ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1535 by gezelter, Fri Dec 31 18:31:56 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
57   #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62   #include "UseTheForce/ForceField.hpp"
63 + #include "nonbonded/SwitchingFunction.hpp"
64  
71
65   #ifdef IS_MPI
66   #include "UseTheForce/mpiComponentPlan.h"
67   #include "UseTheForce/DarkSide/simParallel_interface.h"
68   #endif
69  
70 < namespace oopse {
71 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 <    std::map<int, std::set<int> >::iterator i = container.find(index);
80 <    std::set<int> result;
81 <    if (i != container.end()) {
82 <        result = i->second;
83 <    }
84 <
85 <    return result;
86 <  }
70 > using namespace std;
71 > namespace OpenMD {
72    
73    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
74      forceField_(ff), simParams_(simParams),
75      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
76      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
77      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
78 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
79 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
80 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
81 <    useAtomicVirial_(true) {
82 <
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
90 <      std::vector<Component*> components = simParams->getComponents();
78 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
79 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
80 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
94 >      molStamp = (*i)->getMoleculeStamp();
95 >      nMolWithSameStamp = (*i)->getNMol();
96        
97 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
98 <        molStamp = (*i)->getMoleculeStamp();
99 <        nMolWithSameStamp = (*i)->getNMol();
100 <        
101 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
102 <
103 <        //calculate atoms in molecules
104 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
105 <
106 <        //calculate atoms in cutoff groups
107 <        int nAtomsInGroups = 0;
108 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 <        
120 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 <          cgStamp = molStamp->getCutoffGroupStamp(j);
122 <          nAtomsInGroups += cgStamp->getNMembers();
123 <        }
124 <
125 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 <
127 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128 <
129 <        //calculate atoms in rigid bodies
130 <        int nAtomsInRigidBodies = 0;
131 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 <        
133 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
134 <          rbStamp = molStamp->getRigidBodyStamp(j);
135 <          nAtomsInRigidBodies += rbStamp->getNMembers();
136 <        }
137 <
138 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 <        
97 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
98 >      
99 >      //calculate atoms in molecules
100 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
101 >      
102 >      //calculate atoms in cutoff groups
103 >      int nAtomsInGroups = 0;
104 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 >      
106 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 >        cgStamp = molStamp->getCutoffGroupStamp(j);
108 >        nAtomsInGroups += cgStamp->getNMembers();
109        }
110 <
111 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
112 <      //group therefore the total number of cutoff groups in the system is
113 <      //equal to the total number of atoms minus number of atoms belong to
114 <      //cutoff group defined in meta-data file plus the number of cutoff
115 <      //groups defined in meta-data file
116 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
117 <
118 <      //every free atom (atom does not belong to rigid bodies) is an
119 <      //integrable object therefore the total number of integrable objects
120 <      //in the system is equal to the total number of atoms minus number of
121 <      //atoms belong to rigid body defined in meta-data file plus the number
122 <      //of rigid bodies defined in meta-data file
123 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
124 <                                                + nGlobalRigidBodies_;
125 <  
126 <      nGlobalMols_ = molStampIds_.size();
159 <      molToProcMap_.resize(nGlobalMols_);
110 >      
111 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 >      
113 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114 >      
115 >      //calculate atoms in rigid bodies
116 >      int nAtomsInRigidBodies = 0;
117 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 >      
119 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
120 >        rbStamp = molStamp->getRigidBodyStamp(j);
121 >        nAtomsInRigidBodies += rbStamp->getNMembers();
122 >      }
123 >      
124 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 >      
127      }
128 <
128 >    
129 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
130 >    //group therefore the total number of cutoff groups in the system is
131 >    //equal to the total number of atoms minus number of atoms belong to
132 >    //cutoff group defined in meta-data file plus the number of cutoff
133 >    //groups defined in meta-data file
134 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147 >  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 171 | Line 157 | namespace oopse {
157      delete forceField_;
158    }
159  
174  int SimInfo::getNGlobalConstraints() {
175    int nGlobalConstraints;
176 #ifdef IS_MPI
177    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178                  MPI_COMM_WORLD);    
179 #else
180    nGlobalConstraints =  nConstraints_;
181 #endif
182    return nGlobalConstraints;
183  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
172        nTorsions_ += mol->getNTorsions();
173 +      nInversions_ += mol->getNInversions();
174        nRigidBodies_ += mol->getNRigidBodies();
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
179 <      addExcludePairs(mol);
180 <        
178 >      
179 >      addInteractionPairs(mol);
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 219 | Line 196 | namespace oopse {
196        nBonds_ -= mol->getNBonds();
197        nBends_ -= mol->getNBends();
198        nTorsions_ -= mol->getNTorsions();
199 +      nInversions_ -= mol->getNInversions();
200        nRigidBodies_ -= mol->getNRigidBodies();
201        nIntegrableObjects_ -= mol->getNIntegrableObjects();
202        nCutoffGroups_ -= mol->getNCutoffGroups();
203        nConstraints_ -= mol->getNConstraintPairs();
204  
205 <      removeExcludePairs(mol);
205 >      removeInteractionPairs(mol);
206        molecules_.erase(mol->getGlobalIndex());
207  
208        delete mol;
# Line 233 | Line 211 | namespace oopse {
211      } else {
212        return false;
213      }
236
237
214    }    
215  
216          
# Line 252 | Line 228 | namespace oopse {
228    void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
# Line 303 | Line 279 | namespace oopse {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 350 | Line 326 | namespace oopse {
326  
327    }
328  
329 <  void SimInfo::addExcludePairs(Molecule* mol) {
330 <    std::vector<Bond*>::iterator bondIter;
331 <    std::vector<Bend*>::iterator bendIter;
332 <    std::vector<Torsion*>::iterator torsionIter;
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
338 +    Inversion* inversion;
339      int a;
340      int b;
341      int c;
342      int d;
343  
344 <    std::map<int, std::set<int> > atomGroups;
344 >    // atomGroups can be used to add special interaction maps between
345 >    // groups of atoms that are in two separate rigid bodies.
346 >    // However, most site-site interactions between two rigid bodies
347 >    // are probably not special, just the ones between the physically
348 >    // bonded atoms.  Interactions *within* a single rigid body should
349 >    // always be excluded.  These are done at the bottom of this
350 >    // function.
351  
352 +    map<int, set<int> > atomGroups;
353      Molecule::RigidBodyIterator rbIter;
354      RigidBody* rb;
355      Molecule::IntegrableObjectIterator ii;
356      StuntDouble* integrableObject;
357      
358 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
359 <           integrableObject = mol->nextIntegrableObject(ii)) {
360 <
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362        if (integrableObject->isRigidBody()) {
363 <          rb = static_cast<RigidBody*>(integrableObject);
364 <          std::vector<Atom*> atoms = rb->getAtoms();
365 <          std::set<int> rigidAtoms;
366 <          for (int i = 0; i < atoms.size(); ++i) {
367 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 <          }
369 <          for (int i = 0; i < atoms.size(); ++i) {
370 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 <          }      
372 <      } else {
373 <        std::set<int> oneAtomSet;
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372 >      } else {
373 >        set<int> oneAtomSet;
374          oneAtomSet.insert(integrableObject->getGlobalIndex());
375 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376        }
377      }  
378 +          
379 +    for (bond= mol->beginBond(bondIter); bond != NULL;
380 +         bond = mol->nextBond(bondIter)) {
381  
392    
393    
394    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
382        a = bond->getAtomA()->getGlobalIndex();
383 <      b = bond->getAtomB()->getGlobalIndex();        
384 <      exclude_.addPair(a, b);
383 >      b = bond->getAtomB()->getGlobalIndex();  
384 >    
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
391  
392 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394 >
395        a = bend->getAtomA()->getGlobalIndex();
396        b = bend->getAtomB()->getGlobalIndex();        
397        c = bend->getAtomC()->getGlobalIndex();
404      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407
408      exclude_.addPairs(rigidSetA, rigidSetB);
409      exclude_.addPairs(rigidSetA, rigidSetC);
410      exclude_.addPairs(rigidSetB, rigidSetC);
398        
399 <      //exclude_.addPair(a, b);
400 <      //exclude_.addPair(a, c);
401 <      //exclude_.addPair(b, c);        
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);      
401 >        oneTwoInteractions_.addPair(b, c);
402 >      } else {
403 >        excludedInteractions_.addPair(a, b);
404 >        excludedInteractions_.addPair(b, c);
405 >      }
406 >
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412      }
413  
414 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416 >
417        a = torsion->getAtomA()->getGlobalIndex();
418        b = torsion->getAtomB()->getGlobalIndex();        
419        c = torsion->getAtomC()->getGlobalIndex();        
420 <      d = torsion->getAtomD()->getGlobalIndex();        
422 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421  
422 <      exclude_.addPairs(rigidSetA, rigidSetB);
423 <      exclude_.addPairs(rigidSetA, rigidSetC);
424 <      exclude_.addPairs(rigidSetA, rigidSetD);
425 <      exclude_.addPairs(rigidSetB, rigidSetC);
426 <      exclude_.addPairs(rigidSetB, rigidSetD);
427 <      exclude_.addPairs(rigidSetC, rigidSetD);
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431  
432 <      /*
433 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
434 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
435 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
436 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
437 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
438 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
439 <        
440 <      
441 <      exclude_.addPair(a, b);
442 <      exclude_.addPair(a, c);
443 <      exclude_.addPair(a, d);
444 <      exclude_.addPair(b, c);
447 <      exclude_.addPair(b, d);
448 <      exclude_.addPair(c, d);        
449 <      */
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >        oneThreeInteractions_.addPair(b, d);      
435 >      } else {
436 >        excludedInteractions_.addPair(a, c);
437 >        excludedInteractions_.addPair(b, d);
438 >      }
439 >
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445      }
446  
447 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
448 <      std::vector<Atom*> atoms = rb->getAtoms();
449 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
450 <        for (int j = i + 1; j < atoms.size(); ++j) {
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449 >
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454 >
455 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 >        oneTwoInteractions_.addPair(a, b);      
457 >        oneTwoInteractions_.addPair(a, c);
458 >        oneTwoInteractions_.addPair(a, d);
459 >      } else {
460 >        excludedInteractions_.addPair(a, b);
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(a, d);
463 >      }
464 >
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475 >
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481            a = atoms[i]->getGlobalIndex();
482            b = atoms[j]->getGlobalIndex();
483 <          exclude_.addPair(a, b);
483 >          excludedInteractions_.addPair(a, b);
484          }
485        }
486      }        
487  
488    }
489  
490 <  void SimInfo::removeExcludePairs(Molecule* mol) {
491 <    std::vector<Bond*>::iterator bondIter;
492 <    std::vector<Bend*>::iterator bendIter;
493 <    std::vector<Torsion*>::iterator torsionIter;
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
499 +    Inversion* inversion;
500      int a;
501      int b;
502      int c;
503      int d;
504  
505 <    std::map<int, std::set<int> > atomGroups;
478 <
505 >    map<int, set<int> > atomGroups;
506      Molecule::RigidBodyIterator rbIter;
507      RigidBody* rb;
508      Molecule::IntegrableObjectIterator ii;
509      StuntDouble* integrableObject;
510      
511 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
512 <           integrableObject = mol->nextIntegrableObject(ii)) {
513 <
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515        if (integrableObject->isRigidBody()) {
516 <          rb = static_cast<RigidBody*>(integrableObject);
517 <          std::vector<Atom*> atoms = rb->getAtoms();
518 <          std::set<int> rigidAtoms;
519 <          for (int i = 0; i < atoms.size(); ++i) {
520 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 <          }
522 <          for (int i = 0; i < atoms.size(); ++i) {
523 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 <          }      
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525        } else {
526 <        std::set<int> oneAtomSet;
526 >        set<int> oneAtomSet;
527          oneAtomSet.insert(integrableObject->getGlobalIndex());
528 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529        }
530      }  
531  
532 <    
533 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535        a = bond->getAtomA()->getGlobalIndex();
536 <      b = bond->getAtomB()->getGlobalIndex();        
537 <      exclude_.removePair(a, b);
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543      }
544  
545 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547 >
548        a = bend->getAtomA()->getGlobalIndex();
549        b = bend->getAtomB()->getGlobalIndex();        
550        c = bend->getAtomC()->getGlobalIndex();
515
516      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519
520      exclude_.removePairs(rigidSetA, rigidSetB);
521      exclude_.removePairs(rigidSetA, rigidSetC);
522      exclude_.removePairs(rigidSetB, rigidSetC);
551        
552 <      //exclude_.removePair(a, b);
553 <      //exclude_.removePair(a, c);
554 <      //exclude_.removePair(b, c);        
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);      
554 >        oneTwoInteractions_.removePair(b, c);
555 >      } else {
556 >        excludedInteractions_.removePair(a, b);
557 >        excludedInteractions_.removePair(b, c);
558 >      }
559 >
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565      }
566  
567 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569 >
570        a = torsion->getAtomA()->getGlobalIndex();
571        b = torsion->getAtomB()->getGlobalIndex();        
572        c = torsion->getAtomC()->getGlobalIndex();        
573 <      d = torsion->getAtomD()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574 >  
575 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 >        oneTwoInteractions_.removePair(a, b);      
577 >        oneTwoInteractions_.removePair(b, c);
578 >        oneTwoInteractions_.removePair(c, d);
579 >      } else {
580 >        excludedInteractions_.removePair(a, b);
581 >        excludedInteractions_.removePair(b, c);
582 >        excludedInteractions_.removePair(c, d);
583 >      }
584  
585 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
586 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
587 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
588 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592  
593 <      exclude_.removePairs(rigidSetA, rigidSetB);
594 <      exclude_.removePairs(rigidSetA, rigidSetC);
595 <      exclude_.removePairs(rigidSetA, rigidSetD);
596 <      exclude_.removePairs(rigidSetB, rigidSetC);
597 <      exclude_.removePairs(rigidSetB, rigidSetD);
598 <      exclude_.removePairs(rigidSetC, rigidSetD);
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598 >    }
599  
600 <      /*
601 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
600 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 >         inversion = mol->nextInversion(inversionIter)) {
602  
603 <      
604 <      exclude_.removePair(a, b);
605 <      exclude_.removePair(a, c);
606 <      exclude_.removePair(a, d);
607 <      exclude_.removePair(b, c);
608 <      exclude_.removePair(b, d);
609 <      exclude_.removePair(c, d);        
610 <      */
603 >      a = inversion->getAtomA()->getGlobalIndex();
604 >      b = inversion->getAtomB()->getGlobalIndex();        
605 >      c = inversion->getAtomC()->getGlobalIndex();        
606 >      d = inversion->getAtomD()->getGlobalIndex();        
607 >
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617 >
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(b, c);    
620 >        oneThreeInteractions_.removePair(b, d);    
621 >        oneThreeInteractions_.removePair(c, d);      
622 >      } else {
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(b, d);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627      }
628  
629 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
630 <      std::vector<Atom*> atoms = rb->getAtoms();
631 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
632 <        for (int j = i + 1; j < atoms.size(); ++j) {
629 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 >         rb = mol->nextRigidBody(rbIter)) {
631 >      vector<Atom*> atoms = rb->getAtoms();
632 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634            a = atoms[i]->getGlobalIndex();
635            b = atoms[j]->getGlobalIndex();
636 <          exclude_.removePair(a, b);
636 >          excludedInteractions_.removePair(a, b);
637          }
638        }
639      }        
640 <
640 >    
641    }
642 <
643 <
642 >  
643 >  
644    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645      int curStampId;
646 <
646 >    
647      //index from 0
648      curStampId = moleculeStamps_.size();
649  
# Line 586 | Line 651 | namespace oopse {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
589  void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
600 <    /** @deprecate */    
601 <    int isError = 0;
602 <    
603 <    setupCutoff();
604 <    
605 <    setupElectrostaticSummationMethod( isError );
606 <    setupSwitchingFunction();
607 <    setupAccumulateBoxDipole();
608 <
609 <    if(isError){
610 <      sprintf( painCave.errMsg,
611 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
612 <      painCave.isFatal = 1;
613 <      simError();
614 <    }
615 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
619
620    fortranInitialized_ = true;
667    }
668 <
669 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
682 <
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631 <
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <        
636 <    }
686 >      }      
687 >    }    
688  
689 <    return atomTypes;        
639 <  }
689 > #ifdef IS_MPI
690  
691 <  void SimInfo::setupSimType() {
692 <    std::set<AtomType*>::iterator i;
643 <    std::set<AtomType*> atomTypes;
644 <    atomTypes = getUniqueAtomTypes();
645 <    
646 <    int useLennardJones = 0;
647 <    int useElectrostatic = 0;
648 <    int useEAM = 0;
649 <    int useSC = 0;
650 <    int useCharge = 0;
651 <    int useDirectional = 0;
652 <    int useDipole = 0;
653 <    int useGayBerne = 0;
654 <    int useSticky = 0;
655 <    int useStickyPower = 0;
656 <    int useShape = 0;
657 <    int useFLARB = 0; //it is not in AtomType yet
658 <    int useDirectionalAtom = 0;    
659 <    int useElectrostatics = 0;
660 <    //usePBC and useRF are from simParams
661 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 <    int useRF;
663 <    int useSF;
664 <    int useSP;
665 <    int useBoxDipole;
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <    std::string myMethod;
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 <    // set the useRF logical
700 <    useRF = 0;
671 <    useSF = 0;
672 <    useSP = 0;
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701  
702 +    // count holds the total number of found types on all processors
703 +    // (some will be redundant with the ones found locally):
704 +    int count;
705 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706  
707 <    if (simParams_->haveElectrostaticSummationMethod()) {
708 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
709 <      toUpper(myMethod);
710 <      if (myMethod == "REACTION_FIELD"){
711 <        useRF = 1;
712 <      } else if (myMethod == "SHIFTED_FORCE"){
713 <        useSF = 1;
714 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
715 <        useSP = 1;
716 <      }
717 <    }
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711 >
712 >    int nproc = MPI::COMM_WORLD.Get_size();
713 >    counts.resize(nproc);
714 >    vector<int> disps;
715 >    disps.resize(nproc);
716 >
717 >    // now spray out the foundTypes to all the other processors:
718      
719 <    if (simParams_->haveAccumulateBoxDipole())
720 <      if (simParams_->getAccumulateBoxDipole())
689 <        useBoxDipole = 1;
719 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721  
722 +    // foundIdents is a stl set, so inserting an already found ident
723 +    // will have no effect.
724 +    set<int> foundIdents;
725 +    vector<int>::iterator j;
726 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 +      foundIdents.insert((*j));
728 +    
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735 + #endif
736 +    
737 +    return atomTypes;        
738 +  }
739 +
740 +  void SimInfo::setupSimVariables() {
741      useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 +    calcBoxDipole_ = false;
744 +    if ( simParams_->haveAccumulateBoxDipole() )
745 +      if ( simParams_->getAccumulateBoxDipole() ) {
746 +        calcBoxDipole_ = true;      
747 +      }
748  
749 +    set<AtomType*>::iterator i;
750 +    set<AtomType*> atomTypes;
751 +    atomTypes = getSimulatedAtomTypes();    
752 +    int usesElectrostatic = 0;
753 +    int usesMetallic = 0;
754 +    int usesDirectional = 0;
755      //loop over all of the atom types
756      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 <      useLennardJones |= (*i)->isLennardJones();
758 <      useElectrostatic |= (*i)->isElectrostatic();
759 <      useEAM |= (*i)->isEAM();
698 <      useSC |= (*i)->isSC();
699 <      useCharge |= (*i)->isCharge();
700 <      useDirectional |= (*i)->isDirectional();
701 <      useDipole |= (*i)->isDipole();
702 <      useGayBerne |= (*i)->isGayBerne();
703 <      useSticky |= (*i)->isSticky();
704 <      useStickyPower |= (*i)->isStickyPower();
705 <      useShape |= (*i)->isShape();
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
708    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709      useDirectionalAtom = 1;
710    }
711
712    if (useCharge || useDipole) {
713      useElectrostatics = 1;
714    }
715
762   #ifdef IS_MPI    
763      int temp;
764 <
765 <    temp = usePBC;
720 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 <
722 <    temp = useDirectionalAtom;
723 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 <
725 <    temp = useLennardJones;
726 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 >    temp = usesDirectional;
765 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = useElectrostatics;
768 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 <    temp = useCharge;
771 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 <
734 <    temp = useDipole;
735 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 <
737 <    temp = useSticky;
738 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 <
740 <    temp = useStickyPower;
741 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 <    
743 <    temp = useGayBerne;
744 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 <
746 <    temp = useEAM;
747 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
748 <
749 <    temp = useSC;
750 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751 <    
752 <    temp = useShape;
753 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
754 <
755 <    temp = useFLARB;
756 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 <
758 <    temp = useRF;
759 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760 <
761 <    temp = useSF;
762 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763 <
764 <    temp = useSP;
765 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 <
767 <    temp = useBoxDipole;
768 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 <
770 <    temp = useAtomicVirial_;
771 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 <
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772   #endif
773 <
774 <    fInfo_.SIM_uses_PBC = usePBC;    
775 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
776 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
777 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
778 <    fInfo_.SIM_uses_Charges = useCharge;
780 <    fInfo_.SIM_uses_Dipoles = useDipole;
781 <    fInfo_.SIM_uses_Sticky = useSticky;
782 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
783 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
784 <    fInfo_.SIM_uses_EAM = useEAM;
785 <    fInfo_.SIM_uses_SC = useSC;
786 <    fInfo_.SIM_uses_Shapes = useShape;
787 <    fInfo_.SIM_uses_FLARB = useFLARB;
788 <    fInfo_.SIM_uses_RF = useRF;
789 <    fInfo_.SIM_uses_SF = useSF;
790 <    fInfo_.SIM_uses_SP = useSP;
791 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
792 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
773 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
774 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
775 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
776 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
777 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
779    }
780  
781 <  void SimInfo::setupFortranSim() {
781 >  void SimInfo::setupFortran() {
782      int isError;
783 <    int nExclude;
784 <    std::vector<int> fortranGlobalGroupMembership;
783 >    int nExclude, nOneTwo, nOneThree, nOneFour;
784 >    vector<int> fortranGlobalGroupMembership;
785      
800    nExclude = exclude_.getSize();
786      isError = 0;
787  
788      //globalGroupMembership_ is filled by SimCreator    
# Line 806 | Line 791 | namespace oopse {
791      }
792  
793      //calculate mass ratio of cutoff group
794 <    std::vector<RealType> mfact;
794 >    vector<RealType> mfact;
795      SimInfo::MoleculeIterator mi;
796      Molecule* mol;
797      Molecule::CutoffGroupIterator ci;
# Line 829 | Line 814 | namespace oopse {
814            else
815              mfact.push_back( 1.0 );
816          }
832
817        }      
818      }
819  
820 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 <    std::vector<int> identArray;
820 >    //fill ident array of local atoms (it is actually ident of
821 >    //AtomType, it is so confusing !!!)
822 >    vector<int> identArray;
823  
824      //to avoid memory reallocation, reserve enough space identArray
825      identArray.reserve(getNAtoms());
# Line 847 | Line 832 | namespace oopse {
832  
833      //fill molMembershipArray
834      //molMembershipArray is filled by SimCreator    
835 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
835 >    vector<int> molMembershipArray(nGlobalAtoms_);
836      for (int i = 0; i < nGlobalAtoms_; i++) {
837        molMembershipArray[i] = globalMolMembership_[i] + 1;
838      }
839      
840      //setup fortran simulation
841 <    int nGlobalExcludes = 0;
842 <    int* globalExcludes = NULL;
843 <    int* excludeList = exclude_.getExcludeList();
841 >
842 >    nExclude = excludedInteractions_.getSize();
843 >    nOneTwo = oneTwoInteractions_.getSize();
844 >    nOneThree = oneThreeInteractions_.getSize();
845 >    nOneFour = oneFourInteractions_.getSize();
846 >
847 >    int* excludeList = excludedInteractions_.getPairList();
848 >    int* oneTwoList = oneTwoInteractions_.getPairList();
849 >    int* oneThreeList = oneThreeInteractions_.getPairList();
850 >    int* oneFourList = oneFourInteractions_.getPairList();
851 >
852      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
853 <                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
853 >                   &nExclude, excludeList,
854 >                   &nOneTwo, oneTwoList,
855 >                   &nOneThree, oneThreeList,
856 >                   &nOneFour, oneFourList,
857                     &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
858                     &fortranGlobalGroupMembership[0], &isError);
859      
# Line 866 | Line 862 | namespace oopse {
862        sprintf( painCave.errMsg,
863                 "There was an error setting the simulation information in fortran.\n" );
864        painCave.isFatal = 1;
865 <      painCave.severity = OOPSE_ERROR;
865 >      painCave.severity = OPENMD_ERROR;
866        simError();
867      }
868      
# Line 882 | Line 878 | namespace oopse {
878        setNeighbors(&nlistNeighbors);
879      }
880    
885
886  }
887
888
889  void SimInfo::setupFortranParallel() {
881   #ifdef IS_MPI    
882 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
883 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
884 <    std::vector<int> localToGlobalCutoffGroupIndex;
885 <    SimInfo::MoleculeIterator mi;
895 <    Molecule::AtomIterator ai;
896 <    Molecule::CutoffGroupIterator ci;
897 <    Molecule* mol;
898 <    Atom* atom;
899 <    CutoffGroup* cg;
882 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
883 >    //localToGlobalGroupIndex
884 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
885 >    vector<int> localToGlobalCutoffGroupIndex;
886      mpiSimData parallelData;
901    int isError;
887  
888      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889  
# Line 938 | Line 923 | namespace oopse {
923  
924      sprintf(checkPointMsg, " mpiRefresh successful.\n");
925      errorCheckPoint();
941
926   #endif
927 <  }
944 <
945 <  void SimInfo::setupCutoff() {          
946 <    
947 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
948 <
949 <    // Check the cutoff policy
950 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
951 <
952 <    // Set LJ shifting bools to false
953 <    ljsp_ = false;
954 <    ljsf_ = false;
955 <
956 <    std::string myPolicy;
957 <    if (forceFieldOptions_.haveCutoffPolicy()){
958 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
959 <    }else if (simParams_->haveCutoffPolicy()) {
960 <      myPolicy = simParams_->getCutoffPolicy();
961 <    }
962 <
963 <    if (!myPolicy.empty()){
964 <      toUpper(myPolicy);
965 <      if (myPolicy == "MIX") {
966 <        cp = MIX_CUTOFF_POLICY;
967 <      } else {
968 <        if (myPolicy == "MAX") {
969 <          cp = MAX_CUTOFF_POLICY;
970 <        } else {
971 <          if (myPolicy == "TRADITIONAL") {            
972 <            cp = TRADITIONAL_CUTOFF_POLICY;
973 <          } else {
974 <            // throw error        
975 <            sprintf( painCave.errMsg,
976 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
977 <            painCave.isFatal = 1;
978 <            simError();
979 <          }    
980 <        }          
981 <      }
982 <    }          
983 <    notifyFortranCutoffPolicy(&cp);
984 <
985 <    // Check the Skin Thickness for neighborlists
986 <    RealType skin;
987 <    if (simParams_->haveSkinThickness()) {
988 <      skin = simParams_->getSkinThickness();
989 <      notifyFortranSkinThickness(&skin);
990 <    }            
991 <        
992 <    // Check if the cutoff was set explicitly:
993 <    if (simParams_->haveCutoffRadius()) {
994 <      rcut_ = simParams_->getCutoffRadius();
995 <      if (simParams_->haveSwitchingRadius()) {
996 <        rsw_  = simParams_->getSwitchingRadius();
997 <      } else {
998 <        if (fInfo_.SIM_uses_Charges |
999 <            fInfo_.SIM_uses_Dipoles |
1000 <            fInfo_.SIM_uses_RF) {
1001 <          
1002 <          rsw_ = 0.85 * rcut_;
1003 <          sprintf(painCave.errMsg,
1004 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1005 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1006 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1007 <        painCave.isFatal = 0;
1008 <        simError();
1009 <        } else {
1010 <          rsw_ = rcut_;
1011 <          sprintf(painCave.errMsg,
1012 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1013 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1014 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1015 <          painCave.isFatal = 0;
1016 <          simError();
1017 <        }
1018 <      }
1019 <
1020 <      if (simParams_->haveElectrostaticSummationMethod()) {
1021 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1022 <        toUpper(myMethod);
1023 <        
1024 <        if (myMethod == "SHIFTED_POTENTIAL") {
1025 <          ljsp_ = true;
1026 <        } else if (myMethod == "SHIFTED_FORCE") {
1027 <          ljsf_ = true;
1028 <        }
1029 <      }
1030 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1031 <      
1032 <    } else {
1033 <      
1034 <      // For electrostatic atoms, we'll assume a large safe value:
1035 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1036 <        sprintf(painCave.errMsg,
1037 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1038 <                "\tOOPSE will use a default value of 15.0 angstroms"
1039 <                "\tfor the cutoffRadius.\n");
1040 <        painCave.isFatal = 0;
1041 <        simError();
1042 <        rcut_ = 15.0;
1043 <      
1044 <        if (simParams_->haveElectrostaticSummationMethod()) {
1045 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1046 <          toUpper(myMethod);
1047 <      
1048 <      // For the time being, we're tethering the LJ shifted behavior to the
1049 <      // electrostaticSummationMethod keyword options
1050 <          if (myMethod == "SHIFTED_POTENTIAL") {
1051 <            ljsp_ = true;
1052 <          } else if (myMethod == "SHIFTED_FORCE") {
1053 <            ljsf_ = true;
1054 <          }
1055 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1056 <            if (simParams_->haveSwitchingRadius()){
1057 <              sprintf(painCave.errMsg,
1058 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1059 <                      "\teven though the electrostaticSummationMethod was\n"
1060 <                      "\tset to %s\n", myMethod.c_str());
1061 <              painCave.isFatal = 1;
1062 <              simError();            
1063 <            }
1064 <          }
1065 <        }
1066 <      
1067 <        if (simParams_->haveSwitchingRadius()){
1068 <          rsw_ = simParams_->getSwitchingRadius();
1069 <        } else {        
1070 <          sprintf(painCave.errMsg,
1071 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1072 <                  "\tOOPSE will use a default value of\n"
1073 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1074 <          painCave.isFatal = 0;
1075 <          simError();
1076 <          rsw_ = 0.85 * rcut_;
1077 <        }
1078 <
1079 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1080 <
1081 <      } else {
1082 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1083 <        // We'll punt and let fortran figure out the cutoffs later.
1084 <        
1085 <        notifyFortranYouAreOnYourOwn();
1086 <
1087 <      }
1088 <    }
1089 <  }
1090 <
1091 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1092 <    
1093 <    int errorOut;
1094 <    int esm =  NONE;
1095 <    int sm = UNDAMPED;
1096 <    RealType alphaVal;
1097 <    RealType dielectric;
1098 <    
1099 <    errorOut = isError;
1100 <
1101 <    if (simParams_->haveElectrostaticSummationMethod()) {
1102 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1103 <      toUpper(myMethod);
1104 <      if (myMethod == "NONE") {
1105 <        esm = NONE;
1106 <      } else {
1107 <        if (myMethod == "SWITCHING_FUNCTION") {
1108 <          esm = SWITCHING_FUNCTION;
1109 <        } else {
1110 <          if (myMethod == "SHIFTED_POTENTIAL") {
1111 <            esm = SHIFTED_POTENTIAL;
1112 <          } else {
1113 <            if (myMethod == "SHIFTED_FORCE") {            
1114 <              esm = SHIFTED_FORCE;
1115 <            } else {
1116 <              if (myMethod == "REACTION_FIELD") {
1117 <                esm = REACTION_FIELD;
1118 <                dielectric = simParams_->getDielectric();
1119 <                if (!simParams_->haveDielectric()) {
1120 <                  // throw warning
1121 <                  sprintf( painCave.errMsg,
1122 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1123 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1124 <                  painCave.isFatal = 0;
1125 <                  simError();
1126 <                }
1127 <              } else {
1128 <                // throw error        
1129 <                sprintf( painCave.errMsg,
1130 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1131 <                         "\t(Input file specified %s .)\n"
1132 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1133 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1134 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1135 <                painCave.isFatal = 1;
1136 <                simError();
1137 <              }    
1138 <            }          
1139 <          }
1140 <        }
1141 <      }
1142 <    }
1143 <    
1144 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1145 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1146 <      toUpper(myScreen);
1147 <      if (myScreen == "UNDAMPED") {
1148 <        sm = UNDAMPED;
1149 <      } else {
1150 <        if (myScreen == "DAMPED") {
1151 <          sm = DAMPED;
1152 <          if (!simParams_->haveDampingAlpha()) {
1153 <            // first set a cutoff dependent alpha value
1154 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1155 <            alphaVal = 0.5125 - rcut_* 0.025;
1156 <            // for values rcut > 20.5, alpha is zero
1157 <            if (alphaVal < 0) alphaVal = 0;
1158 <
1159 <            // throw warning
1160 <            sprintf( painCave.errMsg,
1161 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1162 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1163 <            painCave.isFatal = 0;
1164 <            simError();
1165 <          } else {
1166 <            alphaVal = simParams_->getDampingAlpha();
1167 <          }
1168 <          
1169 <        } else {
1170 <          // throw error        
1171 <          sprintf( painCave.errMsg,
1172 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1173 <                   "\t(Input file specified %s .)\n"
1174 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1175 <                   "or \"damped\".\n", myScreen.c_str() );
1176 <          painCave.isFatal = 1;
1177 <          simError();
1178 <        }
1179 <      }
1180 <    }
1181 <    
1182 <    // let's pass some summation method variables to fortran
1183 <    setElectrostaticSummationMethod( &esm );
1184 <    setFortranElectrostaticMethod( &esm );
1185 <    setScreeningMethod( &sm );
1186 <    setDampingAlpha( &alphaVal );
1187 <    setReactionFieldDielectric( &dielectric );
1188 <    initFortranFF( &errorOut );
927 >    fortranInitialized_ = true;
928    }
929  
1191  void SimInfo::setupSwitchingFunction() {    
1192    int ft = CUBIC;
1193
1194    if (simParams_->haveSwitchingFunctionType()) {
1195      std::string funcType = simParams_->getSwitchingFunctionType();
1196      toUpper(funcType);
1197      if (funcType == "CUBIC") {
1198        ft = CUBIC;
1199      } else {
1200        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1201          ft = FIFTH_ORDER_POLY;
1202        } else {
1203          // throw error        
1204          sprintf( painCave.errMsg,
1205                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1206          painCave.isFatal = 1;
1207          simError();
1208        }          
1209      }
1210    }
1211
1212    // send switching function notification to switcheroo
1213    setFunctionType(&ft);
1214
1215  }
1216
1217  void SimInfo::setupAccumulateBoxDipole() {    
1218
1219    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1220    if ( simParams_->haveAccumulateBoxDipole() )
1221      if ( simParams_->getAccumulateBoxDipole() ) {
1222        setAccumulateBoxDipole();
1223        calcBoxDipole_ = true;
1224      }
1225
1226  }
1227
930    void SimInfo::addProperty(GenericData* genData) {
931      properties_.addProperty(genData);  
932    }
933  
934 <  void SimInfo::removeProperty(const std::string& propName) {
934 >  void SimInfo::removeProperty(const string& propName) {
935      properties_.removeProperty(propName);  
936    }
937  
# Line 1237 | Line 939 | namespace oopse {
939      properties_.clearProperties();
940    }
941  
942 <  std::vector<std::string> SimInfo::getPropertyNames() {
942 >  vector<string> SimInfo::getPropertyNames() {
943      return properties_.getPropertyNames();  
944    }
945        
946 <  std::vector<GenericData*> SimInfo::getProperties() {
946 >  vector<GenericData*> SimInfo::getProperties() {
947      return properties_.getProperties();
948    }
949  
950 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
950 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
951      return properties_.getPropertyByName(propName);
952    }
953  
# Line 1328 | Line 1030 | namespace oopse {
1030  
1031    }        
1032  
1033 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1033 >  ostream& operator <<(ostream& o, SimInfo& info) {
1034  
1035      return o;
1036    }
# Line 1371 | Line 1073 | namespace oopse {
1073  
1074  
1075         [  Ixx -Ixy  -Ixz ]
1076 <  J =| -Iyx  Iyy  -Iyz |
1076 >    J =| -Iyx  Iyy  -Iyz |
1077         [ -Izx -Iyz   Izz ]
1078      */
1079  
# Line 1478 | Line 1180 | namespace oopse {
1180      return IOIndexToIntegrableObject.at(index);
1181    }
1182    
1183 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1183 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1184      IOIndexToIntegrableObject= v;
1185    }
1186  
# Line 1520 | Line 1222 | namespace oopse {
1222      return;
1223    }
1224   /*
1225 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1225 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1226        assert( v.size() == nAtoms_ + nRigidBodies_);
1227        sdByGlobalIndex_ = v;
1228      }
# Line 1530 | Line 1232 | namespace oopse {
1232        return sdByGlobalIndex_.at(index);
1233      }  
1234   */  
1235 < }//end namespace oopse
1235 >  int SimInfo::getNGlobalConstraints() {
1236 >    int nGlobalConstraints;
1237 > #ifdef IS_MPI
1238 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1239 >                  MPI_COMM_WORLD);    
1240 > #else
1241 >    nGlobalConstraints =  nConstraints_;
1242 > #endif
1243 >    return nGlobalConstraints;
1244 >  }
1245  
1246 + }//end namespace OpenMD
1247 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1535 by gezelter, Fri Dec 31 18:31:56 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines