> rigidAtoms;
522 <          for (int i = 0; i < atoms.size(); ++i) {
523 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
524 <          }
525 <          for (int i = 0; i < atoms.size(); ++i) {
526 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
527 <          }      
519 >        rb = static_cast<RigidBody*>(integrableObject);
520 >        vector<Atom*> atoms = rb->getAtoms();
521 >        set<int> rigidAtoms;
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
524 >        }
525 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
526 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
527 >        }      
528        } else {
529 <        std::set<int> oneAtomSet;
529 >        set<int> oneAtomSet;
530          oneAtomSet.insert(integrableObject->getGlobalIndex());
531 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
531 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
532        }
533      }  
534  
535 <    
536 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
535 >    for (bond= mol->beginBond(bondIter); bond != NULL;
536 >         bond = mol->nextBond(bondIter)) {
537 >      
538        a = bond->getAtomA()->getGlobalIndex();
539 <      b = bond->getAtomB()->getGlobalIndex();        
540 <      exclude_.removePair(a, b);
539 >      b = bond->getAtomB()->getGlobalIndex();  
540 >    
541 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
542 >        oneTwoInteractions_.removePair(a, b);
543 >      } else {
544 >        excludedInteractions_.removePair(a, b);
545 >      }
546      }
547  
548 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
548 >    for (bend= mol->beginBend(bendIter); bend != NULL;
549 >         bend = mol->nextBend(bendIter)) {
550 >
551        a = bend->getAtomA()->getGlobalIndex();
552        b = bend->getAtomB()->getGlobalIndex();        
553        c = bend->getAtomC()->getGlobalIndex();
559
560      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
561      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
562      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
563
564      exclude_.removePairs(rigidSetA, rigidSetB);
565      exclude_.removePairs(rigidSetA, rigidSetC);
566      exclude_.removePairs(rigidSetB, rigidSetC);
554        
555 <      //exclude_.removePair(a, b);
556 <      //exclude_.removePair(a, c);
557 <      //exclude_.removePair(b, c);        
555 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
556 >        oneTwoInteractions_.removePair(a, b);      
557 >        oneTwoInteractions_.removePair(b, c);
558 >      } else {
559 >        excludedInteractions_.removePair(a, b);
560 >        excludedInteractions_.removePair(b, c);
561 >      }
562 >
563 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
564 >        oneThreeInteractions_.removePair(a, c);      
565 >      } else {
566 >        excludedInteractions_.removePair(a, c);
567 >      }
568      }
569  
570 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
570 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
571 >         torsion = mol->nextTorsion(torsionIter)) {
572 >
573        a = torsion->getAtomA()->getGlobalIndex();
574        b = torsion->getAtomB()->getGlobalIndex();        
575        c = torsion->getAtomC()->getGlobalIndex();        
576 <      d = torsion->getAtomD()->getGlobalIndex();        
576 >      d = torsion->getAtomD()->getGlobalIndex();      
577 >  
578 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
579 >        oneTwoInteractions_.removePair(a, b);      
580 >        oneTwoInteractions_.removePair(b, c);
581 >        oneTwoInteractions_.removePair(c, d);
582 >      } else {
583 >        excludedInteractions_.removePair(a, b);
584 >        excludedInteractions_.removePair(b, c);
585 >        excludedInteractions_.removePair(c, d);
586 >      }
587  
588 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
589 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
590 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
591 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
588 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
589 >        oneThreeInteractions_.removePair(a, c);      
590 >        oneThreeInteractions_.removePair(b, d);      
591 >      } else {
592 >        excludedInteractions_.removePair(a, c);
593 >        excludedInteractions_.removePair(b, d);
594 >      }
595  
596 <      exclude_.removePairs(rigidSetA, rigidSetB);
597 <      exclude_.removePairs(rigidSetA, rigidSetC);
598 <      exclude_.removePairs(rigidSetA, rigidSetD);
599 <      exclude_.removePairs(rigidSetB, rigidSetC);
600 <      exclude_.removePairs(rigidSetB, rigidSetD);
589 <      exclude_.removePairs(rigidSetC, rigidSetD);
590 <
591 <      /*
592 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
593 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
594 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
595 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
596 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
597 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
598 <
599 <      
600 <      exclude_.removePair(a, b);
601 <      exclude_.removePair(a, c);
602 <      exclude_.removePair(a, d);
603 <      exclude_.removePair(b, c);
604 <      exclude_.removePair(b, d);
605 <      exclude_.removePair(c, d);        
606 <      */
596 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
597 >        oneFourInteractions_.removePair(a, d);      
598 >      } else {
599 >        excludedInteractions_.removePair(a, d);
600 >      }
601      }
602  
603 <    for (inversion= mol->beginInversion(inversionIter); inversion != NULL; inversion = mol->nextInversion(inversionIter)) {
603 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
604 >         inversion = mol->nextInversion(inversionIter)) {
605 >
606        a = inversion->getAtomA()->getGlobalIndex();
607        b = inversion->getAtomB()->getGlobalIndex();        
608        c = inversion->getAtomC()->getGlobalIndex();        
609        d = inversion->getAtomD()->getGlobalIndex();        
610  
611 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
612 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
613 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
614 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
611 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
612 >        oneTwoInteractions_.removePair(a, b);      
613 >        oneTwoInteractions_.removePair(a, c);
614 >        oneTwoInteractions_.removePair(a, d);
615 >      } else {
616 >        excludedInteractions_.removePair(a, b);
617 >        excludedInteractions_.removePair(a, c);
618 >        excludedInteractions_.removePair(a, d);
619 >      }
620  
621 <      exclude_.removePairs(rigidSetA, rigidSetB);
622 <      exclude_.removePairs(rigidSetA, rigidSetC);
623 <      exclude_.removePairs(rigidSetA, rigidSetD);
624 <      exclude_.removePairs(rigidSetB, rigidSetC);
625 <      exclude_.removePairs(rigidSetB, rigidSetD);
626 <      exclude_.removePairs(rigidSetC, rigidSetD);
627 <
628 <      /*
629 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
629 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
630 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
631 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
632 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
633 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
634 <
635 <      
636 <      exclude_.removePair(a, b);
637 <      exclude_.removePair(a, c);
638 <      exclude_.removePair(a, d);
639 <      exclude_.removePair(b, c);
640 <      exclude_.removePair(b, d);
641 <      exclude_.removePair(c, d);        
642 <      */
621 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
622 >        oneThreeInteractions_.removePair(b, c);    
623 >        oneThreeInteractions_.removePair(b, d);    
624 >        oneThreeInteractions_.removePair(c, d);      
625 >      } else {
626 >        excludedInteractions_.removePair(b, c);
627 >        excludedInteractions_.removePair(b, d);
628 >        excludedInteractions_.removePair(c, d);
629 >      }
630      }
631  
632 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
633 <      std::vector<Atom*> atoms = rb->getAtoms();
634 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
635 <        for (int j = i + 1; j < atoms.size(); ++j) {
632 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
633 >         rb = mol->nextRigidBody(rbIter)) {
634 >      vector<Atom*> atoms = rb->getAtoms();
635 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
636 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
637            a = atoms[i]->getGlobalIndex();
638            b = atoms[j]->getGlobalIndex();
639 <          exclude_.removePair(a, b);
639 >          excludedInteractions_.removePair(a, b);
640          }
641        }
642      }        
643 <
643 >    
644    }
645 <
646 <
645 >  
646 >  
647    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
648      int curStampId;
649 <
649 >    
650      //index from 0
651      curStampId = moleculeStamps_.size();
652  
# Line 666 | Line 654 | namespace oopse {
654      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
655    }
656  
657 +
658 +  /**
659 +   * update
660 +   *
661 +   *  Performs the global checks and variable settings after the objects have been
662 +   *  created.
663 +   *
664 +   */
665    void SimInfo::update() {
666 +    
667 +    setupSimVariables();
668 +    setupCutoffs();
669 +    setupSwitching();
670 +    setupElectrostatics();
671 +    setupNeighborlists();
672  
671    setupSimType();
672
673   #ifdef IS_MPI
674      setupFortranParallel();
675   #endif
676
676      setupFortranSim();
677 +    fortranInitialized_ = true;
678  
679    //setup fortran force field
680    /** @deprecate */    
681    int isError = 0;
682    
683    setupCutoff();
684    
685    setupElectrostaticSummationMethod( isError );
686    setupSwitchingFunction();
687    setupAccumulateBoxDipole();
688
689    if(isError){
690      sprintf( painCave.errMsg,
691               "ForceField error: There was an error initializing the forceField in fortran.\n" );
692      painCave.isFatal = 1;
693      simError();
694    }
695
679      calcNdf();
680      calcNdfRaw();
681      calcNdfTrans();
699
700    fortranInitialized_ = true;
682    }
683 <
684 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
683 >  
684 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
685      SimInfo::MoleculeIterator mi;
686      Molecule* mol;
687      Molecule::AtomIterator ai;
688      Atom* atom;
689 <    std::set<AtomType*> atomTypes;
690 <
691 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
711 <
689 >    set<AtomType*> atomTypes;
690 >    
691 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
692        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
693          atomTypes.insert(atom->getAtomType());
694 +      }      
695 +    }    
696 +    return atomTypes;        
697 +  }
698 +
699 +  /**
700 +   * setupCutoffs
701 +   *
702 +   * Sets the values of cutoffRadius and cutoffMethod
703 +   *
704 +   * cutoffRadius : realType
705 +   *  If the cutoffRadius was explicitly set, use that value.
706 +   *  If the cutoffRadius was not explicitly set:
707 +   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
708 +   *      No electrostatic atoms?  Poll the atom types present in the
709 +   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
710 +   *      Use the maximum suggested value that was found.
711 +   *
712 +   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
713 +   *      If cutoffMethod was explicitly set, use that choice.
714 +   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
715 +   */
716 +  void SimInfo::setupCutoffs() {
717 +    
718 +    if (simParams_->haveCutoffRadius()) {
719 +      cutoffRadius_ = simParams_->getCutoffRadius();
720 +    } else {      
721 +      if (usesElectrostaticAtoms_) {
722 +        sprintf(painCave.errMsg,
723 +                "SimInfo: No value was set for the cutoffRadius.\n"
724 +                "\tOpenMD will use a default value of 12.0 angstroms"
725 +                "\tfor the cutoffRadius.\n");
726 +        painCave.isFatal = 0;
727 +        painCave.severity = OPENMD_INFO;
728 +        simError();
729 +        cutoffRadius_ = 12.0;
730 +      } else {
731 +        RealType thisCut;
732 +        set<AtomType*>::iterator i;
733 +        set<AtomType*> atomTypes;
734 +        atomTypes = getSimulatedAtomTypes();        
735 +        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
736 +          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
737 +          cutoffRadius_ = max(thisCut, cutoffRadius_);
738 +        }
739 +        sprintf(painCave.errMsg,
740 +                "SimInfo: No value was set for the cutoffRadius.\n"
741 +                "\tOpenMD will use %lf angstroms.\n",
742 +                cutoffRadius_);
743 +        painCave.isFatal = 0;
744 +        painCave.severity = OPENMD_INFO;
745 +        simError();
746 +      }            
747 +    }
748 +
749 +    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
750 +
751 +    map<string, CutoffMethod> stringToCutoffMethod;
752 +    stringToCutoffMethod["HARD"] = HARD;
753 +    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
754 +    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
755 +    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
756 +  
757 +    if (simParams_->haveCutoffMethod()) {
758 +      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
759 +      map<string, CutoffMethod>::iterator i;
760 +      i = stringToCutoffMethod.find(cutMeth);
761 +      if (i == stringToCutoffMethod.end()) {
762 +        sprintf(painCave.errMsg,
763 +                "SimInfo: Could not find chosen cutoffMethod %s\n"
764 +                "\tShould be one of: "
765 +                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
766 +                cutMeth.c_str());
767 +        painCave.isFatal = 1;
768 +        painCave.severity = OPENMD_ERROR;
769 +        simError();
770 +      } else {
771 +        cutoffMethod_ = i->second;
772        }
773 <        
773 >    } else {
774 >      sprintf(painCave.errMsg,
775 >              "SimInfo: No value was set for the cutoffMethod.\n"
776 >              "\tOpenMD will use SHIFTED_FORCE.\n");
777 >        painCave.isFatal = 0;
778 >        painCave.severity = OPENMD_INFO;
779 >        simError();
780 >        cutoffMethod_ = SHIFTED_FORCE;        
781      }
782  
783 <    return atomTypes;        
783 >    InteractionManager::Instance()->setCutoffMethod(cutoffMethod_);
784    }
785 +  
786 +  /**
787 +   * setupSwitching
788 +   *
789 +   * Sets the values of switchingRadius and
790 +   *  If the switchingRadius was explicitly set, use that value (but check it)
791 +   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
792 +   */
793 +  void SimInfo::setupSwitching() {
794 +    
795 +    if (simParams_->haveSwitchingRadius()) {
796 +      switchingRadius_ = simParams_->getSwitchingRadius();
797 +      if (switchingRadius_ > cutoffRadius_) {        
798 +        sprintf(painCave.errMsg,
799 +                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
800 +                switchingRadius_, cutoffRadius_);
801 +        painCave.isFatal = 1;
802 +        painCave.severity = OPENMD_ERROR;
803 +        simError();
804 +      }
805 +    } else {      
806 +      switchingRadius_ = 0.85 * cutoffRadius_;
807 +      sprintf(painCave.errMsg,
808 +              "SimInfo: No value was set for the switchingRadius.\n"
809 +              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
810 +              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
811 +      painCave.isFatal = 0;
812 +      painCave.severity = OPENMD_WARNING;
813 +      simError();
814 +    }          
815 +  
816 +    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
817  
818 <  void SimInfo::setupSimType() {
722 <    std::set<AtomType*>::iterator i;
723 <    std::set<AtomType*> atomTypes;
724 <    atomTypes = getUniqueAtomTypes();
818 >    SwitchingFunctionType ft;
819      
820 <    int useLennardJones = 0;
821 <    int useElectrostatic = 0;
822 <    int useEAM = 0;
823 <    int useSC = 0;
824 <    int useCharge = 0;
825 <    int useDirectional = 0;
826 <    int useDipole = 0;
827 <    int useGayBerne = 0;
828 <    int useSticky = 0;
829 <    int useStickyPower = 0;
830 <    int useShape = 0;
831 <    int useFLARB = 0; //it is not in AtomType yet
832 <    int useDirectionalAtom = 0;    
833 <    int useElectrostatics = 0;
834 <    //usePBC and useRF are from simParams
835 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
836 <    int useRF;
837 <    int useSF;
838 <    int useSP;
839 <    int useBoxDipole;
820 >    if (simParams_->haveSwitchingFunctionType()) {
821 >      string funcType = simParams_->getSwitchingFunctionType();
822 >      toUpper(funcType);
823 >      if (funcType == "CUBIC") {
824 >        ft = cubic;
825 >      } else {
826 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
827 >          ft = fifth_order_poly;
828 >        } else {
829 >          // throw error        
830 >          sprintf( painCave.errMsg,
831 >                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
832 >                   "\tswitchingFunctionType must be one of: "
833 >                   "\"cubic\" or \"fifth_order_polynomial\".",
834 >                   funcType.c_str() );
835 >          painCave.isFatal = 1;
836 >          painCave.severity = OPENMD_ERROR;
837 >          simError();
838 >        }          
839 >      }
840 >    }
841  
842 <    std::string myMethod;
842 >    InteractionManager::Instance()->setSwitchingFunctionType(ft);
843 >  }
844  
845 <    // set the useRF logical
846 <    useRF = 0;
847 <    useSF = 0;
848 <    useSP = 0;
845 >  /**
846 >   * setupSkinThickness
847 >   *
848 >   *  If the skinThickness was explicitly set, use that value (but check it)
849 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
850 >   */
851 >  void SimInfo::setupSkinThickness() {    
852 >    if (simParams_->haveSkinThickness()) {
853 >      skinThickness_ = simParams_->getSkinThickness();
854 >    } else {      
855 >      skinThickness_ = 1.0;
856 >      sprintf(painCave.errMsg,
857 >              "SimInfo Warning: No value was set for the skinThickness.\n"
858 >              "\tOpenMD will use a default value of %f Angstroms\n"
859 >              "\tfor this simulation\n", skinThickness_);
860 >      painCave.isFatal = 0;
861 >      simError();
862 >    }            
863 >  }
864  
865 +  void SimInfo::setupSimType() {
866 +    set<AtomType*>::iterator i;
867 +    set<AtomType*> atomTypes;
868 +    atomTypes = getSimulatedAtomTypes();
869  
755    if (simParams_->haveElectrostaticSummationMethod()) {
756      std::string myMethod = simParams_->getElectrostaticSummationMethod();
757      toUpper(myMethod);
758      if (myMethod == "REACTION_FIELD"){
759        useRF = 1;
760      } else if (myMethod == "SHIFTED_FORCE"){
761        useSF = 1;
762      } else if (myMethod == "SHIFTED_POTENTIAL"){
763        useSP = 1;
764      }
765    }
766    
767    if (simParams_->haveAccumulateBoxDipole())
768      if (simParams_->getAccumulateBoxDipole())
769        useBoxDipole = 1;
770
870      useAtomicVirial_ = simParams_->getUseAtomicVirial();
871  
872 +    int usesElectrostatic = 0;
873 +    int usesMetallic = 0;
874 +    int usesDirectional = 0;
875      //loop over all of the atom types
876      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
877 <      useLennardJones |= (*i)->isLennardJones();
878 <      useElectrostatic |= (*i)->isElectrostatic();
879 <      useEAM |= (*i)->isEAM();
778 <      useSC |= (*i)->isSC();
779 <      useCharge |= (*i)->isCharge();
780 <      useDirectional |= (*i)->isDirectional();
781 <      useDipole |= (*i)->isDipole();
782 <      useGayBerne |= (*i)->isGayBerne();
783 <      useSticky |= (*i)->isSticky();
784 <      useStickyPower |= (*i)->isStickyPower();
785 <      useShape |= (*i)->isShape();
877 >      usesElectrostatic |= (*i)->isElectrostatic();
878 >      usesMetallic |= (*i)->isMetal();
879 >      usesDirectional |= (*i)->isDirectional();
880      }
881  
788    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
789      useDirectionalAtom = 1;
790    }
791
792    if (useCharge || useDipole) {
793      useElectrostatics = 1;
794    }
795
882   #ifdef IS_MPI    
883      int temp;
884 +    temp = usesDirectional;
885 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
886  
887 <    temp = usePBC;
888 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
887 >    temp = usesMetallic;
888 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
889  
890 <    temp = useDirectionalAtom;
891 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
804 <
805 <    temp = useLennardJones;
806 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
807 <
808 <    temp = useElectrostatics;
809 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 <
811 <    temp = useCharge;
812 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813 <
814 <    temp = useDipole;
815 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 <
817 <    temp = useSticky;
818 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
819 <
820 <    temp = useStickyPower;
821 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
822 <    
823 <    temp = useGayBerne;
824 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
825 <
826 <    temp = useEAM;
827 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
828 <
829 <    temp = useSC;
830 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
831 <    
832 <    temp = useShape;
833 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
834 <
835 <    temp = useFLARB;
836 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
837 <
838 <    temp = useRF;
839 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
840 <
841 <    temp = useSF;
842 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
843 <
844 <    temp = useSP;
845 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
846 <
847 <    temp = useBoxDipole;
848 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
849 <
850 <    temp = useAtomicVirial_;
851 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
852 <
890 >    temp = usesElectrostatic;
891 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
892   #endif
893 <
894 <    fInfo_.SIM_uses_PBC = usePBC;    
895 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
896 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
897 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
898 <    fInfo_.SIM_uses_Charges = useCharge;
860 <    fInfo_.SIM_uses_Dipoles = useDipole;
861 <    fInfo_.SIM_uses_Sticky = useSticky;
862 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
863 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
864 <    fInfo_.SIM_uses_EAM = useEAM;
865 <    fInfo_.SIM_uses_SC = useSC;
866 <    fInfo_.SIM_uses_Shapes = useShape;
867 <    fInfo_.SIM_uses_FLARB = useFLARB;
868 <    fInfo_.SIM_uses_RF = useRF;
869 <    fInfo_.SIM_uses_SF = useSF;
870 <    fInfo_.SIM_uses_SP = useSP;
871 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
872 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
893 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
894 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
895 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
896 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
897 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
898 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
899    }
900  
901    void SimInfo::setupFortranSim() {
902      int isError;
903 <    int nExclude;
904 <    std::vector<int> fortranGlobalGroupMembership;
903 >    int nExclude, nOneTwo, nOneThree, nOneFour;
904 >    vector<int> fortranGlobalGroupMembership;
905      
906 <    nExclude = exclude_.getSize();
906 >    notifyFortranSkinThickness(&skinThickness_);
907 >
908 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
909 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
910 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
911 >
912      isError = 0;
913  
914      //globalGroupMembership_ is filled by SimCreator    
# Line 886 | Line 917 | namespace oopse {
917      }
918  
919      //calculate mass ratio of cutoff group
920 <    std::vector<RealType> mfact;
920 >    vector<RealType> mfact;
921      SimInfo::MoleculeIterator mi;
922      Molecule* mol;
923      Molecule::CutoffGroupIterator ci;
# Line 909 | Line 940 | namespace oopse {
940            else
941              mfact.push_back( 1.0 );
942          }
912
943        }      
944      }
945  
946      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
947 <    std::vector<int> identArray;
947 >    vector<int> identArray;
948  
949      //to avoid memory reallocation, reserve enough space identArray
950      identArray.reserve(getNAtoms());
# Line 927 | Line 957 | namespace oopse {
957  
958      //fill molMembershipArray
959      //molMembershipArray is filled by SimCreator    
960 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
960 >    vector<int> molMembershipArray(nGlobalAtoms_);
961      for (int i = 0; i < nGlobalAtoms_; i++) {
962        molMembershipArray[i] = globalMolMembership_[i] + 1;
963      }
964      
965      //setup fortran simulation
966 <    int nGlobalExcludes = 0;
967 <    int* globalExcludes = NULL;
968 <    int* excludeList = exclude_.getExcludeList();
966 >
967 >    nExclude = excludedInteractions_.getSize();
968 >    nOneTwo = oneTwoInteractions_.getSize();
969 >    nOneThree = oneThreeInteractions_.getSize();
970 >    nOneFour = oneFourInteractions_.getSize();
971 >
972 >    int* excludeList = excludedInteractions_.getPairList();
973 >    int* oneTwoList = oneTwoInteractions_.getPairList();
974 >    int* oneThreeList = oneThreeInteractions_.getPairList();
975 >    int* oneFourList = oneFourInteractions_.getPairList();
976 >
977      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
978 <                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
978 >                   &nExclude, excludeList,
979 >                   &nOneTwo, oneTwoList,
980 >                   &nOneThree, oneThreeList,
981 >                   &nOneFour, oneFourList,
982                     &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
983                     &fortranGlobalGroupMembership[0], &isError);
984      
# Line 946 | Line 987 | namespace oopse {
987        sprintf( painCave.errMsg,
988                 "There was an error setting the simulation information in fortran.\n" );
989        painCave.isFatal = 1;
990 <      painCave.severity = OOPSE_ERROR;
990 >      painCave.severity = OPENMD_ERROR;
991        simError();
992      }
993      
# Line 969 | Line 1010 | namespace oopse {
1010    void SimInfo::setupFortranParallel() {
1011   #ifdef IS_MPI    
1012      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1013 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 <    std::vector<int> localToGlobalCutoffGroupIndex;
1013 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1014 >    vector<int> localToGlobalCutoffGroupIndex;
1015      SimInfo::MoleculeIterator mi;
1016      Molecule::AtomIterator ai;
1017      Molecule::CutoffGroupIterator ci;
# Line 1022 | Line 1063 | namespace oopse {
1063   #endif
1064    }
1065  
1025  void SimInfo::setupCutoff() {          
1026    
1027    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1066  
1029    // Check the cutoff policy
1030    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1031
1032    // Set LJ shifting bools to false
1033    ljsp_ = false;
1034    ljsf_ = false;
1035
1036    std::string myPolicy;
1037    if (forceFieldOptions_.haveCutoffPolicy()){
1038      myPolicy = forceFieldOptions_.getCutoffPolicy();
1039    }else if (simParams_->haveCutoffPolicy()) {
1040      myPolicy = simParams_->getCutoffPolicy();
1041    }
1042
1043    if (!myPolicy.empty()){
1044      toUpper(myPolicy);
1045      if (myPolicy == "MIX") {
1046        cp = MIX_CUTOFF_POLICY;
1047      } else {
1048        if (myPolicy == "MAX") {
1049          cp = MAX_CUTOFF_POLICY;
1050        } else {
1051          if (myPolicy == "TRADITIONAL") {            
1052            cp = TRADITIONAL_CUTOFF_POLICY;
1053          } else {
1054            // throw error        
1055            sprintf( painCave.errMsg,
1056                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1057            painCave.isFatal = 1;
1058            simError();
1059          }    
1060        }          
1061      }
1062    }          
1063    notifyFortranCutoffPolicy(&cp);
1064
1065    // Check the Skin Thickness for neighborlists
1066    RealType skin;
1067    if (simParams_->haveSkinThickness()) {
1068      skin = simParams_->getSkinThickness();
1069      notifyFortranSkinThickness(&skin);
1070    }            
1071        
1072    // Check if the cutoff was set explicitly:
1073    if (simParams_->haveCutoffRadius()) {
1074      rcut_ = simParams_->getCutoffRadius();
1075      if (simParams_->haveSwitchingRadius()) {
1076        rsw_  = simParams_->getSwitchingRadius();
1077      } else {
1078        if (fInfo_.SIM_uses_Charges |
1079            fInfo_.SIM_uses_Dipoles |
1080            fInfo_.SIM_uses_RF) {
1081          
1082          rsw_ = 0.85 * rcut_;
1083          sprintf(painCave.errMsg,
1084                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1085                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1086                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1087        painCave.isFatal = 0;
1088        simError();
1089        } else {
1090          rsw_ = rcut_;
1091          sprintf(painCave.errMsg,
1092                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1093                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1094                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1095          painCave.isFatal = 0;
1096          simError();
1097        }
1098      }
1099
1100      if (simParams_->haveElectrostaticSummationMethod()) {
1101        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1102        toUpper(myMethod);
1103        
1104        if (myMethod == "SHIFTED_POTENTIAL") {
1105          ljsp_ = true;
1106        } else if (myMethod == "SHIFTED_FORCE") {
1107          ljsf_ = true;
1108        }
1109      }
1110      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1111      
1112    } else {
1113      
1114      // For electrostatic atoms, we'll assume a large safe value:
1115      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1116        sprintf(painCave.errMsg,
1117                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1118                "\tOOPSE will use a default value of 15.0 angstroms"
1119                "\tfor the cutoffRadius.\n");
1120        painCave.isFatal = 0;
1121        simError();
1122        rcut_ = 15.0;
1123      
1124        if (simParams_->haveElectrostaticSummationMethod()) {
1125          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1126          toUpper(myMethod);
1127      
1128      // For the time being, we're tethering the LJ shifted behavior to the
1129      // electrostaticSummationMethod keyword options
1130          if (myMethod == "SHIFTED_POTENTIAL") {
1131            ljsp_ = true;
1132          } else if (myMethod == "SHIFTED_FORCE") {
1133            ljsf_ = true;
1134          }
1135          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1136            if (simParams_->haveSwitchingRadius()){
1137              sprintf(painCave.errMsg,
1138                      "SimInfo Warning: A value was set for the switchingRadius\n"
1139                      "\teven though the electrostaticSummationMethod was\n"
1140                      "\tset to %s\n", myMethod.c_str());
1141              painCave.isFatal = 1;
1142              simError();            
1143            }
1144          }
1145        }
1146      
1147        if (simParams_->haveSwitchingRadius()){
1148          rsw_ = simParams_->getSwitchingRadius();
1149        } else {        
1150          sprintf(painCave.errMsg,
1151                  "SimCreator Warning: No value was set for switchingRadius.\n"
1152                  "\tOOPSE will use a default value of\n"
1153                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1154          painCave.isFatal = 0;
1155          simError();
1156          rsw_ = 0.85 * rcut_;
1157        }
1158
1159        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1160
1161      } else {
1162        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1163        // We'll punt and let fortran figure out the cutoffs later.
1164        
1165        notifyFortranYouAreOnYourOwn();
1166
1167      }
1168    }
1169  }
1170
1171  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1172    
1173    int errorOut;
1174    int esm =  NONE;
1175    int sm = UNDAMPED;
1176    RealType alphaVal;
1177    RealType dielectric;
1178    
1179    errorOut = isError;
1180
1181    if (simParams_->haveElectrostaticSummationMethod()) {
1182      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1183      toUpper(myMethod);
1184      if (myMethod == "NONE") {
1185        esm = NONE;
1186      } else {
1187        if (myMethod == "SWITCHING_FUNCTION") {
1188          esm = SWITCHING_FUNCTION;
1189        } else {
1190          if (myMethod == "SHIFTED_POTENTIAL") {
1191            esm = SHIFTED_POTENTIAL;
1192          } else {
1193            if (myMethod == "SHIFTED_FORCE") {            
1194              esm = SHIFTED_FORCE;
1195            } else {
1196              if (myMethod == "REACTION_FIELD") {
1197                esm = REACTION_FIELD;
1198                dielectric = simParams_->getDielectric();
1199                if (!simParams_->haveDielectric()) {
1200                  // throw warning
1201                  sprintf( painCave.errMsg,
1202                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1203                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1204                  painCave.isFatal = 0;
1205                  simError();
1206                }
1207              } else {
1208                // throw error        
1209                sprintf( painCave.errMsg,
1210                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1211                         "\t(Input file specified %s .)\n"
1212                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1213                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1214                         "\t\"reaction_field\".\n", myMethod.c_str() );
1215                painCave.isFatal = 1;
1216                simError();
1217              }    
1218            }          
1219          }
1220        }
1221      }
1222    }
1223    
1224    if (simParams_->haveElectrostaticScreeningMethod()) {
1225      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1226      toUpper(myScreen);
1227      if (myScreen == "UNDAMPED") {
1228        sm = UNDAMPED;
1229      } else {
1230        if (myScreen == "DAMPED") {
1231          sm = DAMPED;
1232          if (!simParams_->haveDampingAlpha()) {
1233            // first set a cutoff dependent alpha value
1234            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1235            alphaVal = 0.5125 - rcut_* 0.025;
1236            // for values rcut > 20.5, alpha is zero
1237            if (alphaVal < 0) alphaVal = 0;
1238
1239            // throw warning
1240            sprintf( painCave.errMsg,
1241                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1242                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1243            painCave.isFatal = 0;
1244            simError();
1245          } else {
1246            alphaVal = simParams_->getDampingAlpha();
1247          }
1248          
1249        } else {
1250          // throw error        
1251          sprintf( painCave.errMsg,
1252                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1253                   "\t(Input file specified %s .)\n"
1254                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1255                   "or \"damped\".\n", myScreen.c_str() );
1256          painCave.isFatal = 1;
1257          simError();
1258        }
1259      }
1260    }
1261    
1262    // let's pass some summation method variables to fortran
1263    setElectrostaticSummationMethod( &esm );
1264    setFortranElectrostaticMethod( &esm );
1265    setScreeningMethod( &sm );
1266    setDampingAlpha( &alphaVal );
1267    setReactionFieldDielectric( &dielectric );
1268    initFortranFF( &errorOut );
1269  }
1270
1067    void SimInfo::setupSwitchingFunction() {    
1272    int ft = CUBIC;
1068  
1274    if (simParams_->haveSwitchingFunctionType()) {
1275      std::string funcType = simParams_->getSwitchingFunctionType();
1276      toUpper(funcType);
1277      if (funcType == "CUBIC") {
1278        ft = CUBIC;
1279      } else {
1280        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1281          ft = FIFTH_ORDER_POLY;
1282        } else {
1283          // throw error        
1284          sprintf( painCave.errMsg,
1285                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1286          painCave.isFatal = 1;
1287          simError();
1288        }          
1289      }
1290    }
1291
1292    // send switching function notification to switcheroo
1293    setFunctionType(&ft);
1294
1069    }
1070  
1071    void SimInfo::setupAccumulateBoxDipole() {    
# Line 1299 | Line 1073 | namespace oopse {
1073      // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1074      if ( simParams_->haveAccumulateBoxDipole() )
1075        if ( simParams_->getAccumulateBoxDipole() ) {
1302        setAccumulateBoxDipole();
1076          calcBoxDipole_ = true;
1077        }
1078  
# Line 1309 | Line 1082 | namespace oopse {
1082      properties_.addProperty(genData);  
1083    }
1084  
1085 <  void SimInfo::removeProperty(const std::string& propName) {
1085 >  void SimInfo::removeProperty(const string& propName) {
1086      properties_.removeProperty(propName);  
1087    }
1088  
# Line 1317 | Line 1090 | namespace oopse {
1090      properties_.clearProperties();
1091    }
1092  
1093 <  std::vector<std::string> SimInfo::getPropertyNames() {
1093 >  vector<string> SimInfo::getPropertyNames() {
1094      return properties_.getPropertyNames();  
1095    }
1096        
1097 <  std::vector<GenericData*> SimInfo::getProperties() {
1097 >  vector<GenericData*> SimInfo::getProperties() {
1098      return properties_.getProperties();
1099    }
1100  
1101 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1101 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1102      return properties_.getPropertyByName(propName);
1103    }
1104  
# Line 1408 | Line 1181 | namespace oopse {
1181  
1182    }        
1183  
1184 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1184 >  ostream& operator <<(ostream& o, SimInfo& info) {
1185  
1186      return o;
1187    }
# Line 1451 | Line 1224 | namespace oopse {
1224  
1225  
1226         [  Ixx -Ixy  -Ixz ]
1227 <  J =| -Iyx  Iyy  -Iyz |
1227 >    J =| -Iyx  Iyy  -Iyz |
1228         [ -Izx -Iyz   Izz ]
1229      */
1230  
# Line 1558 | Line 1331 | namespace oopse {
1331      return IOIndexToIntegrableObject.at(index);
1332    }
1333    
1334 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1334 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1335      IOIndexToIntegrableObject= v;
1336    }
1337  
# Line 1600 | Line 1373 | namespace oopse {
1373      return;
1374    }
1375   /*
1376 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1376 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1377        assert( v.size() == nAtoms_ + nRigidBodies_);
1378        sdByGlobalIndex_ = v;
1379      }
# Line 1610 | Line 1383 | namespace oopse {
1383        return sdByGlobalIndex_.at(index);
1384      }  
1385   */  
1386 < }//end namespace oopse
1386 >  int SimInfo::getNGlobalConstraints() {
1387 >    int nGlobalConstraints;
1388 > #ifdef IS_MPI
1389 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1390 >                  MPI_COMM_WORLD);    
1391 > #else
1392 >    nGlobalConstraints =  nConstraints_;
1393 > #endif
1394 >    return nGlobalConstraints;
1395 >  }
1396  
1397 + }//end namespace OpenMD
1398 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1277 by gezelter, Mon Jul 14 12:35:58 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1530 by gezelter, Tue Dec 28 21:47:55 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines