ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 328 by tim, Sun Feb 13 20:36:24 2005 UTC vs.
Revision 1126 by gezelter, Fri Apr 6 21:53:43 2007 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/fCutoffPolicy.h"
58 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62 < #include "UseTheForce/notifyCutoffs_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65   #include "utils/MemoryUtils.hpp"
66   #include "utils/simError.h"
67   #include "selection/SelectionManager.hpp"
68 + #include "io/ForceFieldOptions.hpp"
69 + #include "UseTheForce/ForceField.hpp"
70  
71 +
72   #ifdef IS_MPI
73   #include "UseTheForce/mpiComponentPlan.h"
74   #include "UseTheForce/DarkSide/simParallel_interface.h"
75   #endif
76  
77   namespace oopse {
78 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 +    std::map<int, std::set<int> >::iterator i = container.find(index);
80 +    std::set<int> result;
81 +    if (i != container.end()) {
82 +        result = i->second;
83 +    }
84  
85 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
86 <                                ForceField* ff, Globals* simParams) :
87 <                                forceField_(ff), simParams_(simParams),
88 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96 >    useAtomicVirial_(true) {
97  
98 <            
99 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
100 <    MoleculeStamp* molStamp;
101 <    int nMolWithSameStamp;
102 <    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
103 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
104 <    CutoffGroupStamp* cgStamp;    
105 <    RigidBodyStamp* rbStamp;
106 <    int nRigidAtoms = 0;
107 <    
108 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
109 <        molStamp = i->first;
90 <        nMolWithSameStamp = i->second;
98 >      MoleculeStamp* molStamp;
99 >      int nMolWithSameStamp;
100 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
102 >      CutoffGroupStamp* cgStamp;    
103 >      RigidBodyStamp* rbStamp;
104 >      int nRigidAtoms = 0;
105 >      std::vector<Component*> components = simParams->getComponents();
106 >      
107 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 >        molStamp = (*i)->getMoleculeStamp();
109 >        nMolWithSameStamp = (*i)->getNMol();
110          
111          addMoleculeStamp(molStamp, nMolWithSameStamp);
112  
113          //calculate atoms in molecules
114          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
115  
97
116          //calculate atoms in cutoff groups
117          int nAtomsInGroups = 0;
118          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119          
120          for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 <            cgStamp = molStamp->getCutoffGroup(j);
122 <            nAtomsInGroups += cgStamp->getNMembers();
121 >          cgStamp = molStamp->getCutoffGroupStamp(j);
122 >          nAtomsInGroups += cgStamp->getNMembers();
123          }
124  
125          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126 +
127          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128  
129          //calculate atoms in rigid bodies
# Line 112 | Line 131 | SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*,
131          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132          
133          for (int j=0; j < nRigidBodiesInStamp; j++) {
134 <            rbStamp = molStamp->getRigidBody(j);
135 <            nAtomsInRigidBodies += rbStamp->getNMembers();
134 >          rbStamp = molStamp->getRigidBodyStamp(j);
135 >          nAtomsInRigidBodies += rbStamp->getNMembers();
136          }
137  
138          nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139          nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140          
141 <    }
141 >      }
142  
143 <    //every free atom (atom does not belong to cutoff groups) is a cutoff group
144 <    //therefore the total number of cutoff groups in the system is equal to
145 <    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
146 <    //file plus the number of cutoff groups defined in meta-data file
147 <    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
143 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
144 >      //group therefore the total number of cutoff groups in the system is
145 >      //equal to the total number of atoms minus number of atoms belong to
146 >      //cutoff group defined in meta-data file plus the number of cutoff
147 >      //groups defined in meta-data file
148 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149  
150 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
151 <    //therefore the total number of  integrable objects in the system is equal to
152 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
153 <    //file plus the number of  rigid bodies defined in meta-data file
154 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
150 >      //every free atom (atom does not belong to rigid bodies) is an
151 >      //integrable object therefore the total number of integrable objects
152 >      //in the system is equal to the total number of atoms minus number of
153 >      //atoms belong to rigid body defined in meta-data file plus the number
154 >      //of rigid bodies defined in meta-data file
155 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 >                                                + nGlobalRigidBodies_;
157 >  
158 >      nGlobalMols_ = molStampIds_.size();
159  
136    nGlobalMols_ = molStampIds_.size();
137
160   #ifdef IS_MPI    
161 <    molToProcMap_.resize(nGlobalMols_);
161 >      molToProcMap_.resize(nGlobalMols_);
162   #endif
163  
164 <    selectMan_ = new SelectionManager(this);
143 <    selectMan_->selectAll();
144 < }
164 >    }
165  
166 < SimInfo::~SimInfo() {
167 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
168 <
169 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
170 <    
166 >  SimInfo::~SimInfo() {
167 >    std::map<int, Molecule*>::iterator i;
168 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
169 >      delete i->second;
170 >    }
171 >    molecules_.clear();
172 >      
173      delete sman_;
174      delete simParams_;
175      delete forceField_;
176 <    delete selectMan_;
155 < }
176 >  }
177  
178 < int SimInfo::getNGlobalConstraints() {
178 >  int SimInfo::getNGlobalConstraints() {
179      int nGlobalConstraints;
180   #ifdef IS_MPI
181      MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
# Line 163 | Line 184 | int SimInfo::getNGlobalConstraints() {
184      nGlobalConstraints =  nConstraints_;
185   #endif
186      return nGlobalConstraints;
187 < }
187 >  }
188  
189 < bool SimInfo::addMolecule(Molecule* mol) {
189 >  bool SimInfo::addMolecule(Molecule* mol) {
190      MoleculeIterator i;
191  
192      i = molecules_.find(mol->getGlobalIndex());
193      if (i == molecules_.end() ) {
194  
195 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
195 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
196          
197 <        nAtoms_ += mol->getNAtoms();
198 <        nBonds_ += mol->getNBonds();
199 <        nBends_ += mol->getNBends();
200 <        nTorsions_ += mol->getNTorsions();
201 <        nRigidBodies_ += mol->getNRigidBodies();
202 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
203 <        nCutoffGroups_ += mol->getNCutoffGroups();
204 <        nConstraints_ += mol->getNConstraintPairs();
197 >      nAtoms_ += mol->getNAtoms();
198 >      nBonds_ += mol->getNBonds();
199 >      nBends_ += mol->getNBends();
200 >      nTorsions_ += mol->getNTorsions();
201 >      nRigidBodies_ += mol->getNRigidBodies();
202 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
203 >      nCutoffGroups_ += mol->getNCutoffGroups();
204 >      nConstraints_ += mol->getNConstraintPairs();
205  
206 <        addExcludePairs(mol);
206 >      addExcludePairs(mol);
207          
208 <        return true;
208 >      return true;
209      } else {
210 <        return false;
210 >      return false;
211      }
212 < }
212 >  }
213  
214 < bool SimInfo::removeMolecule(Molecule* mol) {
214 >  bool SimInfo::removeMolecule(Molecule* mol) {
215      MoleculeIterator i;
216      i = molecules_.find(mol->getGlobalIndex());
217  
218      if (i != molecules_.end() ) {
219  
220 <        assert(mol == i->second);
220 >      assert(mol == i->second);
221          
222 <        nAtoms_ -= mol->getNAtoms();
223 <        nBonds_ -= mol->getNBonds();
224 <        nBends_ -= mol->getNBends();
225 <        nTorsions_ -= mol->getNTorsions();
226 <        nRigidBodies_ -= mol->getNRigidBodies();
227 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 <        nCutoffGroups_ -= mol->getNCutoffGroups();
229 <        nConstraints_ -= mol->getNConstraintPairs();
222 >      nAtoms_ -= mol->getNAtoms();
223 >      nBonds_ -= mol->getNBonds();
224 >      nBends_ -= mol->getNBends();
225 >      nTorsions_ -= mol->getNTorsions();
226 >      nRigidBodies_ -= mol->getNRigidBodies();
227 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 >      nCutoffGroups_ -= mol->getNCutoffGroups();
229 >      nConstraints_ -= mol->getNConstraintPairs();
230  
231 <        removeExcludePairs(mol);
232 <        molecules_.erase(mol->getGlobalIndex());
231 >      removeExcludePairs(mol);
232 >      molecules_.erase(mol->getGlobalIndex());
233  
234 <        delete mol;
234 >      delete mol;
235          
236 <        return true;
236 >      return true;
237      } else {
238 <        return false;
238 >      return false;
239      }
240  
241  
242 < }    
242 >  }    
243  
244          
245 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246      i = molecules_.begin();
247      return i == molecules_.end() ? NULL : i->second;
248 < }    
248 >  }    
249  
250 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251      ++i;
252      return i == molecules_.end() ? NULL : i->second;    
253 < }
253 >  }
254  
255  
256 < void SimInfo::calcNdf() {
256 >  void SimInfo::calcNdf() {
257      int ndf_local;
258      MoleculeIterator i;
259      std::vector<StuntDouble*>::iterator j;
# Line 242 | Line 263 | void SimInfo::calcNdf() {
263      ndf_local = 0;
264      
265      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 <               integrableObject = mol->nextIntegrableObject(j)) {
266 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 >           integrableObject = mol->nextIntegrableObject(j)) {
268  
269 <            ndf_local += 3;
269 >        ndf_local += 3;
270  
271 <            if (integrableObject->isDirectional()) {
272 <                if (integrableObject->isLinear()) {
273 <                    ndf_local += 2;
274 <                } else {
275 <                    ndf_local += 3;
276 <                }
277 <            }
271 >        if (integrableObject->isDirectional()) {
272 >          if (integrableObject->isLinear()) {
273 >            ndf_local += 2;
274 >          } else {
275 >            ndf_local += 3;
276 >          }
277 >        }
278              
279 <        }//end for (integrableObject)
280 <    }// end for (mol)
279 >      }
280 >    }
281      
282      // n_constraints is local, so subtract them on each processor
283      ndf_local -= nConstraints_;
# Line 271 | Line 292 | void SimInfo::calcNdf() {
292      // entire system:
293      ndf_ = ndf_ - 3 - nZconstraint_;
294  
295 < }
295 >  }
296  
297 < void SimInfo::calcNdfRaw() {
297 >  int SimInfo::getFdf() {
298 > #ifdef IS_MPI
299 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 > #else
301 >    fdf_ = fdf_local;
302 > #endif
303 >    return fdf_;
304 >  }
305 >    
306 >  void SimInfo::calcNdfRaw() {
307      int ndfRaw_local;
308  
309      MoleculeIterator i;
# Line 285 | Line 315 | void SimInfo::calcNdfRaw() {
315      ndfRaw_local = 0;
316      
317      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 <               integrableObject = mol->nextIntegrableObject(j)) {
318 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 >           integrableObject = mol->nextIntegrableObject(j)) {
320  
321 <            ndfRaw_local += 3;
321 >        ndfRaw_local += 3;
322  
323 <            if (integrableObject->isDirectional()) {
324 <                if (integrableObject->isLinear()) {
325 <                    ndfRaw_local += 2;
326 <                } else {
327 <                    ndfRaw_local += 3;
328 <                }
329 <            }
323 >        if (integrableObject->isDirectional()) {
324 >          if (integrableObject->isLinear()) {
325 >            ndfRaw_local += 2;
326 >          } else {
327 >            ndfRaw_local += 3;
328 >          }
329 >        }
330              
331 <        }
331 >      }
332      }
333      
334   #ifdef IS_MPI
# Line 306 | Line 336 | void SimInfo::calcNdfRaw() {
336   #else
337      ndfRaw_ = ndfRaw_local;
338   #endif
339 < }
339 >  }
340  
341 < void SimInfo::calcNdfTrans() {
341 >  void SimInfo::calcNdfTrans() {
342      int ndfTrans_local;
343  
344      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 352 | void SimInfo::calcNdfTrans() {
352  
353      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354  
355 < }
355 >  }
356  
357 < void SimInfo::addExcludePairs(Molecule* mol) {
357 >  void SimInfo::addExcludePairs(Molecule* mol) {
358      std::vector<Bond*>::iterator bondIter;
359      std::vector<Bend*>::iterator bendIter;
360      std::vector<Torsion*>::iterator torsionIter;
# Line 335 | Line 365 | void SimInfo::addExcludePairs(Molecule* mol) {
365      int b;
366      int c;
367      int d;
368 +
369 +    std::map<int, std::set<int> > atomGroups;
370 +
371 +    Molecule::RigidBodyIterator rbIter;
372 +    RigidBody* rb;
373 +    Molecule::IntegrableObjectIterator ii;
374 +    StuntDouble* integrableObject;
375      
376 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
377 +           integrableObject = mol->nextIntegrableObject(ii)) {
378 +
379 +      if (integrableObject->isRigidBody()) {
380 +          rb = static_cast<RigidBody*>(integrableObject);
381 +          std::vector<Atom*> atoms = rb->getAtoms();
382 +          std::set<int> rigidAtoms;
383 +          for (int i = 0; i < atoms.size(); ++i) {
384 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
385 +          }
386 +          for (int i = 0; i < atoms.size(); ++i) {
387 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388 +          }      
389 +      } else {
390 +        std::set<int> oneAtomSet;
391 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
392 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
393 +      }
394 +    }  
395 +
396 +    
397 +    
398      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 <        a = bond->getAtomA()->getGlobalIndex();
400 <        b = bond->getAtomB()->getGlobalIndex();        
401 <        exclude_.addPair(a, b);
399 >      a = bond->getAtomA()->getGlobalIndex();
400 >      b = bond->getAtomB()->getGlobalIndex();        
401 >      exclude_.addPair(a, b);
402      }
403  
404      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 <        a = bend->getAtomA()->getGlobalIndex();
406 <        b = bend->getAtomB()->getGlobalIndex();        
407 <        c = bend->getAtomC()->getGlobalIndex();
405 >      a = bend->getAtomA()->getGlobalIndex();
406 >      b = bend->getAtomB()->getGlobalIndex();        
407 >      c = bend->getAtomC()->getGlobalIndex();
408 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411  
412 <        exclude_.addPair(a, b);
413 <        exclude_.addPair(a, c);
414 <        exclude_.addPair(b, c);        
412 >      exclude_.addPairs(rigidSetA, rigidSetB);
413 >      exclude_.addPairs(rigidSetA, rigidSetC);
414 >      exclude_.addPairs(rigidSetB, rigidSetC);
415 >      
416 >      //exclude_.addPair(a, b);
417 >      //exclude_.addPair(a, c);
418 >      //exclude_.addPair(b, c);        
419      }
420  
421      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 <        a = torsion->getAtomA()->getGlobalIndex();
423 <        b = torsion->getAtomB()->getGlobalIndex();        
424 <        c = torsion->getAtomC()->getGlobalIndex();        
425 <        d = torsion->getAtomD()->getGlobalIndex();        
422 >      a = torsion->getAtomA()->getGlobalIndex();
423 >      b = torsion->getAtomB()->getGlobalIndex();        
424 >      c = torsion->getAtomC()->getGlobalIndex();        
425 >      d = torsion->getAtomD()->getGlobalIndex();        
426 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
430  
431 <        exclude_.addPair(a, b);
432 <        exclude_.addPair(a, c);
433 <        exclude_.addPair(a, d);
434 <        exclude_.addPair(b, c);
435 <        exclude_.addPair(b, d);
436 <        exclude_.addPair(c, d);        
367 <    }
431 >      exclude_.addPairs(rigidSetA, rigidSetB);
432 >      exclude_.addPairs(rigidSetA, rigidSetC);
433 >      exclude_.addPairs(rigidSetA, rigidSetD);
434 >      exclude_.addPairs(rigidSetB, rigidSetC);
435 >      exclude_.addPairs(rigidSetB, rigidSetD);
436 >      exclude_.addPairs(rigidSetC, rigidSetD);
437  
438 <    
439 < }
438 >      /*
439 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
440 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
441 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
442 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
443 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
444 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
445 >        
446 >      
447 >      exclude_.addPair(a, b);
448 >      exclude_.addPair(a, c);
449 >      exclude_.addPair(a, d);
450 >      exclude_.addPair(b, c);
451 >      exclude_.addPair(b, d);
452 >      exclude_.addPair(c, d);        
453 >      */
454 >    }
455  
456 < void SimInfo::removeExcludePairs(Molecule* mol) {
456 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 >      std::vector<Atom*> atoms = rb->getAtoms();
458 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
459 >        for (int j = i + 1; j < atoms.size(); ++j) {
460 >          a = atoms[i]->getGlobalIndex();
461 >          b = atoms[j]->getGlobalIndex();
462 >          exclude_.addPair(a, b);
463 >        }
464 >      }
465 >    }        
466 >
467 >  }
468 >
469 >  void SimInfo::removeExcludePairs(Molecule* mol) {
470      std::vector<Bond*>::iterator bondIter;
471      std::vector<Bend*>::iterator bendIter;
472      std::vector<Torsion*>::iterator torsionIter;
# Line 380 | Line 477 | void SimInfo::removeExcludePairs(Molecule* mol) {
477      int b;
478      int c;
479      int d;
480 +
481 +    std::map<int, std::set<int> > atomGroups;
482 +
483 +    Molecule::RigidBodyIterator rbIter;
484 +    RigidBody* rb;
485 +    Molecule::IntegrableObjectIterator ii;
486 +    StuntDouble* integrableObject;
487      
488 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
489 +           integrableObject = mol->nextIntegrableObject(ii)) {
490 +
491 +      if (integrableObject->isRigidBody()) {
492 +          rb = static_cast<RigidBody*>(integrableObject);
493 +          std::vector<Atom*> atoms = rb->getAtoms();
494 +          std::set<int> rigidAtoms;
495 +          for (int i = 0; i < atoms.size(); ++i) {
496 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
497 +          }
498 +          for (int i = 0; i < atoms.size(); ++i) {
499 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
500 +          }      
501 +      } else {
502 +        std::set<int> oneAtomSet;
503 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
504 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
505 +      }
506 +    }  
507 +
508 +    
509      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 <        a = bond->getAtomA()->getGlobalIndex();
511 <        b = bond->getAtomB()->getGlobalIndex();        
512 <        exclude_.removePair(a, b);
510 >      a = bond->getAtomA()->getGlobalIndex();
511 >      b = bond->getAtomB()->getGlobalIndex();        
512 >      exclude_.removePair(a, b);
513      }
514  
515      for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 <        a = bend->getAtomA()->getGlobalIndex();
517 <        b = bend->getAtomB()->getGlobalIndex();        
518 <        c = bend->getAtomC()->getGlobalIndex();
516 >      a = bend->getAtomA()->getGlobalIndex();
517 >      b = bend->getAtomB()->getGlobalIndex();        
518 >      c = bend->getAtomC()->getGlobalIndex();
519  
520 <        exclude_.removePair(a, b);
521 <        exclude_.removePair(a, c);
522 <        exclude_.removePair(b, c);        
520 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523 >
524 >      exclude_.removePairs(rigidSetA, rigidSetB);
525 >      exclude_.removePairs(rigidSetA, rigidSetC);
526 >      exclude_.removePairs(rigidSetB, rigidSetC);
527 >      
528 >      //exclude_.removePair(a, b);
529 >      //exclude_.removePair(a, c);
530 >      //exclude_.removePair(b, c);        
531      }
532  
533      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
534 <        a = torsion->getAtomA()->getGlobalIndex();
535 <        b = torsion->getAtomB()->getGlobalIndex();        
536 <        c = torsion->getAtomC()->getGlobalIndex();        
537 <        d = torsion->getAtomD()->getGlobalIndex();        
534 >      a = torsion->getAtomA()->getGlobalIndex();
535 >      b = torsion->getAtomB()->getGlobalIndex();        
536 >      c = torsion->getAtomC()->getGlobalIndex();        
537 >      d = torsion->getAtomD()->getGlobalIndex();        
538  
539 <        exclude_.removePair(a, b);
540 <        exclude_.removePair(a, c);
541 <        exclude_.removePair(a, d);
542 <        exclude_.removePair(b, c);
543 <        exclude_.removePair(b, d);
544 <        exclude_.removePair(c, d);        
539 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
540 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
541 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
542 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
543 >
544 >      exclude_.removePairs(rigidSetA, rigidSetB);
545 >      exclude_.removePairs(rigidSetA, rigidSetC);
546 >      exclude_.removePairs(rigidSetA, rigidSetD);
547 >      exclude_.removePairs(rigidSetB, rigidSetC);
548 >      exclude_.removePairs(rigidSetB, rigidSetD);
549 >      exclude_.removePairs(rigidSetC, rigidSetD);
550 >
551 >      /*
552 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
558 >
559 >      
560 >      exclude_.removePair(a, b);
561 >      exclude_.removePair(a, c);
562 >      exclude_.removePair(a, d);
563 >      exclude_.removePair(b, c);
564 >      exclude_.removePair(b, d);
565 >      exclude_.removePair(c, d);        
566 >      */
567      }
568  
569 < }
569 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
570 >      std::vector<Atom*> atoms = rb->getAtoms();
571 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
572 >        for (int j = i + 1; j < atoms.size(); ++j) {
573 >          a = atoms[i]->getGlobalIndex();
574 >          b = atoms[j]->getGlobalIndex();
575 >          exclude_.removePair(a, b);
576 >        }
577 >      }
578 >    }        
579  
580 +  }
581  
582 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
582 >
583 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
584      int curStampId;
585  
586      //index from 0
# Line 422 | Line 588 | void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp
588  
589      moleculeStamps_.push_back(molStamp);
590      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
591 < }
591 >  }
592  
593 < void SimInfo::update() {
593 >  void SimInfo::update() {
594  
595      setupSimType();
596  
# Line 437 | Line 603 | void SimInfo::update() {
603      //setup fortran force field
604      /** @deprecate */    
605      int isError = 0;
440    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441    if(isError){
442        sprintf( painCave.errMsg,
443         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444        painCave.isFatal = 1;
445        simError();
446    }
447  
606      
607      setupCutoff();
608 +    
609 +    setupElectrostaticSummationMethod( isError );
610 +    setupSwitchingFunction();
611 +    setupAccumulateBoxDipole();
612  
613 +    if(isError){
614 +      sprintf( painCave.errMsg,
615 +               "ForceField error: There was an error initializing the forceField in fortran.\n" );
616 +      painCave.isFatal = 1;
617 +      simError();
618 +    }
619 +
620      calcNdf();
621      calcNdfRaw();
622      calcNdfTrans();
623  
624      fortranInitialized_ = true;
625 < }
625 >  }
626  
627 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
627 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
628      SimInfo::MoleculeIterator mi;
629      Molecule* mol;
630      Molecule::AtomIterator ai;
# Line 464 | Line 633 | std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
633  
634      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635  
636 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637 <            atomTypes.insert(atom->getAtomType());
638 <        }
636 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637 >        atomTypes.insert(atom->getAtomType());
638 >      }
639          
640      }
641  
642      return atomTypes;        
643 < }
643 >  }
644  
645 < void SimInfo::setupSimType() {
645 >  void SimInfo::setupSimType() {
646      std::set<AtomType*>::iterator i;
647      std::set<AtomType*> atomTypes;
648      atomTypes = getUniqueAtomTypes();
# Line 481 | Line 650 | void SimInfo::setupSimType() {
650      int useLennardJones = 0;
651      int useElectrostatic = 0;
652      int useEAM = 0;
653 +    int useSC = 0;
654      int useCharge = 0;
655      int useDirectional = 0;
656      int useDipole = 0;
657      int useGayBerne = 0;
658      int useSticky = 0;
659 +    int useStickyPower = 0;
660      int useShape = 0;
661      int useFLARB = 0; //it is not in AtomType yet
662      int useDirectionalAtom = 0;    
663      int useElectrostatics = 0;
664      //usePBC and useRF are from simParams
665 <    int usePBC = simParams_->getPBC();
666 <    int useRF = simParams_->getUseRF();
665 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 >    int useRF;
667 >    int useSF;
668 >    int useSP;
669 >    int useBoxDipole;
670  
671 +    std::string myMethod;
672 +
673 +    // set the useRF logical
674 +    useRF = 0;
675 +    useSF = 0;
676 +    useSP = 0;
677 +
678 +
679 +    if (simParams_->haveElectrostaticSummationMethod()) {
680 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
681 +      toUpper(myMethod);
682 +      if (myMethod == "REACTION_FIELD"){
683 +        useRF = 1;
684 +      } else if (myMethod == "SHIFTED_FORCE"){
685 +        useSF = 1;
686 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
687 +        useSP = 1;
688 +      }
689 +    }
690 +    
691 +    if (simParams_->haveAccumulateBoxDipole())
692 +      if (simParams_->getAccumulateBoxDipole())
693 +        useBoxDipole = 1;
694 +
695 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
696 +
697      //loop over all of the atom types
698      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 <        useLennardJones |= (*i)->isLennardJones();
700 <        useElectrostatic |= (*i)->isElectrostatic();
701 <        useEAM |= (*i)->isEAM();
702 <        useCharge |= (*i)->isCharge();
703 <        useDirectional |= (*i)->isDirectional();
704 <        useDipole |= (*i)->isDipole();
705 <        useGayBerne |= (*i)->isGayBerne();
706 <        useSticky |= (*i)->isSticky();
707 <        useShape |= (*i)->isShape();
699 >      useLennardJones |= (*i)->isLennardJones();
700 >      useElectrostatic |= (*i)->isElectrostatic();
701 >      useEAM |= (*i)->isEAM();
702 >      useSC |= (*i)->isSC();
703 >      useCharge |= (*i)->isCharge();
704 >      useDirectional |= (*i)->isDirectional();
705 >      useDipole |= (*i)->isDipole();
706 >      useGayBerne |= (*i)->isGayBerne();
707 >      useSticky |= (*i)->isSticky();
708 >      useStickyPower |= (*i)->isStickyPower();
709 >      useShape |= (*i)->isShape();
710      }
711  
712 <    if (useSticky || useDipole || useGayBerne || useShape) {
713 <        useDirectionalAtom = 1;
712 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
713 >      useDirectionalAtom = 1;
714      }
715  
716      if (useCharge || useDipole) {
717 <        useElectrostatics = 1;
717 >      useElectrostatics = 1;
718      }
719  
720   #ifdef IS_MPI    
# Line 539 | Line 741 | void SimInfo::setupSimType() {
741      temp = useSticky;
742      MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
743  
744 +    temp = useStickyPower;
745 +    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
746 +    
747      temp = useGayBerne;
748      MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
749  
750      temp = useEAM;
751      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
752  
753 +    temp = useSC;
754 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755 +    
756      temp = useShape;
757      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
758  
# Line 553 | Line 761 | void SimInfo::setupSimType() {
761  
762      temp = useRF;
763      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 <    
764 >
765 >    temp = useSF;
766 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
767 >
768 >    temp = useSP;
769 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770 >
771 >    temp = useBoxDipole;
772 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773 >
774 >    temp = useAtomicVirial_;
775 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776 >
777   #endif
778  
779      fInfo_.SIM_uses_PBC = usePBC;    
# Line 563 | Line 783 | void SimInfo::setupSimType() {
783      fInfo_.SIM_uses_Charges = useCharge;
784      fInfo_.SIM_uses_Dipoles = useDipole;
785      fInfo_.SIM_uses_Sticky = useSticky;
786 +    fInfo_.SIM_uses_StickyPower = useStickyPower;
787      fInfo_.SIM_uses_GayBerne = useGayBerne;
788      fInfo_.SIM_uses_EAM = useEAM;
789 +    fInfo_.SIM_uses_SC = useSC;
790      fInfo_.SIM_uses_Shapes = useShape;
791      fInfo_.SIM_uses_FLARB = useFLARB;
792      fInfo_.SIM_uses_RF = useRF;
793 +    fInfo_.SIM_uses_SF = useSF;
794 +    fInfo_.SIM_uses_SP = useSP;
795 +    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 +    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
797 +  }
798  
799 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
573 <
574 <        if (simParams_->haveDielectric()) {
575 <            fInfo_.dielect = simParams_->getDielectric();
576 <        } else {
577 <            sprintf(painCave.errMsg,
578 <                    "SimSetup Error: No Dielectric constant was set.\n"
579 <                    "\tYou are trying to use Reaction Field without"
580 <                    "\tsetting a dielectric constant!\n");
581 <            painCave.isFatal = 1;
582 <            simError();
583 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
587 <    }
588 <
589 < }
590 <
591 < void SimInfo::setupFortranSim() {
799 >  void SimInfo::setupFortranSim() {
800      int isError;
801      int nExclude;
802      std::vector<int> fortranGlobalGroupMembership;
# Line 598 | Line 806 | void SimInfo::setupFortranSim() {
806  
807      //globalGroupMembership_ is filled by SimCreator    
808      for (int i = 0; i < nGlobalAtoms_; i++) {
809 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
809 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
810      }
811  
812      //calculate mass ratio of cutoff group
813 <    std::vector<double> mfact;
813 >    std::vector<RealType> mfact;
814      SimInfo::MoleculeIterator mi;
815      Molecule* mol;
816      Molecule::CutoffGroupIterator ci;
817      CutoffGroup* cg;
818      Molecule::AtomIterator ai;
819      Atom* atom;
820 <    double totalMass;
820 >    RealType totalMass;
821  
822      //to avoid memory reallocation, reserve enough space for mfact
823      mfact.reserve(getNCutoffGroups());
824      
825      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
826 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
826 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
827  
828 <            totalMass = cg->getMass();
829 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 <                        mfact.push_back(atom->getMass()/totalMass);
831 <            }
828 >        totalMass = cg->getMass();
829 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 >          // Check for massless groups - set mfact to 1 if true
831 >          if (totalMass != 0)
832 >            mfact.push_back(atom->getMass()/totalMass);
833 >          else
834 >            mfact.push_back( 1.0 );
835 >        }
836  
837 <        }      
837 >      }      
838      }
839  
840      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
# Line 632 | Line 844 | void SimInfo::setupFortranSim() {
844      identArray.reserve(getNAtoms());
845      
846      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
847 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 <            identArray.push_back(atom->getIdent());
849 <        }
847 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 >        identArray.push_back(atom->getIdent());
849 >      }
850      }    
851  
852      //fill molMembershipArray
853      //molMembershipArray is filled by SimCreator    
854      std::vector<int> molMembershipArray(nGlobalAtoms_);
855      for (int i = 0; i < nGlobalAtoms_; i++) {
856 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
856 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
857      }
858      
859      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
860      int nGlobalExcludes = 0;
861      int* globalExcludes = NULL;
862      int* excludeList = exclude_.getExcludeList();
863      setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 <                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865 <                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
864 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
866  
867      if( isError ){
868  
869 <        sprintf( painCave.errMsg,
870 <                 "There was an error setting the simulation information in fortran.\n" );
871 <        painCave.isFatal = 1;
872 <        painCave.severity = OOPSE_ERROR;
873 <        simError();
869 >      sprintf( painCave.errMsg,
870 >               "There was an error setting the simulation information in fortran.\n" );
871 >      painCave.isFatal = 1;
872 >      painCave.severity = OOPSE_ERROR;
873 >      simError();
874      }
875  
876   #ifdef IS_MPI
877      sprintf( checkPointMsg,
878 <       "succesfully sent the simulation information to fortran.\n");
878 >             "succesfully sent the simulation information to fortran.\n");
879      MPIcheckPoint();
880   #endif // is_mpi
881 < }
881 >
882 >    // Setup number of neighbors in neighbor list if present
883 >    if (simParams_->haveNeighborListNeighbors()) {
884 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 >      setNeighbors(&nlistNeighbors);
886 >    }
887 >  
888  
889 +  }
890  
891 +
892   #ifdef IS_MPI
893 < void SimInfo::setupFortranParallel() {
893 >  void SimInfo::setupFortranParallel() {
894      
895      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
# Line 689 | Line 906 | void SimInfo::setupFortranParallel() {
906  
907      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
908  
909 <        //local index(index in DataStorge) of atom is important
910 <        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 <            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912 <        }
909 >      //local index(index in DataStorge) of atom is important
910 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912 >      }
913  
914 <        //local index of cutoff group is trivial, it only depends on the order of travesing
915 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916 <            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917 <        }        
914 >      //local index of cutoff group is trivial, it only depends on the order of travesing
915 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917 >      }        
918          
919      }
920  
# Line 717 | Line 934 | void SimInfo::setupFortranParallel() {
934                      &localToGlobalCutoffGroupIndex[0], &isError);
935  
936      if (isError) {
937 <        sprintf(painCave.errMsg,
938 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 <        painCave.isFatal = 1;
940 <        simError();
937 >      sprintf(painCave.errMsg,
938 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 >      painCave.isFatal = 1;
940 >      simError();
941      }
942  
943      sprintf(checkPointMsg, " mpiRefresh successful.\n");
944      MPIcheckPoint();
945  
946  
947 < }
947 >  }
948  
949   #endif
950  
951 < double SimInfo::calcMaxCutoffRadius() {
951 >  void SimInfo::setupCutoff() {          
952 >    
953 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954  
955 +    // Check the cutoff policy
956 +    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957  
958 <    std::set<AtomType*> atomTypes;
959 <    std::set<AtomType*>::iterator i;
960 <    std::vector<double> cutoffRadius;
961 <
962 <    //get the unique atom types
742 <    atomTypes = getUniqueAtomTypes();
743 <
744 <    //query the max cutoff radius among these atom types
745 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
746 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
958 >    std::string myPolicy;
959 >    if (forceFieldOptions_.haveCutoffPolicy()){
960 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
961 >    }else if (simParams_->haveCutoffPolicy()) {
962 >      myPolicy = simParams_->getCutoffPolicy();
963      }
964  
965 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
966 < #ifdef IS_MPI
967 <    //pick the max cutoff radius among the processors
968 < #endif
965 >    if (!myPolicy.empty()){
966 >      toUpper(myPolicy);
967 >      if (myPolicy == "MIX") {
968 >        cp = MIX_CUTOFF_POLICY;
969 >      } else {
970 >        if (myPolicy == "MAX") {
971 >          cp = MAX_CUTOFF_POLICY;
972 >        } else {
973 >          if (myPolicy == "TRADITIONAL") {            
974 >            cp = TRADITIONAL_CUTOFF_POLICY;
975 >          } else {
976 >            // throw error        
977 >            sprintf( painCave.errMsg,
978 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
979 >            painCave.isFatal = 1;
980 >            simError();
981 >          }    
982 >        }          
983 >      }
984 >    }          
985 >    notifyFortranCutoffPolicy(&cp);
986  
987 <    return maxCutoffRadius;
988 < }
989 <
990 < void SimInfo::getCutoff(double& rcut, double& rsw) {
991 <    
992 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
987 >    // Check the Skin Thickness for neighborlists
988 >    RealType skin;
989 >    if (simParams_->haveSkinThickness()) {
990 >      skin = simParams_->getSkinThickness();
991 >      notifyFortranSkinThickness(&skin);
992 >    }            
993          
994 <        if (!simParams_->haveRcut()){
995 <            sprintf(painCave.errMsg,
994 >    // Check if the cutoff was set explicitly:
995 >    if (simParams_->haveCutoffRadius()) {
996 >      rcut_ = simParams_->getCutoffRadius();
997 >      if (simParams_->haveSwitchingRadius()) {
998 >        rsw_  = simParams_->getSwitchingRadius();
999 >      } else {
1000 >        if (fInfo_.SIM_uses_Charges |
1001 >            fInfo_.SIM_uses_Dipoles |
1002 >            fInfo_.SIM_uses_RF) {
1003 >          
1004 >          rsw_ = 0.85 * rcut_;
1005 >          sprintf(painCave.errMsg,
1006 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1008 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009 >        painCave.isFatal = 0;
1010 >        simError();
1011 >        } else {
1012 >          rsw_ = rcut_;
1013 >          sprintf(painCave.errMsg,
1014 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1015 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1016 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1017 >          painCave.isFatal = 0;
1018 >          simError();
1019 >        }
1020 >      }
1021 >      
1022 >      notifyFortranCutoffs(&rcut_, &rsw_);
1023 >      
1024 >    } else {
1025 >      
1026 >      // For electrostatic atoms, we'll assume a large safe value:
1027 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1028 >        sprintf(painCave.errMsg,
1029                  "SimCreator Warning: No value was set for the cutoffRadius.\n"
1030                  "\tOOPSE will use a default value of 15.0 angstroms"
1031                  "\tfor the cutoffRadius.\n");
1032 <            painCave.isFatal = 0;
1033 <            simError();
1034 <            rcut = 15.0;
1035 <        } else{
1036 <            rcut = simParams_->getRcut();
1032 >        painCave.isFatal = 0;
1033 >        simError();
1034 >        rcut_ = 15.0;
1035 >      
1036 >        if (simParams_->haveElectrostaticSummationMethod()) {
1037 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1038 >          toUpper(myMethod);
1039 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1040 >            if (simParams_->haveSwitchingRadius()){
1041 >              sprintf(painCave.errMsg,
1042 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1043 >                      "\teven though the electrostaticSummationMethod was\n"
1044 >                      "\tset to %s\n", myMethod.c_str());
1045 >              painCave.isFatal = 1;
1046 >              simError();            
1047 >            }
1048 >          }
1049          }
1050 <
1051 <        if (!simParams_->haveRsw()){
1052 <            sprintf(painCave.errMsg,
1053 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1054 <                "\tOOPSE will use a default value of\n"
1055 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
1056 <            painCave.isFatal = 0;
1057 <            simError();
1058 <            rsw = 0.95 * rcut;
1059 <        } else{
1060 <            rsw = simParams_->getRsw();
1050 >      
1051 >        if (simParams_->haveSwitchingRadius()){
1052 >          rsw_ = simParams_->getSwitchingRadius();
1053 >        } else {        
1054 >          sprintf(painCave.errMsg,
1055 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1056 >                  "\tOOPSE will use a default value of\n"
1057 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1058 >          painCave.isFatal = 0;
1059 >          simError();
1060 >          rsw_ = 0.85 * rcut_;
1061          }
1062 <
1063 <    } else {
1064 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1065 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
1062 >        notifyFortranCutoffs(&rcut_, &rsw_);
1063 >      } else {
1064 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1065 >        // We'll punt and let fortran figure out the cutoffs later.
1066          
1067 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
1067 >        notifyFortranYouAreOnYourOwn();
1068  
1069 <        if (simParams_->haveRsw()) {
1070 <            rsw  = simParams_->getRsw();
1069 >      }
1070 >    }
1071 >  }
1072 >
1073 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1074 >    
1075 >    int errorOut;
1076 >    int esm =  NONE;
1077 >    int sm = UNDAMPED;
1078 >    RealType alphaVal;
1079 >    RealType dielectric;
1080 >    
1081 >    errorOut = isError;
1082 >
1083 >    if (simParams_->haveElectrostaticSummationMethod()) {
1084 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1085 >      toUpper(myMethod);
1086 >      if (myMethod == "NONE") {
1087 >        esm = NONE;
1088 >      } else {
1089 >        if (myMethod == "SWITCHING_FUNCTION") {
1090 >          esm = SWITCHING_FUNCTION;
1091          } else {
1092 <            rsw = rcut;
1093 <        }
1092 >          if (myMethod == "SHIFTED_POTENTIAL") {
1093 >            esm = SHIFTED_POTENTIAL;
1094 >          } else {
1095 >            if (myMethod == "SHIFTED_FORCE") {            
1096 >              esm = SHIFTED_FORCE;
1097 >            } else {
1098 >              if (myMethod == "REACTION_FIELD") {
1099 >                esm = REACTION_FIELD;
1100 >                dielectric = simParams_->getDielectric();
1101 >                if (!simParams_->haveDielectric()) {
1102 >                  // throw warning
1103 >                  sprintf( painCave.errMsg,
1104 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1105 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1106 >                  painCave.isFatal = 0;
1107 >                  simError();
1108 >                }
1109 >              } else {
1110 >                // throw error        
1111 >                sprintf( painCave.errMsg,
1112 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1113 >                         "\t(Input file specified %s .)\n"
1114 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1115 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1116 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1117 >                painCave.isFatal = 1;
1118 >                simError();
1119 >              }    
1120 >            }          
1121 >          }
1122 >        }
1123 >      }
1124 >    }
1125      
1126 +    if (simParams_->haveElectrostaticScreeningMethod()) {
1127 +      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1128 +      toUpper(myScreen);
1129 +      if (myScreen == "UNDAMPED") {
1130 +        sm = UNDAMPED;
1131 +      } else {
1132 +        if (myScreen == "DAMPED") {
1133 +          sm = DAMPED;
1134 +          if (!simParams_->haveDampingAlpha()) {
1135 +            // first set a cutoff dependent alpha value
1136 +            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1137 +            alphaVal = 0.5125 - rcut_* 0.025;
1138 +            // for values rcut > 20.5, alpha is zero
1139 +            if (alphaVal < 0) alphaVal = 0;
1140 +
1141 +            // throw warning
1142 +            sprintf( painCave.errMsg,
1143 +                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1144 +                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1145 +            painCave.isFatal = 0;
1146 +            simError();
1147 +          } else {
1148 +            alphaVal = simParams_->getDampingAlpha();
1149 +          }
1150 +          
1151 +        } else {
1152 +          // throw error        
1153 +          sprintf( painCave.errMsg,
1154 +                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1155 +                   "\t(Input file specified %s .)\n"
1156 +                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1157 +                   "or \"damped\".\n", myScreen.c_str() );
1158 +          painCave.isFatal = 1;
1159 +          simError();
1160 +        }
1161 +      }
1162      }
1163 < }
1163 >    
1164 >    // let's pass some summation method variables to fortran
1165 >    setElectrostaticSummationMethod( &esm );
1166 >    setFortranElectrostaticMethod( &esm );
1167 >    setScreeningMethod( &sm );
1168 >    setDampingAlpha( &alphaVal );
1169 >    setReactionFieldDielectric( &dielectric );
1170 >    initFortranFF( &errorOut );
1171 >  }
1172  
1173 < void SimInfo::setupCutoff() {
1174 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
1173 >  void SimInfo::setupSwitchingFunction() {    
1174 >    int ft = CUBIC;
1175  
1176 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
1177 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
1178 < }
1176 >    if (simParams_->haveSwitchingFunctionType()) {
1177 >      std::string funcType = simParams_->getSwitchingFunctionType();
1178 >      toUpper(funcType);
1179 >      if (funcType == "CUBIC") {
1180 >        ft = CUBIC;
1181 >      } else {
1182 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1183 >          ft = FIFTH_ORDER_POLY;
1184 >        } else {
1185 >          // throw error        
1186 >          sprintf( painCave.errMsg,
1187 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1188 >          painCave.isFatal = 1;
1189 >          simError();
1190 >        }          
1191 >      }
1192 >    }
1193  
1194 < void SimInfo::addProperty(GenericData* genData) {
1195 <    properties_.addProperty(genData);  
815 < }
1194 >    // send switching function notification to switcheroo
1195 >    setFunctionType(&ft);
1196  
1197 < void SimInfo::removeProperty(const std::string& propName) {
818 <    properties_.removeProperty(propName);  
819 < }
1197 >  }
1198  
1199 < void SimInfo::clearProperties() {
1199 >  void SimInfo::setupAccumulateBoxDipole() {    
1200 >
1201 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1202 >    if ( simParams_->haveAccumulateBoxDipole() )
1203 >      if ( simParams_->getAccumulateBoxDipole() ) {
1204 >        setAccumulateBoxDipole();
1205 >        calcBoxDipole_ = true;
1206 >      }
1207 >
1208 >  }
1209 >
1210 >  void SimInfo::addProperty(GenericData* genData) {
1211 >    properties_.addProperty(genData);  
1212 >  }
1213 >
1214 >  void SimInfo::removeProperty(const std::string& propName) {
1215 >    properties_.removeProperty(propName);  
1216 >  }
1217 >
1218 >  void SimInfo::clearProperties() {
1219      properties_.clearProperties();
1220 < }
1220 >  }
1221  
1222 < std::vector<std::string> SimInfo::getPropertyNames() {
1222 >  std::vector<std::string> SimInfo::getPropertyNames() {
1223      return properties_.getPropertyNames();  
1224 < }
1224 >  }
1225        
1226 < std::vector<GenericData*> SimInfo::getProperties() {
1226 >  std::vector<GenericData*> SimInfo::getProperties() {
1227      return properties_.getProperties();
1228 < }
1228 >  }
1229  
1230 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1230 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1231      return properties_.getPropertyByName(propName);
1232 < }
1232 >  }
1233  
1234 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1234 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1235 >    if (sman_ == sman) {
1236 >      return;
1237 >    }    
1238 >    delete sman_;
1239      sman_ = sman;
1240  
1241      Molecule* mol;
# Line 846 | Line 1247 | void SimInfo::setSnapshotManager(SnapshotManager* sman
1247  
1248      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1249          
1250 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1251 <            atom->setSnapshotManager(sman_);
1252 <        }
1250 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1251 >        atom->setSnapshotManager(sman_);
1252 >      }
1253          
1254 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1255 <            rb->setSnapshotManager(sman_);
1256 <        }
1254 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1255 >        rb->setSnapshotManager(sman_);
1256 >      }
1257      }    
1258      
1259 < }
1259 >  }
1260  
1261 < Vector3d SimInfo::getComVel(){
1261 >  Vector3d SimInfo::getComVel(){
1262      SimInfo::MoleculeIterator i;
1263      Molecule* mol;
1264  
1265      Vector3d comVel(0.0);
1266 <    double totalMass = 0.0;
1266 >    RealType totalMass = 0.0;
1267      
1268  
1269      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1270 <        double mass = mol->getMass();
1271 <        totalMass += mass;
1272 <        comVel += mass * mol->getComVel();
1270 >      RealType mass = mol->getMass();
1271 >      totalMass += mass;
1272 >      comVel += mass * mol->getComVel();
1273      }  
1274  
1275   #ifdef IS_MPI
1276 <    double tmpMass = totalMass;
1276 >    RealType tmpMass = totalMass;
1277      Vector3d tmpComVel(comVel);    
1278 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1279 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1278 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1279 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1280   #endif
1281  
1282      comVel /= totalMass;
1283  
1284      return comVel;
1285 < }
1285 >  }
1286  
1287 < Vector3d SimInfo::getCom(){
1287 >  Vector3d SimInfo::getCom(){
1288      SimInfo::MoleculeIterator i;
1289      Molecule* mol;
1290  
1291      Vector3d com(0.0);
1292 <    double totalMass = 0.0;
1292 >    RealType totalMass = 0.0;
1293      
1294      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1295 <        double mass = mol->getMass();
1296 <        totalMass += mass;
1297 <        com += mass * mol->getCom();
1295 >      RealType mass = mol->getMass();
1296 >      totalMass += mass;
1297 >      com += mass * mol->getCom();
1298      }  
1299  
1300   #ifdef IS_MPI
1301 <    double tmpMass = totalMass;
1301 >    RealType tmpMass = totalMass;
1302      Vector3d tmpCom(com);    
1303 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1304 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1303 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1305   #endif
1306  
1307      com /= totalMass;
1308  
1309      return com;
1310  
1311 < }        
1311 >  }        
1312  
1313 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1313 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1314  
1315      return o;
1316 < }
1316 >  }
1317 >  
1318 >  
1319 >   /*
1320 >   Returns center of mass and center of mass velocity in one function call.
1321 >   */
1322 >  
1323 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1324 >      SimInfo::MoleculeIterator i;
1325 >      Molecule* mol;
1326 >      
1327 >    
1328 >      RealType totalMass = 0.0;
1329 >    
1330  
1331 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1332 +         RealType mass = mol->getMass();
1333 +         totalMass += mass;
1334 +         com += mass * mol->getCom();
1335 +         comVel += mass * mol->getComVel();          
1336 +      }  
1337 +      
1338 + #ifdef IS_MPI
1339 +      RealType tmpMass = totalMass;
1340 +      Vector3d tmpCom(com);  
1341 +      Vector3d tmpComVel(comVel);
1342 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1343 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1344 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1345 + #endif
1346 +      
1347 +      com /= totalMass;
1348 +      comVel /= totalMass;
1349 +   }        
1350 +  
1351 +   /*
1352 +   Return intertia tensor for entire system and angular momentum Vector.
1353 +
1354 +
1355 +       [  Ixx -Ixy  -Ixz ]
1356 +  J =| -Iyx  Iyy  -Iyz |
1357 +       [ -Izx -Iyz   Izz ]
1358 +    */
1359 +
1360 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1361 +      
1362 +
1363 +      RealType xx = 0.0;
1364 +      RealType yy = 0.0;
1365 +      RealType zz = 0.0;
1366 +      RealType xy = 0.0;
1367 +      RealType xz = 0.0;
1368 +      RealType yz = 0.0;
1369 +      Vector3d com(0.0);
1370 +      Vector3d comVel(0.0);
1371 +      
1372 +      getComAll(com, comVel);
1373 +      
1374 +      SimInfo::MoleculeIterator i;
1375 +      Molecule* mol;
1376 +      
1377 +      Vector3d thisq(0.0);
1378 +      Vector3d thisv(0.0);
1379 +
1380 +      RealType thisMass = 0.0;
1381 +    
1382 +      
1383 +      
1384 +  
1385 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1386 +        
1387 +         thisq = mol->getCom()-com;
1388 +         thisv = mol->getComVel()-comVel;
1389 +         thisMass = mol->getMass();
1390 +         // Compute moment of intertia coefficients.
1391 +         xx += thisq[0]*thisq[0]*thisMass;
1392 +         yy += thisq[1]*thisq[1]*thisMass;
1393 +         zz += thisq[2]*thisq[2]*thisMass;
1394 +        
1395 +         // compute products of intertia
1396 +         xy += thisq[0]*thisq[1]*thisMass;
1397 +         xz += thisq[0]*thisq[2]*thisMass;
1398 +         yz += thisq[1]*thisq[2]*thisMass;
1399 +            
1400 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1401 +            
1402 +      }  
1403 +      
1404 +      
1405 +      inertiaTensor(0,0) = yy + zz;
1406 +      inertiaTensor(0,1) = -xy;
1407 +      inertiaTensor(0,2) = -xz;
1408 +      inertiaTensor(1,0) = -xy;
1409 +      inertiaTensor(1,1) = xx + zz;
1410 +      inertiaTensor(1,2) = -yz;
1411 +      inertiaTensor(2,0) = -xz;
1412 +      inertiaTensor(2,1) = -yz;
1413 +      inertiaTensor(2,2) = xx + yy;
1414 +      
1415 + #ifdef IS_MPI
1416 +      Mat3x3d tmpI(inertiaTensor);
1417 +      Vector3d tmpAngMom;
1418 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1419 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1420 + #endif
1421 +              
1422 +      return;
1423 +   }
1424 +
1425 +   //Returns the angular momentum of the system
1426 +   Vector3d SimInfo::getAngularMomentum(){
1427 +      
1428 +      Vector3d com(0.0);
1429 +      Vector3d comVel(0.0);
1430 +      Vector3d angularMomentum(0.0);
1431 +      
1432 +      getComAll(com,comVel);
1433 +      
1434 +      SimInfo::MoleculeIterator i;
1435 +      Molecule* mol;
1436 +      
1437 +      Vector3d thisr(0.0);
1438 +      Vector3d thisp(0.0);
1439 +      
1440 +      RealType thisMass;
1441 +      
1442 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1443 +        thisMass = mol->getMass();
1444 +        thisr = mol->getCom()-com;
1445 +        thisp = (mol->getComVel()-comVel)*thisMass;
1446 +        
1447 +        angularMomentum += cross( thisr, thisp );
1448 +        
1449 +      }  
1450 +      
1451 + #ifdef IS_MPI
1452 +      Vector3d tmpAngMom;
1453 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1454 + #endif
1455 +      
1456 +      return angularMomentum;
1457 +   }
1458 +  
1459 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1460 +    return IOIndexToIntegrableObject.at(index);
1461 +  }
1462 +  
1463 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1464 +    IOIndexToIntegrableObject= v;
1465 +  }
1466 +
1467 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1468 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1469 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1470 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1471 +  */
1472 +  void SimInfo::getGyrationalVolume(RealType &volume){
1473 +    Mat3x3d intTensor;
1474 +    RealType det;
1475 +    Vector3d dummyAngMom;
1476 +    RealType sysconstants;
1477 +    RealType geomCnst;
1478 +
1479 +    geomCnst = 3.0/2.0;
1480 +    /* Get the inertial tensor and angular momentum for free*/
1481 +    getInertiaTensor(intTensor,dummyAngMom);
1482 +    
1483 +    det = intTensor.determinant();
1484 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1485 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1486 +    return;
1487 +  }
1488 +
1489 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1490 +    Mat3x3d intTensor;
1491 +    Vector3d dummyAngMom;
1492 +    RealType sysconstants;
1493 +    RealType geomCnst;
1494 +
1495 +    geomCnst = 3.0/2.0;
1496 +    /* Get the inertial tensor and angular momentum for free*/
1497 +    getInertiaTensor(intTensor,dummyAngMom);
1498 +    
1499 +    detI = intTensor.determinant();
1500 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1501 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1502 +    return;
1503 +  }
1504 + /*
1505 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1506 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1507 +      sdByGlobalIndex_ = v;
1508 +    }
1509 +
1510 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1511 +      //assert(index < nAtoms_ + nRigidBodies_);
1512 +      return sdByGlobalIndex_.at(index);
1513 +    }  
1514 + */  
1515   }//end namespace oopse
1516  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines