ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 316 by tim, Fri Feb 11 22:41:02 2005 UTC vs.
Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                                ForceField* ff, Globals* simParams) :
87 <                                forceField_(ff), simParams_(simParams),
88 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96 >    useAtomicVirial_(true) {
97  
98 <            
99 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
100 <    MoleculeStamp* molStamp;
101 <    int nMolWithSameStamp;
102 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
103 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
104 <    CutoffGroupStamp* cgStamp;    
105 <    RigidBodyStamp* rbStamp;
106 <    int nRigidAtoms = 0;
107 <    
108 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
109 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
98 >      MoleculeStamp* molStamp;
99 >      int nMolWithSameStamp;
100 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
102 >      CutoffGroupStamp* cgStamp;    
103 >      RigidBodyStamp* rbStamp;
104 >      int nRigidAtoms = 0;
105 >      std::vector<Component*> components = simParams->getComponents();
106 >      
107 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 >        molStamp = (*i)->getMoleculeStamp();
109 >        nMolWithSameStamp = (*i)->getNMol();
110          
111          addMoleculeStamp(molStamp, nMolWithSameStamp);
112  
113          //calculate atoms in molecules
114          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
115  
97
116          //calculate atoms in cutoff groups
117          int nAtomsInGroups = 0;
118          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119          
120          for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 <            cgStamp = molStamp->getCutoffGroup(j);
122 <            nAtomsInGroups += cgStamp->getNMembers();
121 >          cgStamp = molStamp->getCutoffGroupStamp(j);
122 >          nAtomsInGroups += cgStamp->getNMembers();
123          }
124  
125          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 +
127          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128  
129          //calculate atoms in rigid bodies
# Line 112 | Line 131 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
131          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132          
133          for (int j=0; j < nRigidBodiesInStamp; j++) {
134 <            rbStamp = molStamp->getRigidBody(j);
135 <            nAtomsInRigidBodies += rbStamp->getNMembers();
134 >          rbStamp = molStamp->getRigidBodyStamp(j);
135 >          nAtomsInRigidBodies += rbStamp->getNMembers();
136          }
137  
138          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140          
141 <    }
141 >      }
142  
143 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
144 <    //therefore the total number of cutoff groups in the system is equal to
145 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
146 <    //file plus the number of cutoff groups defined in meta-data file
147 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
143 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
144 >      //group therefore the total number of cutoff groups in the system is
145 >      //equal to the total number of atoms minus number of atoms belong to
146 >      //cutoff group defined in meta-data file plus the number of cutoff
147 >      //groups defined in meta-data file
148 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149  
150 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
151 <    //therefore the total number of  integrable objects in the system is equal to
152 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
153 <    //file plus the number of  rigid bodies defined in meta-data file
154 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
150 >      //every free atom (atom does not belong to rigid bodies) is an
151 >      //integrable object therefore the total number of integrable objects
152 >      //in the system is equal to the total number of atoms minus number of
153 >      //atoms belong to rigid body defined in meta-data file plus the number
154 >      //of rigid bodies defined in meta-data file
155 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 >                                                + nGlobalRigidBodies_;
157 >  
158 >      nGlobalMols_ = molStampIds_.size();
159 >      molToProcMap_.resize(nGlobalMols_);
160 >    }
161  
162 <    nGlobalMols_ = molStampIds_.size();
163 <
164 < #ifdef IS_MPI    
165 <    molToProcMap_.resize(nGlobalMols_);
166 < #endif
167 <
168 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
145 <
146 < SimInfo::~SimInfo() {
147 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
148 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169      delete sman_;
170      delete simParams_;
171      delete forceField_;
172 <    delete selectMan_;
155 < }
172 >  }
173  
174 < int SimInfo::getNGlobalConstraints() {
174 >  int SimInfo::getNGlobalConstraints() {
175      int nGlobalConstraints;
176   #ifdef IS_MPI
177      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 180 | int SimInfo::getNGlobalConstraints() {
180      nGlobalConstraints =  nConstraints_;
181   #endif
182      return nGlobalConstraints;
183 < }
183 >  }
184  
185 < bool SimInfo::addMolecule(Molecule* mol) {
185 >  bool SimInfo::addMolecule(Molecule* mol) {
186      MoleculeIterator i;
187  
188      i = molecules_.find(mol->getGlobalIndex());
189      if (i == molecules_.end() ) {
190  
191 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192          
193 <        nAtoms_ += mol->getNAtoms();
194 <        nBonds_ += mol->getNBonds();
195 <        nBends_ += mol->getNBends();
196 <        nTorsions_ += mol->getNTorsions();
197 <        nRigidBodies_ += mol->getNRigidBodies();
198 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
199 <        nCutoffGroups_ += mol->getNCutoffGroups();
200 <        nConstraints_ += mol->getNConstraintPairs();
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <        addExcludePairs(mol);
202 >      addExcludePairs(mol);
203          
204 <        return true;
204 >      return true;
205      } else {
206 <        return false;
206 >      return false;
207      }
208 < }
208 >  }
209  
210 < bool SimInfo::removeMolecule(Molecule* mol) {
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211      MoleculeIterator i;
212      i = molecules_.find(mol->getGlobalIndex());
213  
214      if (i != molecules_.end() ) {
215  
216 <        assert(mol == i->second);
216 >      assert(mol == i->second);
217          
218 <        nAtoms_ -= mol->getNAtoms();
219 <        nBonds_ -= mol->getNBonds();
220 <        nBends_ -= mol->getNBends();
221 <        nTorsions_ -= mol->getNTorsions();
222 <        nRigidBodies_ -= mol->getNRigidBodies();
223 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 <        nCutoffGroups_ -= mol->getNCutoffGroups();
225 <        nConstraints_ -= mol->getNConstraintPairs();
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 <        removeExcludePairs(mol);
228 <        molecules_.erase(mol->getGlobalIndex());
227 >      removeExcludePairs(mol);
228 >      molecules_.erase(mol->getGlobalIndex());
229  
230 <        delete mol;
230 >      delete mol;
231          
232 <        return true;
232 >      return true;
233      } else {
234 <        return false;
234 >      return false;
235      }
236  
237  
238 < }    
238 >  }    
239  
240          
241 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242      i = molecules_.begin();
243      return i == molecules_.end() ? NULL : i->second;
244 < }    
244 >  }    
245  
246 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247      ++i;
248      return i == molecules_.end() ? NULL : i->second;    
249 < }
249 >  }
250  
251  
252 < void SimInfo::calcNdf() {
252 >  void SimInfo::calcNdf() {
253      int ndf_local;
254      MoleculeIterator i;
255      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 259 | void SimInfo::calcNdf() {
259      ndf_local = 0;
260      
261      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 <               integrableObject = mol->nextIntegrableObject(j)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 <            ndf_local += 3;
265 >        ndf_local += 3;
266  
267 <            if (integrableObject->isDirectional()) {
268 <                if (integrableObject->isLinear()) {
269 <                    ndf_local += 2;
270 <                } else {
271 <                    ndf_local += 3;
272 <                }
273 <            }
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274              
275 <        }//end for (integrableObject)
276 <    }// end for (mol)
275 >      }
276 >    }
277      
278      // n_constraints is local, so subtract them on each processor
279      ndf_local -= nConstraints_;
# Line 271 | Line 288 | void SimInfo::calcNdf() {
288      // entire system:
289      ndf_ = ndf_ - 3 - nZconstraint_;
290  
291 < }
291 >  }
292  
293 < void SimInfo::calcNdfRaw() {
293 >  int SimInfo::getFdf() {
294 > #ifdef IS_MPI
295 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296 > #else
297 >    fdf_ = fdf_local;
298 > #endif
299 >    return fdf_;
300 >  }
301 >    
302 >  void SimInfo::calcNdfRaw() {
303      int ndfRaw_local;
304  
305      MoleculeIterator i;
# Line 285 | Line 311 | void SimInfo::calcNdfRaw() {
311      ndfRaw_local = 0;
312      
313      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 <               integrableObject = mol->nextIntegrableObject(j)) {
314 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 >           integrableObject = mol->nextIntegrableObject(j)) {
316  
317 <            ndfRaw_local += 3;
317 >        ndfRaw_local += 3;
318  
319 <            if (integrableObject->isDirectional()) {
320 <                if (integrableObject->isLinear()) {
321 <                    ndfRaw_local += 2;
322 <                } else {
323 <                    ndfRaw_local += 3;
324 <                }
325 <            }
319 >        if (integrableObject->isDirectional()) {
320 >          if (integrableObject->isLinear()) {
321 >            ndfRaw_local += 2;
322 >          } else {
323 >            ndfRaw_local += 3;
324 >          }
325 >        }
326              
327 <        }
327 >      }
328      }
329      
330   #ifdef IS_MPI
# Line 306 | Line 332 | void SimInfo::calcNdfRaw() {
332   #else
333      ndfRaw_ = ndfRaw_local;
334   #endif
335 < }
335 >  }
336  
337 < void SimInfo::calcNdfTrans() {
337 >  void SimInfo::calcNdfTrans() {
338      int ndfTrans_local;
339  
340      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 348 | void SimInfo::calcNdfTrans() {
348  
349      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350  
351 < }
351 >  }
352  
353 < void SimInfo::addExcludePairs(Molecule* mol) {
353 >  void SimInfo::addExcludePairs(Molecule* mol) {
354      std::vector<Bond*>::iterator bondIter;
355      std::vector<Bend*>::iterator bendIter;
356      std::vector<Torsion*>::iterator torsionIter;
# Line 335 | Line 361 | void SimInfo::addExcludePairs(Molecule* mol) {
361      int b;
362      int c;
363      int d;
364 +
365 +    std::map<int, std::set<int> > atomGroups;
366 +
367 +    Molecule::RigidBodyIterator rbIter;
368 +    RigidBody* rb;
369 +    Molecule::IntegrableObjectIterator ii;
370 +    StuntDouble* integrableObject;
371      
372 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 +           integrableObject = mol->nextIntegrableObject(ii)) {
374 +
375 +      if (integrableObject->isRigidBody()) {
376 +          rb = static_cast<RigidBody*>(integrableObject);
377 +          std::vector<Atom*> atoms = rb->getAtoms();
378 +          std::set<int> rigidAtoms;
379 +          for (int i = 0; i < atoms.size(); ++i) {
380 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 +          }
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 +          }      
385 +      } else {
386 +        std::set<int> oneAtomSet;
387 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
388 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 +      }
390 +    }  
391 +
392 +    
393 +    
394      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 <        a = bond->getAtomA()->getGlobalIndex();
396 <        b = bond->getAtomB()->getGlobalIndex();        
397 <        exclude_.addPair(a, b);
395 >      a = bond->getAtomA()->getGlobalIndex();
396 >      b = bond->getAtomB()->getGlobalIndex();        
397 >      exclude_.addPair(a, b);
398      }
399  
400      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 <        a = bend->getAtomA()->getGlobalIndex();
402 <        b = bend->getAtomB()->getGlobalIndex();        
403 <        c = bend->getAtomC()->getGlobalIndex();
401 >      a = bend->getAtomA()->getGlobalIndex();
402 >      b = bend->getAtomB()->getGlobalIndex();        
403 >      c = bend->getAtomC()->getGlobalIndex();
404 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407  
408 <        exclude_.addPair(a, b);
409 <        exclude_.addPair(a, c);
410 <        exclude_.addPair(b, c);        
408 >      exclude_.addPairs(rigidSetA, rigidSetB);
409 >      exclude_.addPairs(rigidSetA, rigidSetC);
410 >      exclude_.addPairs(rigidSetB, rigidSetC);
411 >      
412 >      //exclude_.addPair(a, b);
413 >      //exclude_.addPair(a, c);
414 >      //exclude_.addPair(b, c);        
415      }
416  
417      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 <        a = torsion->getAtomA()->getGlobalIndex();
419 <        b = torsion->getAtomB()->getGlobalIndex();        
420 <        c = torsion->getAtomC()->getGlobalIndex();        
421 <        d = torsion->getAtomD()->getGlobalIndex();        
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();        
422 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426  
427 <        exclude_.addPair(a, b);
428 <        exclude_.addPair(a, c);
429 <        exclude_.addPair(a, d);
430 <        exclude_.addPair(b, c);
431 <        exclude_.addPair(b, d);
432 <        exclude_.addPair(c, d);        
427 >      exclude_.addPairs(rigidSetA, rigidSetB);
428 >      exclude_.addPairs(rigidSetA, rigidSetC);
429 >      exclude_.addPairs(rigidSetA, rigidSetD);
430 >      exclude_.addPairs(rigidSetB, rigidSetC);
431 >      exclude_.addPairs(rigidSetB, rigidSetD);
432 >      exclude_.addPairs(rigidSetC, rigidSetD);
433 >
434 >      /*
435 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441 >        
442 >      
443 >      exclude_.addPair(a, b);
444 >      exclude_.addPair(a, c);
445 >      exclude_.addPair(a, d);
446 >      exclude_.addPair(b, c);
447 >      exclude_.addPair(b, d);
448 >      exclude_.addPair(c, d);        
449 >      */
450      }
451  
452 <    
453 < }
452 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 >      std::vector<Atom*> atoms = rb->getAtoms();
454 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 >        for (int j = i + 1; j < atoms.size(); ++j) {
456 >          a = atoms[i]->getGlobalIndex();
457 >          b = atoms[j]->getGlobalIndex();
458 >          exclude_.addPair(a, b);
459 >        }
460 >      }
461 >    }        
462  
463 < void SimInfo::removeExcludePairs(Molecule* mol) {
463 >  }
464 >
465 >  void SimInfo::removeExcludePairs(Molecule* mol) {
466      std::vector<Bond*>::iterator bondIter;
467      std::vector<Bend*>::iterator bendIter;
468      std::vector<Torsion*>::iterator torsionIter;
# Line 380 | Line 473 | void SimInfo::removeExcludePairs(Molecule* mol) {
473      int b;
474      int c;
475      int d;
476 +
477 +    std::map<int, std::set<int> > atomGroups;
478 +
479 +    Molecule::RigidBodyIterator rbIter;
480 +    RigidBody* rb;
481 +    Molecule::IntegrableObjectIterator ii;
482 +    StuntDouble* integrableObject;
483      
484 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 +           integrableObject = mol->nextIntegrableObject(ii)) {
486 +
487 +      if (integrableObject->isRigidBody()) {
488 +          rb = static_cast<RigidBody*>(integrableObject);
489 +          std::vector<Atom*> atoms = rb->getAtoms();
490 +          std::set<int> rigidAtoms;
491 +          for (int i = 0; i < atoms.size(); ++i) {
492 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 +          }
494 +          for (int i = 0; i < atoms.size(); ++i) {
495 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 +          }      
497 +      } else {
498 +        std::set<int> oneAtomSet;
499 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
500 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
501 +      }
502 +    }  
503 +
504 +    
505      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 <        a = bond->getAtomA()->getGlobalIndex();
507 <        b = bond->getAtomB()->getGlobalIndex();        
508 <        exclude_.removePair(a, b);
506 >      a = bond->getAtomA()->getGlobalIndex();
507 >      b = bond->getAtomB()->getGlobalIndex();        
508 >      exclude_.removePair(a, b);
509      }
510  
511      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 <        a = bend->getAtomA()->getGlobalIndex();
513 <        b = bend->getAtomB()->getGlobalIndex();        
514 <        c = bend->getAtomC()->getGlobalIndex();
512 >      a = bend->getAtomA()->getGlobalIndex();
513 >      b = bend->getAtomB()->getGlobalIndex();        
514 >      c = bend->getAtomC()->getGlobalIndex();
515  
516 <        exclude_.removePair(a, b);
517 <        exclude_.removePair(a, c);
518 <        exclude_.removePair(b, c);        
516 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519 >
520 >      exclude_.removePairs(rigidSetA, rigidSetB);
521 >      exclude_.removePairs(rigidSetA, rigidSetC);
522 >      exclude_.removePairs(rigidSetB, rigidSetC);
523 >      
524 >      //exclude_.removePair(a, b);
525 >      //exclude_.removePair(a, c);
526 >      //exclude_.removePair(b, c);        
527      }
528  
529      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 <        a = torsion->getAtomA()->getGlobalIndex();
531 <        b = torsion->getAtomB()->getGlobalIndex();        
532 <        c = torsion->getAtomC()->getGlobalIndex();        
533 <        d = torsion->getAtomD()->getGlobalIndex();        
530 >      a = torsion->getAtomA()->getGlobalIndex();
531 >      b = torsion->getAtomB()->getGlobalIndex();        
532 >      c = torsion->getAtomC()->getGlobalIndex();        
533 >      d = torsion->getAtomD()->getGlobalIndex();        
534  
535 <        exclude_.removePair(a, b);
536 <        exclude_.removePair(a, c);
537 <        exclude_.removePair(a, d);
538 <        exclude_.removePair(b, c);
539 <        exclude_.removePair(b, d);
540 <        exclude_.removePair(c, d);        
535 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539 >
540 >      exclude_.removePairs(rigidSetA, rigidSetB);
541 >      exclude_.removePairs(rigidSetA, rigidSetC);
542 >      exclude_.removePairs(rigidSetA, rigidSetD);
543 >      exclude_.removePairs(rigidSetB, rigidSetC);
544 >      exclude_.removePairs(rigidSetB, rigidSetD);
545 >      exclude_.removePairs(rigidSetC, rigidSetD);
546 >
547 >      /*
548 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554 >
555 >      
556 >      exclude_.removePair(a, b);
557 >      exclude_.removePair(a, c);
558 >      exclude_.removePair(a, d);
559 >      exclude_.removePair(b, c);
560 >      exclude_.removePair(b, d);
561 >      exclude_.removePair(c, d);        
562 >      */
563      }
564  
565 < }
565 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 >      std::vector<Atom*> atoms = rb->getAtoms();
567 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
568 >        for (int j = i + 1; j < atoms.size(); ++j) {
569 >          a = atoms[i]->getGlobalIndex();
570 >          b = atoms[j]->getGlobalIndex();
571 >          exclude_.removePair(a, b);
572 >        }
573 >      }
574 >    }        
575  
576 +  }
577  
578 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
578 >
579 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580      int curStampId;
581  
582      //index from 0
# Line 422 | Line 584 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
584  
585      moleculeStamps_.push_back(molStamp);
586      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 < }
587 >  }
588  
589 < void SimInfo::update() {
589 >  void SimInfo::update() {
590  
591      setupSimType();
592  
# Line 437 | Line 599 | void SimInfo::update() {
599      //setup fortran force field
600      /** @deprecate */    
601      int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
602      
603      setupCutoff();
604 +    
605 +    setupElectrostaticSummationMethod( isError );
606 +    setupSwitchingFunction();
607 +    setupAccumulateBoxDipole();
608  
609 +    if(isError){
610 +      sprintf( painCave.errMsg,
611 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
612 +      painCave.isFatal = 1;
613 +      simError();
614 +    }
615 +
616      calcNdf();
617      calcNdfRaw();
618      calcNdfTrans();
619  
620      fortranInitialized_ = true;
621 < }
621 >  }
622  
623 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
623 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624      SimInfo::MoleculeIterator mi;
625      Molecule* mol;
626      Molecule::AtomIterator ai;
# Line 464 | Line 629 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
629  
630      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631  
632 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 <            atomTypes.insert(atom->getAtomType());
634 <        }
632 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 >        atomTypes.insert(atom->getAtomType());
634 >      }
635          
636      }
637  
638      return atomTypes;        
639 < }
639 >  }
640  
641 < void SimInfo::setupSimType() {
641 >  void SimInfo::setupSimType() {
642      std::set<AtomType*>::iterator i;
643      std::set<AtomType*> atomTypes;
644      atomTypes = getUniqueAtomTypes();
# Line 481 | Line 646 | void SimInfo::setupSimType() {
646      int useLennardJones = 0;
647      int useElectrostatic = 0;
648      int useEAM = 0;
649 +    int useSC = 0;
650      int useCharge = 0;
651      int useDirectional = 0;
652      int useDipole = 0;
653      int useGayBerne = 0;
654      int useSticky = 0;
655 +    int useStickyPower = 0;
656      int useShape = 0;
657      int useFLARB = 0; //it is not in AtomType yet
658      int useDirectionalAtom = 0;    
659      int useElectrostatics = 0;
660      //usePBC and useRF are from simParams
661 <    int usePBC = simParams_->getPBC();
662 <    int useRF = simParams_->getUseRF();
661 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 >    int useRF;
663 >    int useSF;
664 >    int useSP;
665 >    int useBoxDipole;
666  
667 +    std::string myMethod;
668 +
669 +    // set the useRF logical
670 +    useRF = 0;
671 +    useSF = 0;
672 +    useSP = 0;
673 +
674 +
675 +    if (simParams_->haveElectrostaticSummationMethod()) {
676 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
677 +      toUpper(myMethod);
678 +      if (myMethod == "REACTION_FIELD"){
679 +        useRF = 1;
680 +      } else if (myMethod == "SHIFTED_FORCE"){
681 +        useSF = 1;
682 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
683 +        useSP = 1;
684 +      }
685 +    }
686 +    
687 +    if (simParams_->haveAccumulateBoxDipole())
688 +      if (simParams_->getAccumulateBoxDipole())
689 +        useBoxDipole = 1;
690 +
691 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
692 +
693      //loop over all of the atom types
694      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 <        useLennardJones |= (*i)->isLennardJones();
696 <        useElectrostatic |= (*i)->isElectrostatic();
697 <        useEAM |= (*i)->isEAM();
698 <        useCharge |= (*i)->isCharge();
699 <        useDirectional |= (*i)->isDirectional();
700 <        useDipole |= (*i)->isDipole();
701 <        useGayBerne |= (*i)->isGayBerne();
702 <        useSticky |= (*i)->isSticky();
703 <        useShape |= (*i)->isShape();
695 >      useLennardJones |= (*i)->isLennardJones();
696 >      useElectrostatic |= (*i)->isElectrostatic();
697 >      useEAM |= (*i)->isEAM();
698 >      useSC |= (*i)->isSC();
699 >      useCharge |= (*i)->isCharge();
700 >      useDirectional |= (*i)->isDirectional();
701 >      useDipole |= (*i)->isDipole();
702 >      useGayBerne |= (*i)->isGayBerne();
703 >      useSticky |= (*i)->isSticky();
704 >      useStickyPower |= (*i)->isStickyPower();
705 >      useShape |= (*i)->isShape();
706      }
707  
708 <    if (useSticky || useDipole || useGayBerne || useShape) {
709 <        useDirectionalAtom = 1;
708 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 >      useDirectionalAtom = 1;
710      }
711  
712      if (useCharge || useDipole) {
713 <        useElectrostatics = 1;
713 >      useElectrostatics = 1;
714      }
715  
716   #ifdef IS_MPI    
# Line 539 | Line 737 | void SimInfo::setupSimType() {
737      temp = useSticky;
738      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739  
740 +    temp = useStickyPower;
741 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 +    
743      temp = useGayBerne;
744      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745  
746      temp = useEAM;
747      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
748  
749 +    temp = useSC;
750 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751 +    
752      temp = useShape;
753      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
754  
# Line 553 | Line 757 | void SimInfo::setupSimType() {
757  
758      temp = useRF;
759      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760 <    
760 >
761 >    temp = useSF;
762 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763 >
764 >    temp = useSP;
765 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 >    temp = useBoxDipole;
768 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 >
770 >    temp = useAtomicVirial_;
771 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 >
773   #endif
774  
775      fInfo_.SIM_uses_PBC = usePBC;    
# Line 563 | Line 779 | void SimInfo::setupSimType() {
779      fInfo_.SIM_uses_Charges = useCharge;
780      fInfo_.SIM_uses_Dipoles = useDipole;
781      fInfo_.SIM_uses_Sticky = useSticky;
782 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
783      fInfo_.SIM_uses_GayBerne = useGayBerne;
784      fInfo_.SIM_uses_EAM = useEAM;
785 +    fInfo_.SIM_uses_SC = useSC;
786      fInfo_.SIM_uses_Shapes = useShape;
787      fInfo_.SIM_uses_FLARB = useFLARB;
788      fInfo_.SIM_uses_RF = useRF;
789 +    fInfo_.SIM_uses_SF = useSF;
790 +    fInfo_.SIM_uses_SP = useSP;
791 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
792 +    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
793 +  }
794  
795 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
588 <
589 < }
590 <
591 < void SimInfo::setupFortranSim() {
795 >  void SimInfo::setupFortranSim() {
796      int isError;
797      int nExclude;
798      std::vector<int> fortranGlobalGroupMembership;
# Line 598 | Line 802 | void SimInfo::setupFortranSim() {
802  
803      //globalGroupMembership_ is filled by SimCreator    
804      for (int i = 0; i < nGlobalAtoms_; i++) {
805 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
805 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
806      }
807  
808      //calculate mass ratio of cutoff group
809 <    std::vector<double> mfact;
809 >    std::vector<RealType> mfact;
810      SimInfo::MoleculeIterator mi;
811      Molecule* mol;
812      Molecule::CutoffGroupIterator ci;
813      CutoffGroup* cg;
814      Molecule::AtomIterator ai;
815      Atom* atom;
816 <    double totalMass;
816 >    RealType totalMass;
817  
818      //to avoid memory reallocation, reserve enough space for mfact
819      mfact.reserve(getNCutoffGroups());
820      
821      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
822 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
822 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
823  
824 <            totalMass = cg->getMass();
825 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
826 <                        mfact.push_back(atom->getMass()/totalMass);
827 <            }
824 >        totalMass = cg->getMass();
825 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
826 >          // Check for massless groups - set mfact to 1 if true
827 >          if (totalMass != 0)
828 >            mfact.push_back(atom->getMass()/totalMass);
829 >          else
830 >            mfact.push_back( 1.0 );
831 >        }
832  
833 <        }      
833 >      }      
834      }
835  
836      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 840 | void SimInfo::setupFortranSim() {
840      identArray.reserve(getNAtoms());
841      
842      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
843 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 <            identArray.push_back(atom->getIdent());
845 <        }
843 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 >        identArray.push_back(atom->getIdent());
845 >      }
846      }    
847  
848      //fill molMembershipArray
849      //molMembershipArray is filled by SimCreator    
850      std::vector<int> molMembershipArray(nGlobalAtoms_);
851      for (int i = 0; i < nGlobalAtoms_; i++) {
852 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
852 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
853      }
854      
855      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
856      int nGlobalExcludes = 0;
857      int* globalExcludes = NULL;
858      int* excludeList = exclude_.getExcludeList();
859 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
860 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
861 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
862 <
859 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 >                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
861 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 >                   &fortranGlobalGroupMembership[0], &isError);
863 >    
864      if( isError ){
865 <
866 <        sprintf( painCave.errMsg,
867 <                 "There was an error setting the simulation information in fortran.\n" );
868 <        painCave.isFatal = 1;
869 <        painCave.severity = OOPSE_ERROR;
870 <        simError();
865 >      
866 >      sprintf( painCave.errMsg,
867 >               "There was an error setting the simulation information in fortran.\n" );
868 >      painCave.isFatal = 1;
869 >      painCave.severity = OOPSE_ERROR;
870 >      simError();
871      }
872 <
873 < #ifdef IS_MPI
872 >    
873 >    
874      sprintf( checkPointMsg,
875 <       "succesfully sent the simulation information to fortran.\n");
876 <    MPIcheckPoint();
877 < #endif // is_mpi
878 < }
875 >             "succesfully sent the simulation information to fortran.\n");
876 >    
877 >    errorCheckPoint();
878 >    
879 >    // Setup number of neighbors in neighbor list if present
880 >    if (simParams_->haveNeighborListNeighbors()) {
881 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 >      setNeighbors(&nlistNeighbors);
883 >    }
884 >  
885  
886 +  }
887  
888 < #ifdef IS_MPI
889 < void SimInfo::setupFortranParallel() {
890 <    
888 >
889 >  void SimInfo::setupFortranParallel() {
890 > #ifdef IS_MPI    
891      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 689 | Line 902 | void SimInfo::setupFortranParallel() {
902  
903      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904  
905 <        //local index(index in DataStorge) of atom is important
906 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 <        }
905 >      //local index(index in DataStorge) of atom is important
906 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 >      }
909  
910 <        //local index of cutoff group is trivial, it only depends on the order of travesing
911 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 <        }        
910 >      //local index of cutoff group is trivial, it only depends on the order of travesing
911 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 >      }        
914          
915      }
916  
# Line 717 | Line 930 | void SimInfo::setupFortranParallel() {
930                      &localToGlobalCutoffGroupIndex[0], &isError);
931  
932      if (isError) {
933 <        sprintf(painCave.errMsg,
934 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 <        painCave.isFatal = 1;
936 <        simError();
933 >      sprintf(painCave.errMsg,
934 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 >      painCave.isFatal = 1;
936 >      simError();
937      }
938  
939      sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 <    MPIcheckPoint();
940 >    errorCheckPoint();
941  
729
730 }
731
942   #endif
943 +  }
944  
945 < double SimInfo::calcMaxCutoffRadius() {
945 >  void SimInfo::setupCutoff() {          
946 >    
947 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
948  
949 +    // Check the cutoff policy
950 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
951  
952 <    std::set<AtomType*> atomTypes;
953 <    std::set<AtomType*>::iterator i;
954 <    std::vector<double> cutoffRadius;
952 >    // Set LJ shifting bools to false
953 >    ljsp_ = false;
954 >    ljsf_ = false;
955  
956 <    //get the unique atom types
957 <    atomTypes = getUniqueAtomTypes();
958 <
959 <    //query the max cutoff radius among these atom types
960 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
956 >    std::string myPolicy;
957 >    if (forceFieldOptions_.haveCutoffPolicy()){
958 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
959 >    }else if (simParams_->haveCutoffPolicy()) {
960 >      myPolicy = simParams_->getCutoffPolicy();
961      }
962  
963 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
964 < #ifdef IS_MPI
965 <    //pick the max cutoff radius among the processors
966 < #endif
963 >    if (!myPolicy.empty()){
964 >      toUpper(myPolicy);
965 >      if (myPolicy == "MIX") {
966 >        cp = MIX_CUTOFF_POLICY;
967 >      } else {
968 >        if (myPolicy == "MAX") {
969 >          cp = MAX_CUTOFF_POLICY;
970 >        } else {
971 >          if (myPolicy == "TRADITIONAL") {            
972 >            cp = TRADITIONAL_CUTOFF_POLICY;
973 >          } else {
974 >            // throw error        
975 >            sprintf( painCave.errMsg,
976 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
977 >            painCave.isFatal = 1;
978 >            simError();
979 >          }    
980 >        }          
981 >      }
982 >    }          
983 >    notifyFortranCutoffPolicy(&cp);
984  
985 <    return maxCutoffRadius;
986 < }
985 >    // Check the Skin Thickness for neighborlists
986 >    RealType skin;
987 >    if (simParams_->haveSkinThickness()) {
988 >      skin = simParams_->getSkinThickness();
989 >      notifyFortranSkinThickness(&skin);
990 >    }            
991 >        
992 >    // Check if the cutoff was set explicitly:
993 >    if (simParams_->haveCutoffRadius()) {
994 >      rcut_ = simParams_->getCutoffRadius();
995 >      if (simParams_->haveSwitchingRadius()) {
996 >        rsw_  = simParams_->getSwitchingRadius();
997 >      } else {
998 >        if (fInfo_.SIM_uses_Charges |
999 >            fInfo_.SIM_uses_Dipoles |
1000 >            fInfo_.SIM_uses_RF) {
1001 >          
1002 >          rsw_ = 0.85 * rcut_;
1003 >          sprintf(painCave.errMsg,
1004 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1005 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1006 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1007 >        painCave.isFatal = 0;
1008 >        simError();
1009 >        } else {
1010 >          rsw_ = rcut_;
1011 >          sprintf(painCave.errMsg,
1012 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1013 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1014 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1015 >          painCave.isFatal = 0;
1016 >          simError();
1017 >        }
1018 >      }
1019  
1020 < void SimInfo::setupCutoff() {
1021 <    double rcut_;  //cutoff radius
1022 <    double rsw_; //switching radius
760 <    
761 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1020 >      if (simParams_->haveElectrostaticSummationMethod()) {
1021 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1022 >        toUpper(myMethod);
1023          
1024 <        if (!simParams_->haveRcut()){
1025 <            sprintf(painCave.errMsg,
1024 >        if (myMethod == "SHIFTED_POTENTIAL") {
1025 >          ljsp_ = true;
1026 >        } else if (myMethod == "SHIFTED_FORCE") {
1027 >          ljsf_ = true;
1028 >        }
1029 >      }
1030 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1031 >      
1032 >    } else {
1033 >      
1034 >      // For electrostatic atoms, we'll assume a large safe value:
1035 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1036 >        sprintf(painCave.errMsg,
1037                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1038                  "\tOOPSE will use a default value of 15.0 angstroms"
1039                  "\tfor the cutoffRadius.\n");
1040 <            painCave.isFatal = 0;
1041 <            simError();
1042 <            rcut_ = 15.0;
1043 <        } else{
1044 <            rcut_ = simParams_->getRcut();
1040 >        painCave.isFatal = 0;
1041 >        simError();
1042 >        rcut_ = 15.0;
1043 >      
1044 >        if (simParams_->haveElectrostaticSummationMethod()) {
1045 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1046 >          toUpper(myMethod);
1047 >      
1048 >      // For the time being, we're tethering the LJ shifted behavior to the
1049 >      // electrostaticSummationMethod keyword options
1050 >          if (myMethod == "SHIFTED_POTENTIAL") {
1051 >            ljsp_ = true;
1052 >          } else if (myMethod == "SHIFTED_FORCE") {
1053 >            ljsf_ = true;
1054 >          }
1055 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1056 >            if (simParams_->haveSwitchingRadius()){
1057 >              sprintf(painCave.errMsg,
1058 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1059 >                      "\teven though the electrostaticSummationMethod was\n"
1060 >                      "\tset to %s\n", myMethod.c_str());
1061 >              painCave.isFatal = 1;
1062 >              simError();            
1063 >            }
1064 >          }
1065          }
1066 <
1067 <        if (!simParams_->haveRsw()){
1068 <            sprintf(painCave.errMsg,
1069 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1070 <                "\tOOPSE will use a default value of\n"
1071 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1072 <            painCave.isFatal = 0;
1073 <            simError();
1074 <            rsw_ = 0.95 * rcut_;
1075 <        } else{
1076 <            rsw_ = simParams_->getRsw();
1066 >      
1067 >        if (simParams_->haveSwitchingRadius()){
1068 >          rsw_ = simParams_->getSwitchingRadius();
1069 >        } else {        
1070 >          sprintf(painCave.errMsg,
1071 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1072 >                  "\tOOPSE will use a default value of\n"
1073 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1074 >          painCave.isFatal = 0;
1075 >          simError();
1076 >          rsw_ = 0.85 * rcut_;
1077          }
1078  
1079 <    } else {
1080 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1081 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1079 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1080 >
1081 >      } else {
1082 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1083 >        // We'll punt and let fortran figure out the cutoffs later.
1084          
1085 <        if (simParams_->haveRcut()) {
792 <            rcut_ = simParams_->getRcut();
793 <        } else {
794 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
795 <            rcut_ = calcMaxCutoffRadius();
796 <        }
1085 >        notifyFortranYouAreOnYourOwn();
1086  
1087 <        if (simParams_->haveRsw()) {
799 <            rsw_  = simParams_->getRsw();
800 <        } else {
801 <            rsw_ = rcut_;
802 <        }
803 <    
1087 >      }
1088      }
1089 <        
806 <    double rnblist = rcut_ + 1; // skin of neighbor list
1089 >  }
1090  
1091 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1092 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1093 < }
1091 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1092 >    
1093 >    int errorOut;
1094 >    int esm =  NONE;
1095 >    int sm = UNDAMPED;
1096 >    RealType alphaVal;
1097 >    RealType dielectric;
1098 >    
1099 >    errorOut = isError;
1100  
1101 < void SimInfo::addProperty(GenericData* genData) {
1102 <    properties_.addProperty(genData);  
1103 < }
1101 >    if (simParams_->haveElectrostaticSummationMethod()) {
1102 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1103 >      toUpper(myMethod);
1104 >      if (myMethod == "NONE") {
1105 >        esm = NONE;
1106 >      } else {
1107 >        if (myMethod == "SWITCHING_FUNCTION") {
1108 >          esm = SWITCHING_FUNCTION;
1109 >        } else {
1110 >          if (myMethod == "SHIFTED_POTENTIAL") {
1111 >            esm = SHIFTED_POTENTIAL;
1112 >          } else {
1113 >            if (myMethod == "SHIFTED_FORCE") {            
1114 >              esm = SHIFTED_FORCE;
1115 >            } else {
1116 >              if (myMethod == "REACTION_FIELD") {
1117 >                esm = REACTION_FIELD;
1118 >                dielectric = simParams_->getDielectric();
1119 >                if (!simParams_->haveDielectric()) {
1120 >                  // throw warning
1121 >                  sprintf( painCave.errMsg,
1122 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1123 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1124 >                  painCave.isFatal = 0;
1125 >                  simError();
1126 >                }
1127 >              } else {
1128 >                // throw error        
1129 >                sprintf( painCave.errMsg,
1130 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1131 >                         "\t(Input file specified %s .)\n"
1132 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1133 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1134 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1135 >                painCave.isFatal = 1;
1136 >                simError();
1137 >              }    
1138 >            }          
1139 >          }
1140 >        }
1141 >      }
1142 >    }
1143 >    
1144 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1145 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1146 >      toUpper(myScreen);
1147 >      if (myScreen == "UNDAMPED") {
1148 >        sm = UNDAMPED;
1149 >      } else {
1150 >        if (myScreen == "DAMPED") {
1151 >          sm = DAMPED;
1152 >          if (!simParams_->haveDampingAlpha()) {
1153 >            // first set a cutoff dependent alpha value
1154 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1155 >            alphaVal = 0.5125 - rcut_* 0.025;
1156 >            // for values rcut > 20.5, alpha is zero
1157 >            if (alphaVal < 0) alphaVal = 0;
1158  
1159 < void SimInfo::removeProperty(const std::string& propName) {
1160 <    properties_.removeProperty(propName);  
1161 < }
1159 >            // throw warning
1160 >            sprintf( painCave.errMsg,
1161 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1162 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1163 >            painCave.isFatal = 0;
1164 >            simError();
1165 >          } else {
1166 >            alphaVal = simParams_->getDampingAlpha();
1167 >          }
1168 >          
1169 >        } else {
1170 >          // throw error        
1171 >          sprintf( painCave.errMsg,
1172 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1173 >                   "\t(Input file specified %s .)\n"
1174 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1175 >                   "or \"damped\".\n", myScreen.c_str() );
1176 >          painCave.isFatal = 1;
1177 >          simError();
1178 >        }
1179 >      }
1180 >    }
1181 >    
1182 >    // let's pass some summation method variables to fortran
1183 >    setElectrostaticSummationMethod( &esm );
1184 >    setFortranElectrostaticMethod( &esm );
1185 >    setScreeningMethod( &sm );
1186 >    setDampingAlpha( &alphaVal );
1187 >    setReactionFieldDielectric( &dielectric );
1188 >    initFortranFF( &errorOut );
1189 >  }
1190  
1191 < void SimInfo::clearProperties() {
1192 <    properties_.clearProperties();
822 < }
1191 >  void SimInfo::setupSwitchingFunction() {    
1192 >    int ft = CUBIC;
1193  
1194 < std::vector<std::string> SimInfo::getPropertyNames() {
1195 <    return properties_.getPropertyNames();  
1196 < }
1197 <      
1198 < std::vector<GenericData*> SimInfo::getProperties() {
1199 <    return properties_.getProperties();
1200 < }
1194 >    if (simParams_->haveSwitchingFunctionType()) {
1195 >      std::string funcType = simParams_->getSwitchingFunctionType();
1196 >      toUpper(funcType);
1197 >      if (funcType == "CUBIC") {
1198 >        ft = CUBIC;
1199 >      } else {
1200 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1201 >          ft = FIFTH_ORDER_POLY;
1202 >        } else {
1203 >          // throw error        
1204 >          sprintf( painCave.errMsg,
1205 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1206 >          painCave.isFatal = 1;
1207 >          simError();
1208 >        }          
1209 >      }
1210 >    }
1211  
1212 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1212 >    // send switching function notification to switcheroo
1213 >    setFunctionType(&ft);
1214 >
1215 >  }
1216 >
1217 >  void SimInfo::setupAccumulateBoxDipole() {    
1218 >
1219 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1220 >    if ( simParams_->haveAccumulateBoxDipole() )
1221 >      if ( simParams_->getAccumulateBoxDipole() ) {
1222 >        setAccumulateBoxDipole();
1223 >        calcBoxDipole_ = true;
1224 >      }
1225 >
1226 >  }
1227 >
1228 >  void SimInfo::addProperty(GenericData* genData) {
1229 >    properties_.addProperty(genData);  
1230 >  }
1231 >
1232 >  void SimInfo::removeProperty(const std::string& propName) {
1233 >    properties_.removeProperty(propName);  
1234 >  }
1235 >
1236 >  void SimInfo::clearProperties() {
1237 >    properties_.clearProperties();
1238 >  }
1239 >
1240 >  std::vector<std::string> SimInfo::getPropertyNames() {
1241 >    return properties_.getPropertyNames();  
1242 >  }
1243 >      
1244 >  std::vector<GenericData*> SimInfo::getProperties() {
1245 >    return properties_.getProperties();
1246 >  }
1247 >
1248 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1249      return properties_.getPropertyByName(propName);
1250 < }
1250 >  }
1251  
1252 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1252 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1253 >    if (sman_ == sman) {
1254 >      return;
1255 >    }    
1256 >    delete sman_;
1257      sman_ = sman;
1258  
1259      Molecule* mol;
# Line 845 | Line 1265 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1265  
1266      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1267          
1268 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1269 <            atom->setSnapshotManager(sman_);
1270 <        }
1268 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1269 >        atom->setSnapshotManager(sman_);
1270 >      }
1271          
1272 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1273 <            rb->setSnapshotManager(sman_);
1274 <        }
1272 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1273 >        rb->setSnapshotManager(sman_);
1274 >      }
1275      }    
1276      
1277 < }
1277 >  }
1278  
1279 < Vector3d SimInfo::getComVel(){
1279 >  Vector3d SimInfo::getComVel(){
1280      SimInfo::MoleculeIterator i;
1281      Molecule* mol;
1282  
1283      Vector3d comVel(0.0);
1284 <    double totalMass = 0.0;
1284 >    RealType totalMass = 0.0;
1285      
1286  
1287      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1288 <        double mass = mol->getMass();
1289 <        totalMass += mass;
1290 <        comVel += mass * mol->getComVel();
1288 >      RealType mass = mol->getMass();
1289 >      totalMass += mass;
1290 >      comVel += mass * mol->getComVel();
1291      }  
1292  
1293   #ifdef IS_MPI
1294 <    double tmpMass = totalMass;
1294 >    RealType tmpMass = totalMass;
1295      Vector3d tmpComVel(comVel);    
1296 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1297 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1296 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1298   #endif
1299  
1300      comVel /= totalMass;
1301  
1302      return comVel;
1303 < }
1303 >  }
1304  
1305 < Vector3d SimInfo::getCom(){
1305 >  Vector3d SimInfo::getCom(){
1306      SimInfo::MoleculeIterator i;
1307      Molecule* mol;
1308  
1309      Vector3d com(0.0);
1310 <    double totalMass = 0.0;
1310 >    RealType totalMass = 0.0;
1311      
1312      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 <        double mass = mol->getMass();
1314 <        totalMass += mass;
1315 <        com += mass * mol->getCom();
1313 >      RealType mass = mol->getMass();
1314 >      totalMass += mass;
1315 >      com += mass * mol->getCom();
1316      }  
1317  
1318   #ifdef IS_MPI
1319 <    double tmpMass = totalMass;
1319 >    RealType tmpMass = totalMass;
1320      Vector3d tmpCom(com);    
1321 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1322 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1321 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323   #endif
1324  
1325      com /= totalMass;
1326  
1327      return com;
1328  
1329 < }        
1329 >  }        
1330  
1331 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1331 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1332  
1333      return o;
1334 < }
1334 >  }
1335 >  
1336 >  
1337 >   /*
1338 >   Returns center of mass and center of mass velocity in one function call.
1339 >   */
1340 >  
1341 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1342 >      SimInfo::MoleculeIterator i;
1343 >      Molecule* mol;
1344 >      
1345 >    
1346 >      RealType totalMass = 0.0;
1347 >    
1348  
1349 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1350 +         RealType mass = mol->getMass();
1351 +         totalMass += mass;
1352 +         com += mass * mol->getCom();
1353 +         comVel += mass * mol->getComVel();          
1354 +      }  
1355 +      
1356 + #ifdef IS_MPI
1357 +      RealType tmpMass = totalMass;
1358 +      Vector3d tmpCom(com);  
1359 +      Vector3d tmpComVel(comVel);
1360 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1361 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1362 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1363 + #endif
1364 +      
1365 +      com /= totalMass;
1366 +      comVel /= totalMass;
1367 +   }        
1368 +  
1369 +   /*
1370 +   Return intertia tensor for entire system and angular momentum Vector.
1371 +
1372 +
1373 +       [  Ixx -Ixy  -Ixz ]
1374 +  J =| -Iyx  Iyy  -Iyz |
1375 +       [ -Izx -Iyz   Izz ]
1376 +    */
1377 +
1378 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1379 +      
1380 +
1381 +      RealType xx = 0.0;
1382 +      RealType yy = 0.0;
1383 +      RealType zz = 0.0;
1384 +      RealType xy = 0.0;
1385 +      RealType xz = 0.0;
1386 +      RealType yz = 0.0;
1387 +      Vector3d com(0.0);
1388 +      Vector3d comVel(0.0);
1389 +      
1390 +      getComAll(com, comVel);
1391 +      
1392 +      SimInfo::MoleculeIterator i;
1393 +      Molecule* mol;
1394 +      
1395 +      Vector3d thisq(0.0);
1396 +      Vector3d thisv(0.0);
1397 +
1398 +      RealType thisMass = 0.0;
1399 +    
1400 +      
1401 +      
1402 +  
1403 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1404 +        
1405 +         thisq = mol->getCom()-com;
1406 +         thisv = mol->getComVel()-comVel;
1407 +         thisMass = mol->getMass();
1408 +         // Compute moment of intertia coefficients.
1409 +         xx += thisq[0]*thisq[0]*thisMass;
1410 +         yy += thisq[1]*thisq[1]*thisMass;
1411 +         zz += thisq[2]*thisq[2]*thisMass;
1412 +        
1413 +         // compute products of intertia
1414 +         xy += thisq[0]*thisq[1]*thisMass;
1415 +         xz += thisq[0]*thisq[2]*thisMass;
1416 +         yz += thisq[1]*thisq[2]*thisMass;
1417 +            
1418 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1419 +            
1420 +      }  
1421 +      
1422 +      
1423 +      inertiaTensor(0,0) = yy + zz;
1424 +      inertiaTensor(0,1) = -xy;
1425 +      inertiaTensor(0,2) = -xz;
1426 +      inertiaTensor(1,0) = -xy;
1427 +      inertiaTensor(1,1) = xx + zz;
1428 +      inertiaTensor(1,2) = -yz;
1429 +      inertiaTensor(2,0) = -xz;
1430 +      inertiaTensor(2,1) = -yz;
1431 +      inertiaTensor(2,2) = xx + yy;
1432 +      
1433 + #ifdef IS_MPI
1434 +      Mat3x3d tmpI(inertiaTensor);
1435 +      Vector3d tmpAngMom;
1436 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1437 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1438 + #endif
1439 +              
1440 +      return;
1441 +   }
1442 +
1443 +   //Returns the angular momentum of the system
1444 +   Vector3d SimInfo::getAngularMomentum(){
1445 +      
1446 +      Vector3d com(0.0);
1447 +      Vector3d comVel(0.0);
1448 +      Vector3d angularMomentum(0.0);
1449 +      
1450 +      getComAll(com,comVel);
1451 +      
1452 +      SimInfo::MoleculeIterator i;
1453 +      Molecule* mol;
1454 +      
1455 +      Vector3d thisr(0.0);
1456 +      Vector3d thisp(0.0);
1457 +      
1458 +      RealType thisMass;
1459 +      
1460 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1461 +        thisMass = mol->getMass();
1462 +        thisr = mol->getCom()-com;
1463 +        thisp = (mol->getComVel()-comVel)*thisMass;
1464 +        
1465 +        angularMomentum += cross( thisr, thisp );
1466 +        
1467 +      }  
1468 +      
1469 + #ifdef IS_MPI
1470 +      Vector3d tmpAngMom;
1471 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1472 + #endif
1473 +      
1474 +      return angularMomentum;
1475 +   }
1476 +  
1477 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1478 +    return IOIndexToIntegrableObject.at(index);
1479 +  }
1480 +  
1481 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1482 +    IOIndexToIntegrableObject= v;
1483 +  }
1484 +
1485 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1486 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1487 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1488 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1489 +  */
1490 +  void SimInfo::getGyrationalVolume(RealType &volume){
1491 +    Mat3x3d intTensor;
1492 +    RealType det;
1493 +    Vector3d dummyAngMom;
1494 +    RealType sysconstants;
1495 +    RealType geomCnst;
1496 +
1497 +    geomCnst = 3.0/2.0;
1498 +    /* Get the inertial tensor and angular momentum for free*/
1499 +    getInertiaTensor(intTensor,dummyAngMom);
1500 +    
1501 +    det = intTensor.determinant();
1502 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1503 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1504 +    return;
1505 +  }
1506 +
1507 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1508 +    Mat3x3d intTensor;
1509 +    Vector3d dummyAngMom;
1510 +    RealType sysconstants;
1511 +    RealType geomCnst;
1512 +
1513 +    geomCnst = 3.0/2.0;
1514 +    /* Get the inertial tensor and angular momentum for free*/
1515 +    getInertiaTensor(intTensor,dummyAngMom);
1516 +    
1517 +    detI = intTensor.determinant();
1518 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1519 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1520 +    return;
1521 +  }
1522 + /*
1523 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1524 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1525 +      sdByGlobalIndex_ = v;
1526 +    }
1527 +
1528 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1529 +      //assert(index < nAtoms_ + nRigidBodies_);
1530 +      return sdByGlobalIndex_.at(index);
1531 +    }  
1532 + */  
1533   }//end namespace oopse
1534  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines