ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59 < #include "UseTheForce/DarkSide/simulation_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
59 > #include "selection/SelectionManager.hpp"
60 > #include "io/ForceFieldOptions.hpp"
61 > #include "UseTheForce/ForceField.hpp"
62 > #include "nonbonded/SwitchingFunction.hpp"
63  
64 < //#include "UseTheForce/fortranWrappers.hpp"
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103 >      }
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121 >    }
122 >    
123 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 >    //group therefore the total number of cutoff groups in the system is
125 >    //equal to the total number of atoms minus number of atoms belong to
126 >    //cutoff group defined in meta-data file plus the number of cutoff
127 >    //groups defined in meta-data file
128 >    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
129 >    std::cerr << "nCA = " << nCutoffAtoms << "\n";
130 >    std::cerr << "nG = " << nGroups << "\n";
131  
132 < #include "math/MatVec3.h"
132 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
133  
134 < #ifdef IS_MPI
135 < #include "brains/mpiSimulation.hpp"
136 < #endif
134 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147 >  
148 >  SimInfo::~SimInfo() {
149 >    map<int, Molecule*>::iterator i;
150 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151 >      delete i->second;
152 >    }
153 >    molecules_.clear();
154 >      
155 >    delete sman_;
156 >    delete simParams_;
157 >    delete forceField_;
158 >  }
159  
23 inline double roundMe( double x ){
24  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
25 }
26          
27 inline double min( double a, double b ){
28  return (a < b ) ? a : b;
29 }
160  
161 < SimInfo* currentInfo;
162 <
163 < SimInfo::SimInfo(){
164 <
165 <  n_constraints = 0;
166 <  nZconstraints = 0;
167 <  n_oriented = 0;
168 <  n_dipoles = 0;
169 <  ndf = 0;
170 <  ndfRaw = 0;
171 <  nZconstraints = 0;
172 <  the_integrator = NULL;
173 <  setTemp = 0;
174 <  thermalTime = 0.0;
175 <  currentTime = 0.0;
176 <  rCut = 0.0;
177 <  rSw = 0.0;
178 <
179 <  haveRcut = 0;
180 <  haveRsw = 0;
181 <  boxIsInit = 0;
161 >  bool SimInfo::addMolecule(Molecule* mol) {
162 >    MoleculeIterator i;
163 >    
164 >    i = molecules_.find(mol->getGlobalIndex());
165 >    if (i == molecules_.end() ) {
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169 >      nAtoms_ += mol->getNAtoms();
170 >      nBonds_ += mol->getNBonds();
171 >      nBends_ += mol->getNBends();
172 >      nTorsions_ += mol->getNTorsions();
173 >      nInversions_ += mol->getNInversions();
174 >      nRigidBodies_ += mol->getNRigidBodies();
175 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
176 >      nCutoffGroups_ += mol->getNCutoffGroups();
177 >      nConstraints_ += mol->getNConstraintPairs();
178 >      
179 >      addInteractionPairs(mol);
180 >      
181 >      return true;
182 >    } else {
183 >      return false;
184 >    }
185 >  }
186    
187 <  resetTime = 1e99;
187 >  bool SimInfo::removeMolecule(Molecule* mol) {
188 >    MoleculeIterator i;
189 >    i = molecules_.find(mol->getGlobalIndex());
190  
191 <  orthoRhombic = 0;
56 <  orthoTolerance = 1E-6;
57 <  useInitXSstate = true;
191 >    if (i != molecules_.end() ) {
192  
193 <  usePBC = 0;
194 <  useLJ = 0;
195 <  useSticky = 0;
196 <  useCharges = 0;
197 <  useDipoles = 0;
198 <  useReactionField = 0;
199 <  useGB = 0;
200 <  useEAM = 0;
201 <  useSolidThermInt = 0;
202 <  useLiquidThermInt = 0;
193 >      assert(mol == i->second);
194 >        
195 >      nAtoms_ -= mol->getNAtoms();
196 >      nBonds_ -= mol->getNBonds();
197 >      nBends_ -= mol->getNBends();
198 >      nTorsions_ -= mol->getNTorsions();
199 >      nInversions_ -= mol->getNInversions();
200 >      nRigidBodies_ -= mol->getNRigidBodies();
201 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
202 >      nCutoffGroups_ -= mol->getNCutoffGroups();
203 >      nConstraints_ -= mol->getNConstraintPairs();
204  
205 <  haveCutoffGroups = false;
205 >      removeInteractionPairs(mol);
206 >      molecules_.erase(mol->getGlobalIndex());
207  
208 <  excludes = Exclude::Instance();
208 >      delete mol;
209 >        
210 >      return true;
211 >    } else {
212 >      return false;
213 >    }
214 >  }    
215  
216 <  myConfiguration = new SimState();
216 >        
217 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
218 >    i = molecules_.begin();
219 >    return i == molecules_.end() ? NULL : i->second;
220 >  }    
221  
222 <  has_minimizer = false;
223 <  the_minimizer =NULL;
222 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
223 >    ++i;
224 >    return i == molecules_.end() ? NULL : i->second;    
225 >  }
226  
79  ngroup = 0;
227  
228 < }
228 >  void SimInfo::calcNdf() {
229 >    int ndf_local;
230 >    MoleculeIterator i;
231 >    vector<StuntDouble*>::iterator j;
232 >    Molecule* mol;
233 >    StuntDouble* integrableObject;
234  
235 +    ndf_local = 0;
236 +    
237 +    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
238 +      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
239 +           integrableObject = mol->nextIntegrableObject(j)) {
240  
241 < SimInfo::~SimInfo(){
241 >        ndf_local += 3;
242  
243 <  delete myConfiguration;
243 >        if (integrableObject->isDirectional()) {
244 >          if (integrableObject->isLinear()) {
245 >            ndf_local += 2;
246 >          } else {
247 >            ndf_local += 3;
248 >          }
249 >        }
250 >            
251 >      }
252 >    }
253 >    
254 >    // n_constraints is local, so subtract them on each processor
255 >    ndf_local -= nConstraints_;
256  
257 <  map<string, GenericData*>::iterator i;
258 <  
259 <  for(i = properties.begin(); i != properties.end(); i++)
260 <    delete (*i).second;
257 > #ifdef IS_MPI
258 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
259 > #else
260 >    ndf_ = ndf_local;
261 > #endif
262  
263 < }
263 >    // nZconstraints_ is global, as are the 3 COM translations for the
264 >    // entire system:
265 >    ndf_ = ndf_ - 3 - nZconstraint_;
266  
267 < void SimInfo::setBox(double newBox[3]) {
96 <  
97 <  int i, j;
98 <  double tempMat[3][3];
267 >  }
268  
269 <  for(i=0; i<3; i++)
270 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
269 >  int SimInfo::getFdf() {
270 > #ifdef IS_MPI
271 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
272 > #else
273 >    fdf_ = fdf_local;
274 > #endif
275 >    return fdf_;
276 >  }
277 >    
278 >  void SimInfo::calcNdfRaw() {
279 >    int ndfRaw_local;
280  
281 <  tempMat[0][0] = newBox[0];
282 <  tempMat[1][1] = newBox[1];
283 <  tempMat[2][2] = newBox[2];
281 >    MoleculeIterator i;
282 >    vector<StuntDouble*>::iterator j;
283 >    Molecule* mol;
284 >    StuntDouble* integrableObject;
285  
286 <  setBoxM( tempMat );
286 >    // Raw degrees of freedom that we have to set
287 >    ndfRaw_local = 0;
288 >    
289 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
290 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
291 >           integrableObject = mol->nextIntegrableObject(j)) {
292  
293 < }
293 >        ndfRaw_local += 3;
294  
295 < void SimInfo::setBoxM( double theBox[3][3] ){
296 <  
297 <  int i, j;
298 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
299 <                         // ordering in the array is as follows:
300 <                         // [ 0 3 6 ]
301 <                         // [ 1 4 7 ]
302 <                         // [ 2 5 8 ]
303 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
120 <
121 <  if( !boxIsInit ) boxIsInit = 1;
122 <
123 <  for(i=0; i < 3; i++)
124 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
125 <  
126 <  calcBoxL();
127 <  calcHmatInv();
128 <
129 <  for(i=0; i < 3; i++) {
130 <    for (j=0; j < 3; j++) {
131 <      FortranHmat[3*j + i] = Hmat[i][j];
132 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
295 >        if (integrableObject->isDirectional()) {
296 >          if (integrableObject->isLinear()) {
297 >            ndfRaw_local += 2;
298 >          } else {
299 >            ndfRaw_local += 3;
300 >          }
301 >        }
302 >            
303 >      }
304      }
305 +    
306 + #ifdef IS_MPI
307 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
308 + #else
309 +    ndfRaw_ = ndfRaw_local;
310 + #endif
311    }
312  
313 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
314 <
138 < }
139 <
313 >  void SimInfo::calcNdfTrans() {
314 >    int ndfTrans_local;
315  
316 < void SimInfo::getBoxM (double theBox[3][3]) {
316 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
317  
143  int i, j;
144  for(i=0; i<3; i++)
145    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
146 }
318  
319 + #ifdef IS_MPI
320 +    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
321 + #else
322 +    ndfTrans_ = ndfTrans_local;
323 + #endif
324  
325 < void SimInfo::scaleBox(double scale) {
326 <  double theBox[3][3];
327 <  int i, j;
325 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
326 >
327 >  }
328  
329 <  // cerr << "Scaling box by " << scale << "\n";
329 >  void SimInfo::addInteractionPairs(Molecule* mol) {
330 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335 >    Bond* bond;
336 >    Bend* bend;
337 >    Torsion* torsion;
338 >    Inversion* inversion;
339 >    int a;
340 >    int b;
341 >    int c;
342 >    int d;
343  
344 <  for(i=0; i<3; i++)
345 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
346 <
347 <  setBoxM(theBox);
348 <
349 < }
350 <
351 < void SimInfo::calcHmatInv( void ) {
352 <  
353 <  int oldOrtho;
354 <  int i,j;
355 <  double smallDiag;
356 <  double tol;
357 <  double sanity[3][3];
358 <
359 <  invertMat3( Hmat, HmatInv );
360 <
361 <  // check to see if Hmat is orthorhombic
362 <  
363 <  oldOrtho = orthoRhombic;
364 <
365 <  smallDiag = fabs(Hmat[0][0]);
366 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
367 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
368 <  tol = smallDiag * orthoTolerance;
369 <
370 <  orthoRhombic = 1;
371 <  
372 <  for (i = 0; i < 3; i++ ) {
373 <    for (j = 0 ; j < 3; j++) {
374 <      if (i != j) {
375 <        if (orthoRhombic) {
187 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
188 <        }        
344 >    // atomGroups can be used to add special interaction maps between
345 >    // groups of atoms that are in two separate rigid bodies.
346 >    // However, most site-site interactions between two rigid bodies
347 >    // are probably not special, just the ones between the physically
348 >    // bonded atoms.  Interactions *within* a single rigid body should
349 >    // always be excluded.  These are done at the bottom of this
350 >    // function.
351 >
352 >    map<int, set<int> > atomGroups;
353 >    Molecule::RigidBodyIterator rbIter;
354 >    RigidBody* rb;
355 >    Molecule::IntegrableObjectIterator ii;
356 >    StuntDouble* integrableObject;
357 >    
358 >    for (integrableObject = mol->beginIntegrableObject(ii);
359 >         integrableObject != NULL;
360 >         integrableObject = mol->nextIntegrableObject(ii)) {
361 >      
362 >      if (integrableObject->isRigidBody()) {
363 >        rb = static_cast<RigidBody*>(integrableObject);
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
368 >        }
369 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371 >        }      
372 >      } else {
373 >        set<int> oneAtomSet;
374 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376        }
377 <    }
378 <  }
377 >    }  
378 >          
379 >    for (bond= mol->beginBond(bondIter); bond != NULL;
380 >         bond = mol->nextBond(bondIter)) {
381  
382 <  if( oldOrtho != orthoRhombic ){
382 >      a = bond->getAtomA()->getGlobalIndex();
383 >      b = bond->getAtomB()->getGlobalIndex();  
384      
385 <    if( orthoRhombic ) {
386 <      sprintf( painCave.errMsg,
387 <               "OOPSE is switching from the default Non-Orthorhombic\n"
388 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
389 <               "\tThis is usually a good thing, but if you wan't the\n"
200 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
201 <               "\tvariable ( currently set to %G ) smaller.\n",
202 <               orthoTolerance);
203 <      painCave.severity = OOPSE_INFO;
204 <      simError();
385 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
386 >        oneTwoInteractions_.addPair(a, b);
387 >      } else {
388 >        excludedInteractions_.addPair(a, b);
389 >      }
390      }
206    else {
207      sprintf( painCave.errMsg,
208               "OOPSE is switching from the faster Orthorhombic to the more\n"
209               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
210               "\tThis is usually because the box has deformed under\n"
211               "\tNPTf integration. If you wan't to live on the edge with\n"
212               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
213               "\tvariable ( currently set to %G ) larger.\n",
214               orthoTolerance);
215      painCave.severity = OOPSE_WARNING;
216      simError();
217    }
218  }
219 }
391  
392 < void SimInfo::calcBoxL( void ){
392 >    for (bend= mol->beginBend(bendIter); bend != NULL;
393 >         bend = mol->nextBend(bendIter)) {
394  
395 <  double dx, dy, dz, dsq;
395 >      a = bend->getAtomA()->getGlobalIndex();
396 >      b = bend->getAtomB()->getGlobalIndex();        
397 >      c = bend->getAtomC()->getGlobalIndex();
398 >      
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);      
401 >        oneTwoInteractions_.addPair(b, c);
402 >      } else {
403 >        excludedInteractions_.addPair(a, b);
404 >        excludedInteractions_.addPair(b, c);
405 >      }
406  
407 <  // boxVol = Determinant of Hmat
407 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
408 >        oneThreeInteractions_.addPair(a, c);      
409 >      } else {
410 >        excludedInteractions_.addPair(a, c);
411 >      }
412 >    }
413  
414 <  boxVol = matDet3( Hmat );
414 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
415 >         torsion = mol->nextTorsion(torsionIter)) {
416  
417 <  // boxLx
418 <  
419 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
420 <  dsq = dx*dx + dy*dy + dz*dz;
233 <  boxL[0] = sqrt( dsq );
234 <  //maxCutoff = 0.5 * boxL[0];
417 >      a = torsion->getAtomA()->getGlobalIndex();
418 >      b = torsion->getAtomB()->getGlobalIndex();        
419 >      c = torsion->getAtomC()->getGlobalIndex();        
420 >      d = torsion->getAtomD()->getGlobalIndex();      
421  
422 <  // boxLy
423 <  
424 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
425 <  dsq = dx*dx + dy*dy + dz*dz;
426 <  boxL[1] = sqrt( dsq );
427 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
422 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
423 >        oneTwoInteractions_.addPair(a, b);      
424 >        oneTwoInteractions_.addPair(b, c);
425 >        oneTwoInteractions_.addPair(c, d);
426 >      } else {
427 >        excludedInteractions_.addPair(a, b);
428 >        excludedInteractions_.addPair(b, c);
429 >        excludedInteractions_.addPair(c, d);
430 >      }
431  
432 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 +        oneThreeInteractions_.addPair(a, c);      
434 +        oneThreeInteractions_.addPair(b, d);      
435 +      } else {
436 +        excludedInteractions_.addPair(a, c);
437 +        excludedInteractions_.addPair(b, d);
438 +      }
439  
440 <  // boxLz
441 <  
442 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
443 <  dsq = dx*dx + dy*dy + dz*dz;
444 <  boxL[2] = sqrt( dsq );
445 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
440 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
441 >        oneFourInteractions_.addPair(a, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, d);
444 >      }
445 >    }
446  
447 <  //calculate the max cutoff
448 <  maxCutoff =  calcMaxCutOff();
253 <  
254 <  checkCutOffs();
447 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
448 >         inversion = mol->nextInversion(inversionIter)) {
449  
450 < }
450 >      a = inversion->getAtomA()->getGlobalIndex();
451 >      b = inversion->getAtomB()->getGlobalIndex();        
452 >      c = inversion->getAtomC()->getGlobalIndex();        
453 >      d = inversion->getAtomD()->getGlobalIndex();        
454  
455 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
456 +        oneTwoInteractions_.addPair(a, b);      
457 +        oneTwoInteractions_.addPair(a, c);
458 +        oneTwoInteractions_.addPair(a, d);
459 +      } else {
460 +        excludedInteractions_.addPair(a, b);
461 +        excludedInteractions_.addPair(a, c);
462 +        excludedInteractions_.addPair(a, d);
463 +      }
464  
465 < double SimInfo::calcMaxCutOff(){
465 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
466 >        oneThreeInteractions_.addPair(b, c);    
467 >        oneThreeInteractions_.addPair(b, d);    
468 >        oneThreeInteractions_.addPair(c, d);      
469 >      } else {
470 >        excludedInteractions_.addPair(b, c);
471 >        excludedInteractions_.addPair(b, d);
472 >        excludedInteractions_.addPair(c, d);
473 >      }
474 >    }
475  
476 <  double ri[3], rj[3], rk[3];
477 <  double rij[3], rjk[3], rki[3];
478 <  double minDist;
476 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477 >         rb = mol->nextRigidBody(rbIter)) {
478 >      vector<Atom*> atoms = rb->getAtoms();
479 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481 >          a = atoms[i]->getGlobalIndex();
482 >          b = atoms[j]->getGlobalIndex();
483 >          excludedInteractions_.addPair(a, b);
484 >        }
485 >      }
486 >    }        
487  
488 <  ri[0] = Hmat[0][0];
266 <  ri[1] = Hmat[1][0];
267 <  ri[2] = Hmat[2][0];
488 >  }
489  
490 <  rj[0] = Hmat[0][1];
491 <  rj[1] = Hmat[1][1];
492 <  rj[2] = Hmat[2][1];
490 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
491 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496 >    Bond* bond;
497 >    Bend* bend;
498 >    Torsion* torsion;
499 >    Inversion* inversion;
500 >    int a;
501 >    int b;
502 >    int c;
503 >    int d;
504  
505 <  rk[0] = Hmat[0][2];
506 <  rk[1] = Hmat[1][2];
507 <  rk[2] = Hmat[2][2];
505 >    map<int, set<int> > atomGroups;
506 >    Molecule::RigidBodyIterator rbIter;
507 >    RigidBody* rb;
508 >    Molecule::IntegrableObjectIterator ii;
509 >    StuntDouble* integrableObject;
510      
511 <  crossProduct3(ri, rj, rij);
512 <  distXY = dotProduct3(rk,rij) / norm3(rij);
511 >    for (integrableObject = mol->beginIntegrableObject(ii);
512 >         integrableObject != NULL;
513 >         integrableObject = mol->nextIntegrableObject(ii)) {
514 >      
515 >      if (integrableObject->isRigidBody()) {
516 >        rb = static_cast<RigidBody*>(integrableObject);
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
521 >        }
522 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524 >        }      
525 >      } else {
526 >        set<int> oneAtomSet;
527 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529 >      }
530 >    }  
531  
532 <  crossProduct3(rj,rk, rjk);
533 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
532 >    for (bond= mol->beginBond(bondIter); bond != NULL;
533 >         bond = mol->nextBond(bondIter)) {
534 >      
535 >      a = bond->getAtomA()->getGlobalIndex();
536 >      b = bond->getAtomB()->getGlobalIndex();  
537 >    
538 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
539 >        oneTwoInteractions_.removePair(a, b);
540 >      } else {
541 >        excludedInteractions_.removePair(a, b);
542 >      }
543 >    }
544  
545 <  crossProduct3(rk,ri, rki);
546 <  distZX = dotProduct3(rj,rki) / norm3(rki);
545 >    for (bend= mol->beginBend(bendIter); bend != NULL;
546 >         bend = mol->nextBend(bendIter)) {
547  
548 <  minDist = min(min(distXY, distYZ), distZX);
549 <  return minDist/2;
550 <  
551 < }
548 >      a = bend->getAtomA()->getGlobalIndex();
549 >      b = bend->getAtomB()->getGlobalIndex();        
550 >      c = bend->getAtomC()->getGlobalIndex();
551 >      
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);      
554 >        oneTwoInteractions_.removePair(b, c);
555 >      } else {
556 >        excludedInteractions_.removePair(a, b);
557 >        excludedInteractions_.removePair(b, c);
558 >      }
559  
560 < void SimInfo::wrapVector( double thePos[3] ){
560 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
561 >        oneThreeInteractions_.removePair(a, c);      
562 >      } else {
563 >        excludedInteractions_.removePair(a, c);
564 >      }
565 >    }
566  
567 <  int i;
568 <  double scaled[3];
567 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
568 >         torsion = mol->nextTorsion(torsionIter)) {
569  
570 <  if( !orthoRhombic ){
571 <    // calc the scaled coordinates.
570 >      a = torsion->getAtomA()->getGlobalIndex();
571 >      b = torsion->getAtomB()->getGlobalIndex();        
572 >      c = torsion->getAtomC()->getGlobalIndex();        
573 >      d = torsion->getAtomD()->getGlobalIndex();      
574    
575 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
576 +        oneTwoInteractions_.removePair(a, b);      
577 +        oneTwoInteractions_.removePair(b, c);
578 +        oneTwoInteractions_.removePair(c, d);
579 +      } else {
580 +        excludedInteractions_.removePair(a, b);
581 +        excludedInteractions_.removePair(b, c);
582 +        excludedInteractions_.removePair(c, d);
583 +      }
584  
585 <    matVecMul3(HmatInv, thePos, scaled);
586 <    
587 <    for(i=0; i<3; i++)
588 <      scaled[i] -= roundMe(scaled[i]);
589 <    
590 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
591 <    
307 <    matVecMul3(Hmat, scaled, thePos);
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >        oneThreeInteractions_.removePair(b, d);      
588 >      } else {
589 >        excludedInteractions_.removePair(a, c);
590 >        excludedInteractions_.removePair(b, d);
591 >      }
592  
593 <  }
594 <  else{
595 <    // calc the scaled coordinates.
596 <    
597 <    for(i=0; i<3; i++)
598 <      scaled[i] = thePos[i]*HmatInv[i][i];
315 <    
316 <    // wrap the scaled coordinates
317 <    
318 <    for(i=0; i<3; i++)
319 <      scaled[i] -= roundMe(scaled[i]);
320 <    
321 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
322 <    
323 <    for(i=0; i<3; i++)
324 <      thePos[i] = scaled[i]*Hmat[i][i];
325 <  }
326 <    
327 < }
593 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
594 >        oneFourInteractions_.removePair(a, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, d);
597 >      }
598 >    }
599  
600 +    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
601 +         inversion = mol->nextInversion(inversionIter)) {
602  
603 < int SimInfo::getNDF(){
604 <  int ndf_local;
603 >      a = inversion->getAtomA()->getGlobalIndex();
604 >      b = inversion->getAtomB()->getGlobalIndex();        
605 >      c = inversion->getAtomC()->getGlobalIndex();        
606 >      d = inversion->getAtomD()->getGlobalIndex();        
607  
608 <  ndf_local = 0;
609 <  
610 <  for(int i = 0; i < integrableObjects.size(); i++){
611 <    ndf_local += 3;
612 <    if (integrableObjects[i]->isDirectional()) {
613 <      if (integrableObjects[i]->isLinear())
614 <        ndf_local += 2;
615 <      else
616 <        ndf_local += 3;
608 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
609 >        oneTwoInteractions_.removePair(a, b);      
610 >        oneTwoInteractions_.removePair(a, c);
611 >        oneTwoInteractions_.removePair(a, d);
612 >      } else {
613 >        excludedInteractions_.removePair(a, b);
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(a, d);
616 >      }
617 >
618 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
619 >        oneThreeInteractions_.removePair(b, c);    
620 >        oneThreeInteractions_.removePair(b, d);    
621 >        oneThreeInteractions_.removePair(c, d);      
622 >      } else {
623 >        excludedInteractions_.removePair(b, c);
624 >        excludedInteractions_.removePair(b, d);
625 >        excludedInteractions_.removePair(c, d);
626 >      }
627      }
628 +
629 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630 +         rb = mol->nextRigidBody(rbIter)) {
631 +      vector<Atom*> atoms = rb->getAtoms();
632 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634 +          a = atoms[i]->getGlobalIndex();
635 +          b = atoms[j]->getGlobalIndex();
636 +          excludedInteractions_.removePair(a, b);
637 +        }
638 +      }
639 +    }        
640 +    
641    }
642 +  
643 +  
644 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
645 +    int curStampId;
646 +    
647 +    //index from 0
648 +    curStampId = moleculeStamps_.size();
649  
650 <  // n_constraints is local, so subtract them on each processor:
650 >    moleculeStamps_.push_back(molStamp);
651 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652 >  }
653  
654 <  ndf_local -= n_constraints;
654 >
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664 >    calcNdf();
665 >    calcNdfRaw();
666 >    calcNdfTrans();
667 >  }
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677 >    SimInfo::MoleculeIterator mi;
678 >    Molecule* mol;
679 >    Molecule::AtomIterator ai;
680 >    Atom* atom;
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685 >        atomTypes.insert(atom->getAtomType());
686 >      }      
687 >    }    
688  
689   #ifdef IS_MPI
350  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
351 #else
352  ndf = ndf_local;
353 #endif
690  
691 <  // nZconstraints is global, as are the 3 COM translations for the
692 <  // entire system:
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <  ndf = ndf - 3 - nZconstraints;
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 <  return ndf;
700 < }
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701  
702 < int SimInfo::getNDFraw() {
703 <  int ndfRaw_local;
702 >    // count holds the total number of found types on all processors
703 >    // (some will be redundant with the ones found locally):
704 >    int count;
705 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706  
707 <  // Raw degrees of freedom that we have to set
708 <  ndfRaw_local = 0;
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711  
712 <  for(int i = 0; i < integrableObjects.size(); i++){
713 <    ndfRaw_local += 3;
714 <    if (integrableObjects[i]->isDirectional()) {
715 <       if (integrableObjects[i]->isLinear())
716 <        ndfRaw_local += 2;
717 <      else
375 <        ndfRaw_local += 3;
376 <    }
377 <  }
712 >    int nproc = MPI::COMM_WORLD.Get_size();
713 >    counts.resize(nproc);
714 >    vector<int> disps;
715 >    disps.resize(nproc);
716 >
717 >    // now spray out the foundTypes to all the other processors:
718      
719 < #ifdef IS_MPI
720 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
721 < #else
722 <  ndfRaw = ndfRaw_local;
719 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721 >
722 >    // foundIdents is a stl set, so inserting an already found ident
723 >    // will have no effect.
724 >    set<int> foundIdents;
725 >    vector<int>::iterator j;
726 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 >      foundIdents.insert((*j));
728 >    
729 >    // now iterate over the foundIdents and get the actual atom types
730 >    // that correspond to these:
731 >    set<int>::iterator it;
732 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 >      atomTypes.insert( forceField_->getAtomType((*it)) );
734 >
735   #endif
736 +    
737 +    return atomTypes;        
738 +  }
739  
740 <  return ndfRaw;
741 < }
740 >  void SimInfo::setupSimVariables() {
741 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 >    calcBoxDipole_ = false;
744 >    if ( simParams_->haveAccumulateBoxDipole() )
745 >      if ( simParams_->getAccumulateBoxDipole() ) {
746 >        calcBoxDipole_ = true;      
747 >      }
748  
749 < int SimInfo::getNDFtranslational() {
750 <  int ndfTrans_local;
749 >    set<AtomType*>::iterator i;
750 >    set<AtomType*> atomTypes;
751 >    atomTypes = getSimulatedAtomTypes();    
752 >    int usesElectrostatic = 0;
753 >    int usesMetallic = 0;
754 >    int usesDirectional = 0;
755 >    //loop over all of the atom types
756 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760 >    }
761  
762 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
762 > #ifdef IS_MPI    
763 >    int temp;
764 >    temp = usesDirectional;
765 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 +    temp = usesMetallic;
768 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 < #ifdef IS_MPI
771 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
396 < #else
397 <  ndfTrans = ndfTrans_local;
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772   #endif
773 +  }
774  
400  ndfTrans = ndfTrans - 3 - nZconstraints;
775  
776 <  return ndfTrans;
777 < }
776 >  vector<int> SimInfo::getGlobalAtomIndices() {
777 >    SimInfo::MoleculeIterator mi;
778 >    Molecule* mol;
779 >    Molecule::AtomIterator ai;
780 >    Atom* atom;
781  
782 < int SimInfo::getTotIntegrableObjects() {
783 <  int nObjs_local;
784 <  int nObjs;
782 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
783 >    
784 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
785 >      
786 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
787 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
788 >      }
789 >    }
790 >    return GlobalAtomIndices;
791 >  }
792  
409  nObjs_local =  integrableObjects.size();
793  
794 +  vector<int> SimInfo::getGlobalGroupIndices() {
795 +    SimInfo::MoleculeIterator mi;
796 +    Molecule* mol;
797 +    Molecule::CutoffGroupIterator ci;
798 +    CutoffGroup* cg;
799  
800 < #ifdef IS_MPI
801 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
802 < #else
803 <  nObjs = nObjs_local;
804 < #endif
800 >    vector<int> GlobalGroupIndices;
801 >    
802 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
803 >      
804 >      //local index of cutoff group is trivial, it only depends on the
805 >      //order of travesing
806 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
807 >           cg = mol->nextCutoffGroup(ci)) {
808 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
809 >      }        
810 >    }
811 >    return GlobalGroupIndices;
812 >  }
813  
814  
815 <  return nObjs;
816 < }
815 >  void SimInfo::setupFortran() {
816 >    int isError;
817 >    int nExclude, nOneTwo, nOneThree, nOneFour;
818 >    vector<int> fortranGlobalGroupMembership;
819 >    
820 >    isError = 0;
821  
822 < void SimInfo::refreshSim(){
822 >    //globalGroupMembership_ is filled by SimCreator    
823 >    for (int i = 0; i < nGlobalAtoms_; i++) {
824 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
825 >    }
826  
827 <  simtype fInfo;
828 <  int isError;
829 <  int n_global;
830 <  int* excl;
827 >    //calculate mass ratio of cutoff group
828 >    vector<RealType> mfact;
829 >    SimInfo::MoleculeIterator mi;
830 >    Molecule* mol;
831 >    Molecule::CutoffGroupIterator ci;
832 >    CutoffGroup* cg;
833 >    Molecule::AtomIterator ai;
834 >    Atom* atom;
835 >    RealType totalMass;
836  
837 <  fInfo.dielect = 0.0;
837 >    //to avoid memory reallocation, reserve enough space for mfact
838 >    mfact.reserve(getNCutoffGroups());
839 >    
840 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
841 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
842  
843 <  if( useDipoles ){
844 <    if( useReactionField )fInfo.dielect = dielectric;
845 <  }
843 >        totalMass = cg->getMass();
844 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
845 >          // Check for massless groups - set mfact to 1 if true
846 >          if (totalMass != 0)
847 >            mfact.push_back(atom->getMass()/totalMass);
848 >          else
849 >            mfact.push_back( 1.0 );
850 >        }
851 >      }      
852 >    }
853  
854 <  fInfo.SIM_uses_PBC = usePBC;
436 <  //fInfo.SIM_uses_LJ = 0;
437 <  fInfo.SIM_uses_LJ = useLJ;
438 <  fInfo.SIM_uses_sticky = useSticky;
439 <  //fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_charges = useCharges;
441 <  fInfo.SIM_uses_dipoles = useDipoles;
442 <  //fInfo.SIM_uses_dipoles = 0;
443 <  fInfo.SIM_uses_RF = useReactionField;
444 <  //fInfo.SIM_uses_RF = 0;
445 <  fInfo.SIM_uses_GB = useGB;
446 <  fInfo.SIM_uses_EAM = useEAM;
854 >    // Build the identArray_
855  
856 <  n_exclude = excludes->getSize();
857 <  excl = excludes->getFortranArray();
858 <  
859 < #ifdef IS_MPI
860 <  n_global = mpiSim->getNAtomsGlobal();
861 < #else
862 <  n_global = n_atoms;
455 < #endif
456 <  
457 <  isError = 0;
458 <  
459 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
460 <  //it may not be a good idea to pass the address of first element in vector
461 <  //since c++ standard does not require vector to be stored continuously in meomory
462 <  //Most of the compilers will organize the memory of vector continuously
463 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
464 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
465 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
856 >    identArray_.clear();
857 >    identArray_.reserve(getNAtoms());    
858 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
859 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
860 >        identArray_.push_back(atom->getIdent());
861 >      }
862 >    }    
863  
864 <  if( isError ){
864 >    //fill molMembershipArray
865 >    //molMembershipArray is filled by SimCreator    
866 >    vector<int> molMembershipArray(nGlobalAtoms_);
867 >    for (int i = 0; i < nGlobalAtoms_; i++) {
868 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
869 >    }
870      
871 <    sprintf( painCave.errMsg,
470 <             "There was an error setting the simulation information in fortran.\n" );
471 <    painCave.isFatal = 1;
472 <    painCave.severity = OOPSE_ERROR;
473 <    simError();
474 <  }
475 <  
476 < #ifdef IS_MPI
477 <  sprintf( checkPointMsg,
478 <           "succesfully sent the simulation information to fortran.\n");
479 <  MPIcheckPoint();
480 < #endif // is_mpi
481 <  
482 <  this->ndf = this->getNDF();
483 <  this->ndfRaw = this->getNDFraw();
484 <  this->ndfTrans = this->getNDFtranslational();
485 < }
871 >    //setup fortran simulation
872  
873 < void SimInfo::setDefaultRcut( double theRcut ){
874 <  
875 <  haveRcut = 1;
876 <  rCut = theRcut;
491 <  rList = rCut + 1.0;
492 <  
493 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
494 < }
873 >    nExclude = excludedInteractions_.getSize();
874 >    nOneTwo = oneTwoInteractions_.getSize();
875 >    nOneThree = oneThreeInteractions_.getSize();
876 >    nOneFour = oneFourInteractions_.getSize();
877  
878 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
878 >    int* excludeList = excludedInteractions_.getPairList();
879 >    int* oneTwoList = oneTwoInteractions_.getPairList();
880 >    int* oneThreeList = oneThreeInteractions_.getPairList();
881 >    int* oneFourList = oneFourInteractions_.getPairList();
882  
883 <  rSw = theRsw;
884 <  setDefaultRcut( theRcut );
885 < }
886 <
887 <
888 < void SimInfo::checkCutOffs( void ){
889 <  
505 <  if( boxIsInit ){
883 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
884 >    //               &nExclude, excludeList,
885 >    //               &nOneTwo, oneTwoList,
886 >    //               &nOneThree, oneThreeList,
887 >    //               &nOneFour, oneFourList,
888 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
889 >    //               &fortranGlobalGroupMembership[0], &isError);
890      
891 <    //we need to check cutOffs against the box
891 >    // if( isError ){
892 >    //  
893 >    //  sprintf( painCave.errMsg,
894 >    //         "There was an error setting the simulation information in fortran.\n" );
895 >    //  painCave.isFatal = 1;
896 >    //  painCave.severity = OPENMD_ERROR;
897 >    //  simError();
898 >    //}
899      
509    if( rCut > maxCutoff ){
510      sprintf( painCave.errMsg,
511               "cutoffRadius is too large for the current periodic box.\n"
512               "\tCurrent Value of cutoffRadius = %G at time %G\n "
513               "\tThis is larger than half of at least one of the\n"
514               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
515               "\n"
516               "\t[ %G %G %G ]\n"
517               "\t[ %G %G %G ]\n"
518               "\t[ %G %G %G ]\n",
519               rCut, currentTime,
520               Hmat[0][0], Hmat[0][1], Hmat[0][2],
521               Hmat[1][0], Hmat[1][1], Hmat[1][2],
522               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
523      painCave.severity = OOPSE_ERROR;
524      painCave.isFatal = 1;
525      simError();
526    }    
527  } else {
528    // initialize this stuff before using it, OK?
529    sprintf( painCave.errMsg,
530             "Trying to check cutoffs without a box.\n"
531             "\tOOPSE should have better programmers than that.\n" );
532    painCave.severity = OOPSE_ERROR;
533    painCave.isFatal = 1;
534    simError();      
535  }
536  
537 }
538
539 void SimInfo::addProperty(GenericData* prop){
540
541  map<string, GenericData*>::iterator result;
542  result = properties.find(prop->getID());
543  
544  //we can't simply use  properties[prop->getID()] = prop,
545  //it will cause memory leak if we already contain a propery which has the same name of prop
546  
547  if(result != properties.end()){
900      
901 <    delete (*result).second;
902 <    (*result).second = prop;
551 <      
552 <  }
553 <  else{
554 <
555 <    properties[prop->getID()] = prop;
556 <
557 <  }
901 >    // sprintf( checkPointMsg,
902 >    //          "succesfully sent the simulation information to fortran.\n");
903      
904 < }
904 >    // errorCheckPoint();
905 >    
906 >    // Setup number of neighbors in neighbor list if present
907 >    //if (simParams_->haveNeighborListNeighbors()) {
908 >    //  int nlistNeighbors = simParams_->getNeighborListNeighbors();
909 >    //  setNeighbors(&nlistNeighbors);
910 >    //}
911 >  
912 > #ifdef IS_MPI    
913 >    // mpiSimData parallelData;
914  
915 < GenericData* SimInfo::getProperty(const string& propName){
916 <
917 <  map<string, GenericData*>::iterator result;
918 <  
919 <  //string lowerCaseName = ();
920 <  
921 <  result = properties.find(propName);
922 <  
923 <  if(result != properties.end())
570 <    return (*result).second;  
571 <  else  
572 <    return NULL;  
573 < }
915 >    //fill up mpiSimData struct
916 >    // parallelData.nMolGlobal = getNGlobalMolecules();
917 >    // parallelData.nMolLocal = getNMolecules();
918 >    // parallelData.nAtomsGlobal = getNGlobalAtoms();
919 >    // parallelData.nAtomsLocal = getNAtoms();
920 >    // parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
921 >    // parallelData.nGroupsLocal = getNCutoffGroups();
922 >    // parallelData.myNode = worldRank;
923 >    // MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
924  
925 +    //pass mpiSimData struct and index arrays to fortran
926 +    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
927 +    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
928 +    //                &localToGlobalCutoffGroupIndex[0], &isError);
929  
930 < void SimInfo::getFortranGroupArrays(SimInfo* info,
931 <                                    vector<int>& FglobalGroupMembership,
932 <                                    vector<double>& mfact){
933 <  
934 <  Molecule* myMols;
935 <  Atom** myAtoms;
582 <  int numAtom;
583 <  double mtot;
584 <  int numMol;
585 <  int numCutoffGroups;
586 <  CutoffGroup* myCutoffGroup;
587 <  vector<CutoffGroup*>::iterator iterCutoff;
588 <  Atom* cutoffAtom;
589 <  vector<Atom*>::iterator iterAtom;
590 <  int atomIndex;
591 <  double totalMass;
592 <  
593 <  mfact.clear();
594 <  FglobalGroupMembership.clear();
595 <  
930 >    // if (isError) {
931 >    //   sprintf(painCave.errMsg,
932 >    //           "mpiRefresh errror: fortran didn't like something we gave it.\n");
933 >    //   painCave.isFatal = 1;
934 >    //   simError();
935 >    // }
936  
937 <  // Fix the silly fortran indexing problem
937 >    // sprintf(checkPointMsg, " mpiRefresh successful.\n");
938 >    // errorCheckPoint();
939 > #endif
940 >
941 >    // initFortranFF(&isError);
942 >    // if (isError) {
943 >    //   sprintf(painCave.errMsg,
944 >    //           "initFortranFF errror: fortran didn't like something we gave it.\n");
945 >    //   painCave.isFatal = 1;
946 >    //   simError();
947 >    // }
948 >    // fortranInitialized_ = true;
949 >  }
950 >
951 >  void SimInfo::addProperty(GenericData* genData) {
952 >    properties_.addProperty(genData);  
953 >  }
954 >
955 >  void SimInfo::removeProperty(const string& propName) {
956 >    properties_.removeProperty(propName);  
957 >  }
958 >
959 >  void SimInfo::clearProperties() {
960 >    properties_.clearProperties();
961 >  }
962 >
963 >  vector<string> SimInfo::getPropertyNames() {
964 >    return properties_.getPropertyNames();  
965 >  }
966 >      
967 >  vector<GenericData*> SimInfo::getProperties() {
968 >    return properties_.getProperties();
969 >  }
970 >
971 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
972 >    return properties_.getPropertyByName(propName);
973 >  }
974 >
975 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
976 >    if (sman_ == sman) {
977 >      return;
978 >    }    
979 >    delete sman_;
980 >    sman_ = sman;
981 >
982 >    Molecule* mol;
983 >    RigidBody* rb;
984 >    Atom* atom;
985 >    CutoffGroup* cg;
986 >    SimInfo::MoleculeIterator mi;
987 >    Molecule::RigidBodyIterator rbIter;
988 >    Molecule::AtomIterator atomIter;
989 >    Molecule::CutoffGroupIterator cgIter;
990 >
991 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
992 >        
993 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
994 >        atom->setSnapshotManager(sman_);
995 >      }
996 >        
997 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
998 >        rb->setSnapshotManager(sman_);
999 >      }
1000 >
1001 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
1002 >        cg->setSnapshotManager(sman_);
1003 >      }
1004 >    }    
1005 >    
1006 >  }
1007 >
1008 >  Vector3d SimInfo::getComVel(){
1009 >    SimInfo::MoleculeIterator i;
1010 >    Molecule* mol;
1011 >
1012 >    Vector3d comVel(0.0);
1013 >    RealType totalMass = 0.0;
1014 >    
1015 >
1016 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1017 >      RealType mass = mol->getMass();
1018 >      totalMass += mass;
1019 >      comVel += mass * mol->getComVel();
1020 >    }  
1021 >
1022   #ifdef IS_MPI
1023 <  numAtom = mpiSim->getNAtomsGlobal();
1024 < #else
1025 <  numAtom = n_atoms;
1023 >    RealType tmpMass = totalMass;
1024 >    Vector3d tmpComVel(comVel);    
1025 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1026 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1027   #endif
603  for (int i = 0; i < numAtom; i++)
604    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
605  
1028  
1029 <  myMols = info->molecules;
608 <  numMol = info->n_mol;
609 <  for(int i  = 0; i < numMol; i++){
610 <    numCutoffGroups = myMols[i].getNCutoffGroups();
611 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
612 <        myCutoffGroup != NULL;
613 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1029 >    comVel /= totalMass;
1030  
1031 <      totalMass = myCutoffGroup->getMass();
1031 >    return comVel;
1032 >  }
1033 >
1034 >  Vector3d SimInfo::getCom(){
1035 >    SimInfo::MoleculeIterator i;
1036 >    Molecule* mol;
1037 >
1038 >    Vector3d com(0.0);
1039 >    RealType totalMass = 0.0;
1040 >    
1041 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1042 >      RealType mass = mol->getMass();
1043 >      totalMass += mass;
1044 >      com += mass * mol->getCom();
1045 >    }  
1046 >
1047 > #ifdef IS_MPI
1048 >    RealType tmpMass = totalMass;
1049 >    Vector3d tmpCom(com);    
1050 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1051 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1052 > #endif
1053 >
1054 >    com /= totalMass;
1055 >
1056 >    return com;
1057 >
1058 >  }        
1059 >
1060 >  ostream& operator <<(ostream& o, SimInfo& info) {
1061 >
1062 >    return o;
1063 >  }
1064 >  
1065 >  
1066 >   /*
1067 >   Returns center of mass and center of mass velocity in one function call.
1068 >   */
1069 >  
1070 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1071 >      SimInfo::MoleculeIterator i;
1072 >      Molecule* mol;
1073        
1074 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1075 <          cutoffAtom != NULL;
1076 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1077 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1074 >    
1075 >      RealType totalMass = 0.0;
1076 >    
1077 >
1078 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1079 >         RealType mass = mol->getMass();
1080 >         totalMass += mass;
1081 >         com += mass * mol->getCom();
1082 >         comVel += mass * mol->getComVel();          
1083        }  
1084 +      
1085 + #ifdef IS_MPI
1086 +      RealType tmpMass = totalMass;
1087 +      Vector3d tmpCom(com);  
1088 +      Vector3d tmpComVel(comVel);
1089 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1090 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1091 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1092 + #endif
1093 +      
1094 +      com /= totalMass;
1095 +      comVel /= totalMass;
1096 +   }        
1097 +  
1098 +   /*
1099 +   Return intertia tensor for entire system and angular momentum Vector.
1100 +
1101 +
1102 +       [  Ixx -Ixy  -Ixz ]
1103 +    J =| -Iyx  Iyy  -Iyz |
1104 +       [ -Izx -Iyz   Izz ]
1105 +    */
1106 +
1107 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1108 +      
1109 +
1110 +      RealType xx = 0.0;
1111 +      RealType yy = 0.0;
1112 +      RealType zz = 0.0;
1113 +      RealType xy = 0.0;
1114 +      RealType xz = 0.0;
1115 +      RealType yz = 0.0;
1116 +      Vector3d com(0.0);
1117 +      Vector3d comVel(0.0);
1118 +      
1119 +      getComAll(com, comVel);
1120 +      
1121 +      SimInfo::MoleculeIterator i;
1122 +      Molecule* mol;
1123 +      
1124 +      Vector3d thisq(0.0);
1125 +      Vector3d thisv(0.0);
1126 +
1127 +      RealType thisMass = 0.0;
1128 +    
1129 +      
1130 +      
1131 +  
1132 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1133 +        
1134 +         thisq = mol->getCom()-com;
1135 +         thisv = mol->getComVel()-comVel;
1136 +         thisMass = mol->getMass();
1137 +         // Compute moment of intertia coefficients.
1138 +         xx += thisq[0]*thisq[0]*thisMass;
1139 +         yy += thisq[1]*thisq[1]*thisMass;
1140 +         zz += thisq[2]*thisq[2]*thisMass;
1141 +        
1142 +         // compute products of intertia
1143 +         xy += thisq[0]*thisq[1]*thisMass;
1144 +         xz += thisq[0]*thisq[2]*thisMass;
1145 +         yz += thisq[1]*thisq[2]*thisMass;
1146 +            
1147 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1148 +            
1149 +      }  
1150 +      
1151 +      
1152 +      inertiaTensor(0,0) = yy + zz;
1153 +      inertiaTensor(0,1) = -xy;
1154 +      inertiaTensor(0,2) = -xz;
1155 +      inertiaTensor(1,0) = -xy;
1156 +      inertiaTensor(1,1) = xx + zz;
1157 +      inertiaTensor(1,2) = -yz;
1158 +      inertiaTensor(2,0) = -xz;
1159 +      inertiaTensor(2,1) = -yz;
1160 +      inertiaTensor(2,2) = xx + yy;
1161 +      
1162 + #ifdef IS_MPI
1163 +      Mat3x3d tmpI(inertiaTensor);
1164 +      Vector3d tmpAngMom;
1165 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1166 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1167 + #endif
1168 +              
1169 +      return;
1170 +   }
1171 +
1172 +   //Returns the angular momentum of the system
1173 +   Vector3d SimInfo::getAngularMomentum(){
1174 +      
1175 +      Vector3d com(0.0);
1176 +      Vector3d comVel(0.0);
1177 +      Vector3d angularMomentum(0.0);
1178 +      
1179 +      getComAll(com,comVel);
1180 +      
1181 +      SimInfo::MoleculeIterator i;
1182 +      Molecule* mol;
1183 +      
1184 +      Vector3d thisr(0.0);
1185 +      Vector3d thisp(0.0);
1186 +      
1187 +      RealType thisMass;
1188 +      
1189 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1190 +        thisMass = mol->getMass();
1191 +        thisr = mol->getCom()-com;
1192 +        thisp = (mol->getComVel()-comVel)*thisMass;
1193 +        
1194 +        angularMomentum += cross( thisr, thisp );
1195 +        
1196 +      }  
1197 +      
1198 + #ifdef IS_MPI
1199 +      Vector3d tmpAngMom;
1200 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1201 + #endif
1202 +      
1203 +      return angularMomentum;
1204 +   }
1205 +  
1206 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1207 +    return IOIndexToIntegrableObject.at(index);
1208 +  }
1209 +  
1210 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1211 +    IOIndexToIntegrableObject= v;
1212 +  }
1213 +
1214 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1215 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1216 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1217 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1218 +  */
1219 +  void SimInfo::getGyrationalVolume(RealType &volume){
1220 +    Mat3x3d intTensor;
1221 +    RealType det;
1222 +    Vector3d dummyAngMom;
1223 +    RealType sysconstants;
1224 +    RealType geomCnst;
1225 +
1226 +    geomCnst = 3.0/2.0;
1227 +    /* Get the inertial tensor and angular momentum for free*/
1228 +    getInertiaTensor(intTensor,dummyAngMom);
1229 +    
1230 +    det = intTensor.determinant();
1231 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1232 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1233 +    return;
1234 +  }
1235 +
1236 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1237 +    Mat3x3d intTensor;
1238 +    Vector3d dummyAngMom;
1239 +    RealType sysconstants;
1240 +    RealType geomCnst;
1241 +
1242 +    geomCnst = 3.0/2.0;
1243 +    /* Get the inertial tensor and angular momentum for free*/
1244 +    getInertiaTensor(intTensor,dummyAngMom);
1245 +    
1246 +    detI = intTensor.determinant();
1247 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1248 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1249 +    return;
1250 +  }
1251 + /*
1252 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1253 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1254 +      sdByGlobalIndex_ = v;
1255      }
1256 +
1257 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1258 +      //assert(index < nAtoms_ + nRigidBodies_);
1259 +      return sdByGlobalIndex_.at(index);
1260 +    }  
1261 + */  
1262 +  int SimInfo::getNGlobalConstraints() {
1263 +    int nGlobalConstraints;
1264 + #ifdef IS_MPI
1265 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1266 +                  MPI_COMM_WORLD);    
1267 + #else
1268 +    nGlobalConstraints =  nConstraints_;
1269 + #endif
1270 +    return nGlobalConstraints;
1271    }
1272  
1273 < }
1273 > }//end namespace OpenMD
1274 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 124 by chuckv, Wed Oct 20 20:46:20 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1553 by gezelter, Fri Apr 29 17:25:12 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines