ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1078 by gezelter, Wed Oct 18 21:58:48 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1601 by gezelter, Thu Aug 4 20:04:35 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 #include "UseTheForce/DarkSide/switcheroo_interface.h"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60   #include "io/ForceFieldOptions.hpp"
61   #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
72 < #include "UseTheForce/DarkSide/simParallel_interface.h"
73 < #endif
74 <
75 < namespace oopse {
76 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 <    std::map<int, std::set<int> >::iterator i = container.find(index);
78 <    std::set<int> result;
79 <    if (i != container.end()) {
80 <        result = i->second;
81 <    }
82 <
83 <    return result;
84 <  }
64 > using namespace std;
65 > namespace OpenMD {
66    
67    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68      forceField_(ff), simParams_(simParams),
69      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
73 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
74 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
75 <
76 <      MoleculeStamp* molStamp;
77 <      int nMolWithSameStamp;
78 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
79 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
80 <      CutoffGroupStamp* cgStamp;    
81 <      RigidBodyStamp* rbStamp;
82 <      int nRigidAtoms = 0;
83 <      std::vector<Component*> components = simParams->getComponents();
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90        
91 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
92 <        molStamp = (*i)->getMoleculeStamp();
93 <        nMolWithSameStamp = (*i)->getNMol();
94 <        
95 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
96 <
97 <        //calculate atoms in molecules
98 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
99 <
100 <        //calculate atoms in cutoff groups
101 <        int nAtomsInGroups = 0;
102 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116 <        
117 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <          cgStamp = molStamp->getCutoffGroupStamp(j);
119 <          nAtomsInGroups += cgStamp->getNMembers();
120 <        }
121 <
122 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 <
124 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125 <
126 <        //calculate atoms in rigid bodies
127 <        int nAtomsInRigidBodies = 0;
128 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBodyStamp(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
156 <
157 < #ifdef IS_MPI    
158 <      molToProcMap_.resize(nGlobalMols_);
159 < #endif
160 <
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128  
129 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 +    
131 +    //every free atom (atom does not belong to rigid bodies) is an
132 +    //integrable object therefore the total number of integrable objects
133 +    //in the system is equal to the total number of atoms minus number of
134 +    //atoms belong to rigid body defined in meta-data file plus the number
135 +    //of rigid bodies defined in meta-data file
136 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 +      + nGlobalRigidBodies_;
138 +    
139 +    nGlobalMols_ = molStampIds_.size();
140 +    molToProcMap_.resize(nGlobalMols_);
141 +  }
142 +  
143    SimInfo::~SimInfo() {
144 <    std::map<int, Molecule*>::iterator i;
144 >    map<int, Molecule*>::iterator i;
145      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146        delete i->second;
147      }
# Line 172 | Line 152 | namespace oopse {
152      delete forceField_;
153    }
154  
175  int SimInfo::getNGlobalConstraints() {
176    int nGlobalConstraints;
177 #ifdef IS_MPI
178    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179                  MPI_COMM_WORLD);    
180 #else
181    nGlobalConstraints =  nConstraints_;
182 #endif
183    return nGlobalConstraints;
184  }
155  
156    bool SimInfo::addMolecule(Molecule* mol) {
157      MoleculeIterator i;
158 <
158 >    
159      i = molecules_.find(mol->getGlobalIndex());
160      if (i == molecules_.end() ) {
161 <
162 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
163 <        
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164        nAtoms_ += mol->getNAtoms();
165        nBonds_ += mol->getNBonds();
166        nBends_ += mol->getNBends();
167        nTorsions_ += mol->getNTorsions();
168 +      nInversions_ += mol->getNInversions();
169        nRigidBodies_ += mol->getNRigidBodies();
170        nIntegrableObjects_ += mol->getNIntegrableObjects();
171        nCutoffGroups_ += mol->getNCutoffGroups();
172        nConstraints_ += mol->getNConstraintPairs();
173 <
174 <      addExcludePairs(mol);
175 <        
173 >      
174 >      addInteractionPairs(mol);
175 >      
176        return true;
177      } else {
178        return false;
179      }
180    }
181 <
181 >  
182    bool SimInfo::removeMolecule(Molecule* mol) {
183      MoleculeIterator i;
184      i = molecules_.find(mol->getGlobalIndex());
# Line 220 | Line 191 | namespace oopse {
191        nBonds_ -= mol->getNBonds();
192        nBends_ -= mol->getNBends();
193        nTorsions_ -= mol->getNTorsions();
194 +      nInversions_ -= mol->getNInversions();
195        nRigidBodies_ -= mol->getNRigidBodies();
196        nIntegrableObjects_ -= mol->getNIntegrableObjects();
197        nCutoffGroups_ -= mol->getNCutoffGroups();
198        nConstraints_ -= mol->getNConstraintPairs();
199  
200 <      removeExcludePairs(mol);
200 >      removeInteractionPairs(mol);
201        molecules_.erase(mol->getGlobalIndex());
202  
203        delete mol;
# Line 234 | Line 206 | namespace oopse {
206      } else {
207        return false;
208      }
237
238
209    }    
210  
211          
# Line 253 | Line 223 | namespace oopse {
223    void SimInfo::calcNdf() {
224      int ndf_local;
225      MoleculeIterator i;
226 <    std::vector<StuntDouble*>::iterator j;
226 >    vector<StuntDouble*>::iterator j;
227      Molecule* mol;
228      StuntDouble* integrableObject;
229  
# Line 299 | Line 269 | namespace oopse {
269   #endif
270      return fdf_;
271    }
272 +  
273 +  unsigned int SimInfo::getNLocalCutoffGroups(){
274 +    int nLocalCutoffAtoms = 0;
275 +    Molecule* mol;
276 +    MoleculeIterator mi;
277 +    CutoffGroup* cg;
278 +    Molecule::CutoffGroupIterator ci;
279      
280 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 +      
282 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 +           cg = mol->nextCutoffGroup(ci)) {
284 +        nLocalCutoffAtoms += cg->getNumAtom();
285 +        
286 +      }        
287 +    }
288 +    
289 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 +  }
291 +    
292    void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
295      MoleculeIterator i;
296 <    std::vector<StuntDouble*>::iterator j;
296 >    vector<StuntDouble*>::iterator j;
297      Molecule* mol;
298      StuntDouble* integrableObject;
299  
# Line 351 | Line 340 | namespace oopse {
340  
341    }
342  
343 <  void SimInfo::addExcludePairs(Molecule* mol) {
344 <    std::vector<Bond*>::iterator bondIter;
345 <    std::vector<Bend*>::iterator bendIter;
346 <    std::vector<Torsion*>::iterator torsionIter;
343 >  void SimInfo::addInteractionPairs(Molecule* mol) {
344 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349      Bond* bond;
350      Bend* bend;
351      Torsion* torsion;
352 +    Inversion* inversion;
353      int a;
354      int b;
355      int c;
356      int d;
357  
358 <    std::map<int, std::set<int> > atomGroups;
358 >    // atomGroups can be used to add special interaction maps between
359 >    // groups of atoms that are in two separate rigid bodies.
360 >    // However, most site-site interactions between two rigid bodies
361 >    // are probably not special, just the ones between the physically
362 >    // bonded atoms.  Interactions *within* a single rigid body should
363 >    // always be excluded.  These are done at the bottom of this
364 >    // function.
365  
366 +    map<int, set<int> > atomGroups;
367      Molecule::RigidBodyIterator rbIter;
368      RigidBody* rb;
369      Molecule::IntegrableObjectIterator ii;
370      StuntDouble* integrableObject;
371      
372 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 <           integrableObject = mol->nextIntegrableObject(ii)) {
374 <
372 >    for (integrableObject = mol->beginIntegrableObject(ii);
373 >         integrableObject != NULL;
374 >         integrableObject = mol->nextIntegrableObject(ii)) {
375 >      
376        if (integrableObject->isRigidBody()) {
377 <          rb = static_cast<RigidBody*>(integrableObject);
378 <          std::vector<Atom*> atoms = rb->getAtoms();
379 <          std::set<int> rigidAtoms;
380 <          for (int i = 0; i < atoms.size(); ++i) {
381 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 <          }
383 <          for (int i = 0; i < atoms.size(); ++i) {
384 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 <          }      
377 >        rb = static_cast<RigidBody*>(integrableObject);
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >        }
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >        }      
386        } else {
387 <        std::set<int> oneAtomSet;
387 >        set<int> oneAtomSet;
388          oneAtomSet.insert(integrableObject->getGlobalIndex());
389 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390        }
391      }  
392 +          
393 +    for (bond= mol->beginBond(bondIter); bond != NULL;
394 +         bond = mol->nextBond(bondIter)) {
395  
393    
394    
395    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396        a = bond->getAtomA()->getGlobalIndex();
397 <      b = bond->getAtomB()->getGlobalIndex();        
398 <      exclude_.addPair(a, b);
397 >      b = bond->getAtomB()->getGlobalIndex();  
398 >    
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);
401 >      } else {
402 >        excludedInteractions_.addPair(a, b);
403 >      }
404      }
405  
406 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
406 >    for (bend= mol->beginBend(bendIter); bend != NULL;
407 >         bend = mol->nextBend(bendIter)) {
408 >
409        a = bend->getAtomA()->getGlobalIndex();
410        b = bend->getAtomB()->getGlobalIndex();        
411        c = bend->getAtomC()->getGlobalIndex();
405      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408
409      exclude_.addPairs(rigidSetA, rigidSetB);
410      exclude_.addPairs(rigidSetA, rigidSetC);
411      exclude_.addPairs(rigidSetB, rigidSetC);
412        
413 <      //exclude_.addPair(a, b);
414 <      //exclude_.addPair(a, c);
415 <      //exclude_.addPair(b, c);        
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);      
415 >        oneTwoInteractions_.addPair(b, c);
416 >      } else {
417 >        excludedInteractions_.addPair(a, b);
418 >        excludedInteractions_.addPair(b, c);
419 >      }
420 >
421 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
422 >        oneThreeInteractions_.addPair(a, c);      
423 >      } else {
424 >        excludedInteractions_.addPair(a, c);
425 >      }
426      }
427  
428 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
428 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
429 >         torsion = mol->nextTorsion(torsionIter)) {
430 >
431        a = torsion->getAtomA()->getGlobalIndex();
432        b = torsion->getAtomB()->getGlobalIndex();        
433        c = torsion->getAtomC()->getGlobalIndex();        
434 <      d = torsion->getAtomD()->getGlobalIndex();        
423 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
434 >      d = torsion->getAtomD()->getGlobalIndex();      
435  
436 <      exclude_.addPairs(rigidSetA, rigidSetB);
437 <      exclude_.addPairs(rigidSetA, rigidSetC);
438 <      exclude_.addPairs(rigidSetA, rigidSetD);
439 <      exclude_.addPairs(rigidSetB, rigidSetC);
440 <      exclude_.addPairs(rigidSetB, rigidSetD);
441 <      exclude_.addPairs(rigidSetC, rigidSetD);
436 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
437 >        oneTwoInteractions_.addPair(a, b);      
438 >        oneTwoInteractions_.addPair(b, c);
439 >        oneTwoInteractions_.addPair(c, d);
440 >      } else {
441 >        excludedInteractions_.addPair(a, b);
442 >        excludedInteractions_.addPair(b, c);
443 >        excludedInteractions_.addPair(c, d);
444 >      }
445  
446 <      /*
447 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
448 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
449 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
450 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
451 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
452 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
453 <        
454 <      
455 <      exclude_.addPair(a, b);
456 <      exclude_.addPair(a, c);
457 <      exclude_.addPair(a, d);
458 <      exclude_.addPair(b, c);
448 <      exclude_.addPair(b, d);
449 <      exclude_.addPair(c, d);        
450 <      */
446 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
447 >        oneThreeInteractions_.addPair(a, c);      
448 >        oneThreeInteractions_.addPair(b, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, c);
451 >        excludedInteractions_.addPair(b, d);
452 >      }
453 >
454 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
455 >        oneFourInteractions_.addPair(a, d);      
456 >      } else {
457 >        excludedInteractions_.addPair(a, d);
458 >      }
459      }
460  
461 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
462 <      std::vector<Atom*> atoms = rb->getAtoms();
463 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
464 <        for (int j = i + 1; j < atoms.size(); ++j) {
461 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
462 >         inversion = mol->nextInversion(inversionIter)) {
463 >
464 >      a = inversion->getAtomA()->getGlobalIndex();
465 >      b = inversion->getAtomB()->getGlobalIndex();        
466 >      c = inversion->getAtomC()->getGlobalIndex();        
467 >      d = inversion->getAtomD()->getGlobalIndex();        
468 >
469 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
470 >        oneTwoInteractions_.addPair(a, b);      
471 >        oneTwoInteractions_.addPair(a, c);
472 >        oneTwoInteractions_.addPair(a, d);
473 >      } else {
474 >        excludedInteractions_.addPair(a, b);
475 >        excludedInteractions_.addPair(a, c);
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478 >
479 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
480 >        oneThreeInteractions_.addPair(b, c);    
481 >        oneThreeInteractions_.addPair(b, d);    
482 >        oneThreeInteractions_.addPair(c, d);      
483 >      } else {
484 >        excludedInteractions_.addPair(b, c);
485 >        excludedInteractions_.addPair(b, d);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488 >    }
489 >
490 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >         rb = mol->nextRigidBody(rbIter)) {
492 >      vector<Atom*> atoms = rb->getAtoms();
493 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495            a = atoms[i]->getGlobalIndex();
496            b = atoms[j]->getGlobalIndex();
497 <          exclude_.addPair(a, b);
497 >          excludedInteractions_.addPair(a, b);
498          }
499        }
500      }        
501  
502    }
503  
504 <  void SimInfo::removeExcludePairs(Molecule* mol) {
505 <    std::vector<Bond*>::iterator bondIter;
506 <    std::vector<Bend*>::iterator bendIter;
507 <    std::vector<Torsion*>::iterator torsionIter;
504 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
505 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
513 +    Inversion* inversion;
514      int a;
515      int b;
516      int c;
517      int d;
518  
519 <    std::map<int, std::set<int> > atomGroups;
479 <
519 >    map<int, set<int> > atomGroups;
520      Molecule::RigidBodyIterator rbIter;
521      RigidBody* rb;
522      Molecule::IntegrableObjectIterator ii;
523      StuntDouble* integrableObject;
524      
525 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
526 <           integrableObject = mol->nextIntegrableObject(ii)) {
527 <
525 >    for (integrableObject = mol->beginIntegrableObject(ii);
526 >         integrableObject != NULL;
527 >         integrableObject = mol->nextIntegrableObject(ii)) {
528 >      
529        if (integrableObject->isRigidBody()) {
530 <          rb = static_cast<RigidBody*>(integrableObject);
531 <          std::vector<Atom*> atoms = rb->getAtoms();
532 <          std::set<int> rigidAtoms;
533 <          for (int i = 0; i < atoms.size(); ++i) {
534 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 <          }
536 <          for (int i = 0; i < atoms.size(); ++i) {
537 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 <          }      
530 >        rb = static_cast<RigidBody*>(integrableObject);
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 >        }
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 >        }      
539        } else {
540 <        std::set<int> oneAtomSet;
540 >        set<int> oneAtomSet;
541          oneAtomSet.insert(integrableObject->getGlobalIndex());
542 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543        }
544      }  
545  
546 <    
547 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
546 >    for (bond= mol->beginBond(bondIter); bond != NULL;
547 >         bond = mol->nextBond(bondIter)) {
548 >      
549        a = bond->getAtomA()->getGlobalIndex();
550 <      b = bond->getAtomB()->getGlobalIndex();        
551 <      exclude_.removePair(a, b);
550 >      b = bond->getAtomB()->getGlobalIndex();  
551 >    
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);
554 >      } else {
555 >        excludedInteractions_.removePair(a, b);
556 >      }
557      }
558  
559 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
559 >    for (bend= mol->beginBend(bendIter); bend != NULL;
560 >         bend = mol->nextBend(bendIter)) {
561 >
562        a = bend->getAtomA()->getGlobalIndex();
563        b = bend->getAtomB()->getGlobalIndex();        
564        c = bend->getAtomC()->getGlobalIndex();
516
517      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520
521      exclude_.removePairs(rigidSetA, rigidSetB);
522      exclude_.removePairs(rigidSetA, rigidSetC);
523      exclude_.removePairs(rigidSetB, rigidSetC);
565        
566 <      //exclude_.removePair(a, b);
567 <      //exclude_.removePair(a, c);
568 <      //exclude_.removePair(b, c);        
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);      
568 >        oneTwoInteractions_.removePair(b, c);
569 >      } else {
570 >        excludedInteractions_.removePair(a, b);
571 >        excludedInteractions_.removePair(b, c);
572 >      }
573 >
574 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
575 >        oneThreeInteractions_.removePair(a, c);      
576 >      } else {
577 >        excludedInteractions_.removePair(a, c);
578 >      }
579      }
580  
581 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
581 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
582 >         torsion = mol->nextTorsion(torsionIter)) {
583 >
584        a = torsion->getAtomA()->getGlobalIndex();
585        b = torsion->getAtomB()->getGlobalIndex();        
586        c = torsion->getAtomC()->getGlobalIndex();        
587 <      d = torsion->getAtomD()->getGlobalIndex();        
587 >      d = torsion->getAtomD()->getGlobalIndex();      
588 >  
589 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
590 >        oneTwoInteractions_.removePair(a, b);      
591 >        oneTwoInteractions_.removePair(b, c);
592 >        oneTwoInteractions_.removePair(c, d);
593 >      } else {
594 >        excludedInteractions_.removePair(a, b);
595 >        excludedInteractions_.removePair(b, c);
596 >        excludedInteractions_.removePair(c, d);
597 >      }
598  
599 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
600 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
601 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
602 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
599 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
600 >        oneThreeInteractions_.removePair(a, c);      
601 >        oneThreeInteractions_.removePair(b, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, c);
604 >        excludedInteractions_.removePair(b, d);
605 >      }
606  
607 <      exclude_.removePairs(rigidSetA, rigidSetB);
608 <      exclude_.removePairs(rigidSetA, rigidSetC);
609 <      exclude_.removePairs(rigidSetA, rigidSetD);
610 <      exclude_.removePairs(rigidSetB, rigidSetC);
611 <      exclude_.removePairs(rigidSetB, rigidSetD);
612 <      exclude_.removePairs(rigidSetC, rigidSetD);
607 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
608 >        oneFourInteractions_.removePair(a, d);      
609 >      } else {
610 >        excludedInteractions_.removePair(a, d);
611 >      }
612 >    }
613  
614 <      /*
615 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
614 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
615 >         inversion = mol->nextInversion(inversionIter)) {
616  
617 <      
618 <      exclude_.removePair(a, b);
619 <      exclude_.removePair(a, c);
620 <      exclude_.removePair(a, d);
621 <      exclude_.removePair(b, c);
622 <      exclude_.removePair(b, d);
623 <      exclude_.removePair(c, d);        
624 <      */
617 >      a = inversion->getAtomA()->getGlobalIndex();
618 >      b = inversion->getAtomB()->getGlobalIndex();        
619 >      c = inversion->getAtomC()->getGlobalIndex();        
620 >      d = inversion->getAtomD()->getGlobalIndex();        
621 >
622 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
623 >        oneTwoInteractions_.removePair(a, b);      
624 >        oneTwoInteractions_.removePair(a, c);
625 >        oneTwoInteractions_.removePair(a, d);
626 >      } else {
627 >        excludedInteractions_.removePair(a, b);
628 >        excludedInteractions_.removePair(a, c);
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631 >
632 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
633 >        oneThreeInteractions_.removePair(b, c);    
634 >        oneThreeInteractions_.removePair(b, d);    
635 >        oneThreeInteractions_.removePair(c, d);      
636 >      } else {
637 >        excludedInteractions_.removePair(b, c);
638 >        excludedInteractions_.removePair(b, d);
639 >        excludedInteractions_.removePair(c, d);
640 >      }
641      }
642  
643 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
644 <      std::vector<Atom*> atoms = rb->getAtoms();
645 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
646 <        for (int j = i + 1; j < atoms.size(); ++j) {
643 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644 >         rb = mol->nextRigidBody(rbIter)) {
645 >      vector<Atom*> atoms = rb->getAtoms();
646 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648            a = atoms[i]->getGlobalIndex();
649            b = atoms[j]->getGlobalIndex();
650 <          exclude_.removePair(a, b);
650 >          excludedInteractions_.removePair(a, b);
651          }
652        }
653      }        
654 <
654 >    
655    }
656 <
657 <
656 >  
657 >  
658    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
659      int curStampId;
660 <
660 >    
661      //index from 0
662      curStampId = moleculeStamps_.size();
663  
# Line 587 | Line 665 | namespace oopse {
665      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666    }
667  
590  void SimInfo::update() {
668  
669 <    setupSimType();
670 <
671 < #ifdef IS_MPI
672 <    setupFortranParallel();
673 < #endif
674 <
675 <    setupFortranSim();
676 <
677 <    //setup fortran force field
601 <    /** @deprecate */    
602 <    int isError = 0;
603 <    
604 <    setupCutoff();
605 <    
606 <    setupElectrostaticSummationMethod( isError );
607 <    setupSwitchingFunction();
608 <    setupAccumulateBoxDipole();
609 <
610 <    if(isError){
611 <      sprintf( painCave.errMsg,
612 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
613 <      painCave.isFatal = 1;
614 <      simError();
615 <    }
616 <
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
620
621    fortranInitialized_ = true;
681    }
682 <
683 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
682 >  
683 >  /**
684 >   * getSimulatedAtomTypes
685 >   *
686 >   * Returns an STL set of AtomType* that are actually present in this
687 >   * simulation.  Must query all processors to assemble this information.
688 >   *
689 >   */
690 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691      SimInfo::MoleculeIterator mi;
692      Molecule* mol;
693      Molecule::AtomIterator ai;
694      Atom* atom;
695 <    std::set<AtomType*> atomTypes;
696 <
695 >    set<AtomType*> atomTypes;
696 >    
697      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 <
699 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
698 >      for(atom = mol->beginAtom(ai); atom != NULL;
699 >          atom = mol->nextAtom(ai)) {
700          atomTypes.insert(atom->getAtomType());
701 <      }
702 <        
703 <    }
701 >      }      
702 >    }    
703 >    
704 > #ifdef IS_MPI
705  
706 <    return atomTypes;        
707 <  }
641 <
642 <  void SimInfo::setupSimType() {
643 <    std::set<AtomType*>::iterator i;
644 <    std::set<AtomType*> atomTypes;
645 <    atomTypes = getUniqueAtomTypes();
706 >    // loop over the found atom types on this processor, and add their
707 >    // numerical idents to a vector:
708      
709 <    int useLennardJones = 0;
710 <    int useElectrostatic = 0;
711 <    int useEAM = 0;
712 <    int useSC = 0;
651 <    int useCharge = 0;
652 <    int useDirectional = 0;
653 <    int useDipole = 0;
654 <    int useGayBerne = 0;
655 <    int useSticky = 0;
656 <    int useStickyPower = 0;
657 <    int useShape = 0;
658 <    int useFLARB = 0; //it is not in AtomType yet
659 <    int useDirectionalAtom = 0;    
660 <    int useElectrostatics = 0;
661 <    //usePBC and useRF are from simParams
662 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 <    int useRF;
664 <    int useSF;
665 <    int useSP;
666 <    int useBoxDipole;
667 <    std::string myMethod;
709 >    vector<int> foundTypes;
710 >    set<AtomType*>::iterator i;
711 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
712 >      foundTypes.push_back( (*i)->getIdent() );
713  
714 <    // set the useRF logical
715 <    useRF = 0;
671 <    useSF = 0;
672 <    useSP = 0;
714 >    // count_local holds the number of found types on this processor
715 >    int count_local = foundTypes.size();
716  
717 +    int nproc = MPI::COMM_WORLD.Get_size();
718  
719 <    if (simParams_->haveElectrostaticSummationMethod()) {
720 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
721 <      toUpper(myMethod);
722 <      if (myMethod == "REACTION_FIELD"){
679 <        useRF = 1;
680 <      } else if (myMethod == "SHIFTED_FORCE"){
681 <        useSF = 1;
682 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
683 <        useSP = 1;
684 <      }
685 <    }
686 <    
687 <    if (simParams_->haveAccumulateBoxDipole())
688 <      if (simParams_->getAccumulateBoxDipole())
689 <        useBoxDipole = 1;
719 >    // we need arrays to hold the counts and displacement vectors for
720 >    // all processors
721 >    vector<int> counts(nproc, 0);
722 >    vector<int> disps(nproc, 0);
723  
724 <    //loop over all of the atom types
725 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
726 <      useLennardJones |= (*i)->isLennardJones();
727 <      useElectrostatic |= (*i)->isElectrostatic();
728 <      useEAM |= (*i)->isEAM();
729 <      useSC |= (*i)->isSC();
730 <      useCharge |= (*i)->isCharge();
731 <      useDirectional |= (*i)->isDirectional();
732 <      useDipole |= (*i)->isDipole();
733 <      useGayBerne |= (*i)->isGayBerne();
701 <      useSticky |= (*i)->isSticky();
702 <      useStickyPower |= (*i)->isStickyPower();
703 <      useShape |= (*i)->isShape();
724 >    // fill the counts array
725 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 >                              1, MPI::INT);
727 >  
728 >    // use the processor counts to compute the displacement array
729 >    disps[0] = 0;    
730 >    int totalCount = counts[0];
731 >    for (int iproc = 1; iproc < nproc; iproc++) {
732 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 >      totalCount += counts[iproc];
734      }
735  
736 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
737 <      useDirectionalAtom = 1;
738 <    }
736 >    // we need a (possibly redundant) set of all found types:
737 >    vector<int> ftGlobal(totalCount);
738 >    
739 >    // now spray out the foundTypes to all the other processors:    
740 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 >                               &ftGlobal[0], &counts[0], &disps[0],
742 >                               MPI::INT);
743  
744 <    if (useCharge || useDipole) {
711 <      useElectrostatics = 1;
712 <    }
744 >    vector<int>::iterator j;
745  
746 < #ifdef IS_MPI    
747 <    int temp;
746 >    // foundIdents is a stl set, so inserting an already found ident
747 >    // will have no effect.
748 >    set<int> foundIdents;
749  
750 <    temp = usePBC;
751 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
750 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751 >      foundIdents.insert((*j));
752 >    
753 >    // now iterate over the foundIdents and get the actual atom types
754 >    // that correspond to these:
755 >    set<int>::iterator it;
756 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757 >      atomTypes.insert( forceField_->getAtomType((*it)) );
758 >
759 > #endif
760  
761 <    temp = useDirectionalAtom;
762 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
761 >    return atomTypes;        
762 >  }
763  
764 <    temp = useLennardJones;
765 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766 <
767 <    temp = useElectrostatics;
768 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769 <
770 <    temp = useCharge;
771 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
731 <
732 <    temp = useDipole;
733 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
734 <
735 <    temp = useSticky;
736 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
737 <
738 <    temp = useStickyPower;
739 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 >  void SimInfo::setupSimVariables() {
765 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
766 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
767 >    calcBoxDipole_ = false;
768 >    if ( simParams_->haveAccumulateBoxDipole() )
769 >      if ( simParams_->getAccumulateBoxDipole() ) {
770 >        calcBoxDipole_ = true;      
771 >      }
772      
773 <    temp = useGayBerne;
774 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773 >    set<AtomType*>::iterator i;
774 >    set<AtomType*> atomTypes;
775 >    atomTypes = getSimulatedAtomTypes();    
776 >    int usesElectrostatic = 0;
777 >    int usesMetallic = 0;
778 >    int usesDirectional = 0;
779 >    //loop over all of the atom types
780 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
781 >      usesElectrostatic |= (*i)->isElectrostatic();
782 >      usesMetallic |= (*i)->isMetal();
783 >      usesDirectional |= (*i)->isDirectional();
784 >    }
785 >    
786 > #ifdef IS_MPI    
787 >    int temp;
788 >    temp = usesDirectional;
789 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 >    
791 >    temp = usesMetallic;
792 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 >    
794 >    temp = usesElectrostatic;
795 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 > #else
797  
798 <    temp = useEAM;
799 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    usesDirectionalAtoms_ = usesDirectional;
799 >    usesMetallicAtoms_ = usesMetallic;
800 >    usesElectrostaticAtoms_ = usesElectrostatic;
801  
802 <    temp = useSC;
748 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
802 > #endif
803      
804 <    temp = useShape;
805 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
804 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
807 >  }
808  
753    temp = useFLARB;
754    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809  
810 <    temp = useRF;
811 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >  vector<int> SimInfo::getGlobalAtomIndices() {
811 >    SimInfo::MoleculeIterator mi;
812 >    Molecule* mol;
813 >    Molecule::AtomIterator ai;
814 >    Atom* atom;
815  
816 <    temp = useSF;
817 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
816 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
817 >    
818 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
819 >      
820 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 >      }
823 >    }
824 >    return GlobalAtomIndices;
825 >  }
826  
762    temp = useSP;
763    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
827  
828 <    temp = useBoxDipole;
829 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
828 >  vector<int> SimInfo::getGlobalGroupIndices() {
829 >    SimInfo::MoleculeIterator mi;
830 >    Molecule* mol;
831 >    Molecule::CutoffGroupIterator ci;
832 >    CutoffGroup* cg;
833  
834 < #endif
835 <
836 <    fInfo_.SIM_uses_PBC = usePBC;    
837 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
838 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
839 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
840 <    fInfo_.SIM_uses_Charges = useCharge;
841 <    fInfo_.SIM_uses_Dipoles = useDipole;
842 <    fInfo_.SIM_uses_Sticky = useSticky;
843 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
844 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
845 <    fInfo_.SIM_uses_EAM = useEAM;
780 <    fInfo_.SIM_uses_SC = useSC;
781 <    fInfo_.SIM_uses_Shapes = useShape;
782 <    fInfo_.SIM_uses_FLARB = useFLARB;
783 <    fInfo_.SIM_uses_RF = useRF;
784 <    fInfo_.SIM_uses_SF = useSF;
785 <    fInfo_.SIM_uses_SP = useSP;
786 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
834 >    vector<int> GlobalGroupIndices;
835 >    
836 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
837 >      
838 >      //local index of cutoff group is trivial, it only depends on the
839 >      //order of travesing
840 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
841 >           cg = mol->nextCutoffGroup(ci)) {
842 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
843 >      }        
844 >    }
845 >    return GlobalGroupIndices;
846    }
847  
789  void SimInfo::setupFortranSim() {
790    int isError;
791    int nExclude;
792    std::vector<int> fortranGlobalGroupMembership;
793    
794    nExclude = exclude_.getSize();
795    isError = 0;
848  
849 <    //globalGroupMembership_ is filled by SimCreator    
850 <    for (int i = 0; i < nGlobalAtoms_; i++) {
799 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
800 <    }
849 >  void SimInfo::prepareTopology() {
850 >    int nExclude, nOneTwo, nOneThree, nOneFour;
851  
852      //calculate mass ratio of cutoff group
803    std::vector<RealType> mfact;
853      SimInfo::MoleculeIterator mi;
854      Molecule* mol;
855      Molecule::CutoffGroupIterator ci;
# Line 809 | Line 858 | namespace oopse {
858      Atom* atom;
859      RealType totalMass;
860  
861 <    //to avoid memory reallocation, reserve enough space for mfact
862 <    mfact.reserve(getNCutoffGroups());
861 >    /**
862 >     * The mass factor is the relative mass of an atom to the total
863 >     * mass of the cutoff group it belongs to.  By default, all atoms
864 >     * are their own cutoff groups, and therefore have mass factors of
865 >     * 1.  We need some special handling for massless atoms, which
866 >     * will be treated as carrying the entire mass of the cutoff
867 >     * group.
868 >     */
869 >    massFactors_.clear();
870 >    massFactors_.resize(getNAtoms(), 1.0);
871      
872      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
873 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
873 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
874 >           cg = mol->nextCutoffGroup(ci)) {
875  
876          totalMass = cg->getMass();
877          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
878            // Check for massless groups - set mfact to 1 if true
879 <          if (totalMass != 0)
880 <            mfact.push_back(atom->getMass()/totalMass);
879 >          if (totalMass != 0)
880 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
881            else
882 <            mfact.push_back( 1.0 );
882 >            massFactors_[atom->getLocalIndex()] = 1.0;
883          }
826
884        }      
885      }
886  
887 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
831 <    std::vector<int> identArray;
887 >    // Build the identArray_
888  
889 <    //to avoid memory reallocation, reserve enough space identArray
890 <    identArray.reserve(getNAtoms());
835 <    
889 >    identArray_.clear();
890 >    identArray_.reserve(getNAtoms());    
891      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
892        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 <        identArray.push_back(atom->getIdent());
893 >        identArray_.push_back(atom->getIdent());
894        }
895      }    
841
842    //fill molMembershipArray
843    //molMembershipArray is filled by SimCreator    
844    std::vector<int> molMembershipArray(nGlobalAtoms_);
845    for (int i = 0; i < nGlobalAtoms_; i++) {
846      molMembershipArray[i] = globalMolMembership_[i] + 1;
847    }
896      
897 <    //setup fortran simulation
850 <    int nGlobalExcludes = 0;
851 <    int* globalExcludes = NULL;
852 <    int* excludeList = exclude_.getExcludeList();
853 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
854 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
855 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
897 >    //scan topology
898  
899 <    if( isError ){
900 <
901 <      sprintf( painCave.errMsg,
902 <               "There was an error setting the simulation information in fortran.\n" );
861 <      painCave.isFatal = 1;
862 <      painCave.severity = OOPSE_ERROR;
863 <      simError();
864 <    }
865 <
866 < #ifdef IS_MPI
867 <    sprintf( checkPointMsg,
868 <             "succesfully sent the simulation information to fortran.\n");
869 <    MPIcheckPoint();
870 < #endif // is_mpi
871 <  }
872 <
873 <
874 < #ifdef IS_MPI
875 <  void SimInfo::setupFortranParallel() {
876 <    
877 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
878 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
879 <    std::vector<int> localToGlobalCutoffGroupIndex;
880 <    SimInfo::MoleculeIterator mi;
881 <    Molecule::AtomIterator ai;
882 <    Molecule::CutoffGroupIterator ci;
883 <    Molecule* mol;
884 <    Atom* atom;
885 <    CutoffGroup* cg;
886 <    mpiSimData parallelData;
887 <    int isError;
888 <
889 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
890 <
891 <      //local index(index in DataStorge) of atom is important
892 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
894 <      }
895 <
896 <      //local index of cutoff group is trivial, it only depends on the order of travesing
897 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
898 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
899 <      }        
900 <        
901 <    }
902 <
903 <    //fill up mpiSimData struct
904 <    parallelData.nMolGlobal = getNGlobalMolecules();
905 <    parallelData.nMolLocal = getNMolecules();
906 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
907 <    parallelData.nAtomsLocal = getNAtoms();
908 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
909 <    parallelData.nGroupsLocal = getNCutoffGroups();
910 <    parallelData.myNode = worldRank;
911 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
912 <
913 <    //pass mpiSimData struct and index arrays to fortran
914 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
915 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
916 <                    &localToGlobalCutoffGroupIndex[0], &isError);
917 <
918 <    if (isError) {
919 <      sprintf(painCave.errMsg,
920 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
921 <      painCave.isFatal = 1;
922 <      simError();
923 <    }
924 <
925 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
926 <    MPIcheckPoint();
899 >    nExclude = excludedInteractions_.getSize();
900 >    nOneTwo = oneTwoInteractions_.getSize();
901 >    nOneThree = oneThreeInteractions_.getSize();
902 >    nOneFour = oneFourInteractions_.getSize();
903  
904 +    int* excludeList = excludedInteractions_.getPairList();
905 +    int* oneTwoList = oneTwoInteractions_.getPairList();
906 +    int* oneThreeList = oneThreeInteractions_.getPairList();
907 +    int* oneFourList = oneFourInteractions_.getPairList();
908  
909 <  }
930 <
931 < #endif
932 <
933 <  void SimInfo::setupCutoff() {          
934 <    
935 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
936 <
937 <    // Check the cutoff policy
938 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
939 <
940 <    std::string myPolicy;
941 <    if (forceFieldOptions_.haveCutoffPolicy()){
942 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
943 <    }else if (simParams_->haveCutoffPolicy()) {
944 <      myPolicy = simParams_->getCutoffPolicy();
945 <    }
946 <
947 <    if (!myPolicy.empty()){
948 <      toUpper(myPolicy);
949 <      if (myPolicy == "MIX") {
950 <        cp = MIX_CUTOFF_POLICY;
951 <      } else {
952 <        if (myPolicy == "MAX") {
953 <          cp = MAX_CUTOFF_POLICY;
954 <        } else {
955 <          if (myPolicy == "TRADITIONAL") {            
956 <            cp = TRADITIONAL_CUTOFF_POLICY;
957 <          } else {
958 <            // throw error        
959 <            sprintf( painCave.errMsg,
960 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
961 <            painCave.isFatal = 1;
962 <            simError();
963 <          }    
964 <        }          
965 <      }
966 <    }          
967 <    notifyFortranCutoffPolicy(&cp);
968 <
969 <    // Check the Skin Thickness for neighborlists
970 <    RealType skin;
971 <    if (simParams_->haveSkinThickness()) {
972 <      skin = simParams_->getSkinThickness();
973 <      notifyFortranSkinThickness(&skin);
974 <    }            
975 <        
976 <    // Check if the cutoff was set explicitly:
977 <    if (simParams_->haveCutoffRadius()) {
978 <      rcut_ = simParams_->getCutoffRadius();
979 <      if (simParams_->haveSwitchingRadius()) {
980 <        rsw_  = simParams_->getSwitchingRadius();
981 <      } else {
982 <        if (fInfo_.SIM_uses_Charges |
983 <            fInfo_.SIM_uses_Dipoles |
984 <            fInfo_.SIM_uses_RF) {
985 <          
986 <          rsw_ = 0.85 * rcut_;
987 <          sprintf(painCave.errMsg,
988 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
989 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
990 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
991 <        painCave.isFatal = 0;
992 <        simError();
993 <        } else {
994 <          rsw_ = rcut_;
995 <          sprintf(painCave.errMsg,
996 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
997 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
998 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
999 <          painCave.isFatal = 0;
1000 <          simError();
1001 <        }
1002 <      }
1003 <      
1004 <      notifyFortranCutoffs(&rcut_, &rsw_);
1005 <      
1006 <    } else {
1007 <      
1008 <      // For electrostatic atoms, we'll assume a large safe value:
1009 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1010 <        sprintf(painCave.errMsg,
1011 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1012 <                "\tOOPSE will use a default value of 15.0 angstroms"
1013 <                "\tfor the cutoffRadius.\n");
1014 <        painCave.isFatal = 0;
1015 <        simError();
1016 <        rcut_ = 15.0;
1017 <      
1018 <        if (simParams_->haveElectrostaticSummationMethod()) {
1019 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1020 <          toUpper(myMethod);
1021 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1022 <            if (simParams_->haveSwitchingRadius()){
1023 <              sprintf(painCave.errMsg,
1024 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1025 <                      "\teven though the electrostaticSummationMethod was\n"
1026 <                      "\tset to %s\n", myMethod.c_str());
1027 <              painCave.isFatal = 1;
1028 <              simError();            
1029 <            }
1030 <          }
1031 <        }
1032 <      
1033 <        if (simParams_->haveSwitchingRadius()){
1034 <          rsw_ = simParams_->getSwitchingRadius();
1035 <        } else {        
1036 <          sprintf(painCave.errMsg,
1037 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1038 <                  "\tOOPSE will use a default value of\n"
1039 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1040 <          painCave.isFatal = 0;
1041 <          simError();
1042 <          rsw_ = 0.85 * rcut_;
1043 <        }
1044 <        notifyFortranCutoffs(&rcut_, &rsw_);
1045 <      } else {
1046 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1047 <        // We'll punt and let fortran figure out the cutoffs later.
1048 <        
1049 <        notifyFortranYouAreOnYourOwn();
1050 <
1051 <      }
1052 <    }
1053 <  }
1054 <
1055 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1056 <    
1057 <    int errorOut;
1058 <    int esm =  NONE;
1059 <    int sm = UNDAMPED;
1060 <    RealType alphaVal;
1061 <    RealType dielectric;
1062 <    
1063 <    errorOut = isError;
1064 <
1065 <    if (simParams_->haveElectrostaticSummationMethod()) {
1066 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1067 <      toUpper(myMethod);
1068 <      if (myMethod == "NONE") {
1069 <        esm = NONE;
1070 <      } else {
1071 <        if (myMethod == "SWITCHING_FUNCTION") {
1072 <          esm = SWITCHING_FUNCTION;
1073 <        } else {
1074 <          if (myMethod == "SHIFTED_POTENTIAL") {
1075 <            esm = SHIFTED_POTENTIAL;
1076 <          } else {
1077 <            if (myMethod == "SHIFTED_FORCE") {            
1078 <              esm = SHIFTED_FORCE;
1079 <            } else {
1080 <              if (myMethod == "REACTION_FIELD") {
1081 <                esm = REACTION_FIELD;
1082 <                dielectric = simParams_->getDielectric();
1083 <                if (!simParams_->haveDielectric()) {
1084 <                  // throw warning
1085 <                  sprintf( painCave.errMsg,
1086 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1087 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1088 <                  painCave.isFatal = 0;
1089 <                  simError();
1090 <                }
1091 <              } else {
1092 <                // throw error        
1093 <                sprintf( painCave.errMsg,
1094 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1095 <                         "\t(Input file specified %s .)\n"
1096 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1097 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1098 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1099 <                painCave.isFatal = 1;
1100 <                simError();
1101 <              }    
1102 <            }          
1103 <          }
1104 <        }
1105 <      }
1106 <    }
1107 <    
1108 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1109 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1110 <      toUpper(myScreen);
1111 <      if (myScreen == "UNDAMPED") {
1112 <        sm = UNDAMPED;
1113 <      } else {
1114 <        if (myScreen == "DAMPED") {
1115 <          sm = DAMPED;
1116 <          if (!simParams_->haveDampingAlpha()) {
1117 <            // first set a cutoff dependent alpha value
1118 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1119 <            alphaVal = 0.5125 - rcut_* 0.025;
1120 <            // for values rcut > 20.5, alpha is zero
1121 <            if (alphaVal < 0) alphaVal = 0;
1122 <
1123 <            // throw warning
1124 <            sprintf( painCave.errMsg,
1125 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1126 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1127 <            painCave.isFatal = 0;
1128 <            simError();
1129 <          }
1130 <        } else {
1131 <          // throw error        
1132 <          sprintf( painCave.errMsg,
1133 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1134 <                   "\t(Input file specified %s .)\n"
1135 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1136 <                   "or \"damped\".\n", myScreen.c_str() );
1137 <          painCave.isFatal = 1;
1138 <          simError();
1139 <        }
1140 <      }
1141 <    }
1142 <    
1143 <    // let's pass some summation method variables to fortran
1144 <    setElectrostaticSummationMethod( &esm );
1145 <    setFortranElectrostaticMethod( &esm );
1146 <    setScreeningMethod( &sm );
1147 <    setDampingAlpha( &alphaVal );
1148 <    setReactionFieldDielectric( &dielectric );
1149 <    initFortranFF( &errorOut );
1150 <  }
1151 <
1152 <  void SimInfo::setupSwitchingFunction() {    
1153 <    int ft = CUBIC;
1154 <
1155 <    if (simParams_->haveSwitchingFunctionType()) {
1156 <      std::string funcType = simParams_->getSwitchingFunctionType();
1157 <      toUpper(funcType);
1158 <      if (funcType == "CUBIC") {
1159 <        ft = CUBIC;
1160 <      } else {
1161 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1162 <          ft = FIFTH_ORDER_POLY;
1163 <        } else {
1164 <          // throw error        
1165 <          sprintf( painCave.errMsg,
1166 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1167 <          painCave.isFatal = 1;
1168 <          simError();
1169 <        }          
1170 <      }
1171 <    }
1172 <
1173 <    // send switching function notification to switcheroo
1174 <    setFunctionType(&ft);
1175 <
1176 <  }
1177 <
1178 <  void SimInfo::setupAccumulateBoxDipole() {    
1179 <
1180 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1181 <    if ( simParams_->haveAccumulateBoxDipole() )
1182 <      if ( simParams_->getAccumulateBoxDipole() ) {
1183 <        setAccumulateBoxDipole();
1184 <        calcBoxDipole_ = true;
1185 <      }
1186 <
909 >    topologyDone_ = true;
910    }
911  
912    void SimInfo::addProperty(GenericData* genData) {
913      properties_.addProperty(genData);  
914    }
915  
916 <  void SimInfo::removeProperty(const std::string& propName) {
916 >  void SimInfo::removeProperty(const string& propName) {
917      properties_.removeProperty(propName);  
918    }
919  
# Line 1198 | Line 921 | namespace oopse {
921      properties_.clearProperties();
922    }
923  
924 <  std::vector<std::string> SimInfo::getPropertyNames() {
924 >  vector<string> SimInfo::getPropertyNames() {
925      return properties_.getPropertyNames();  
926    }
927        
928 <  std::vector<GenericData*> SimInfo::getProperties() {
928 >  vector<GenericData*> SimInfo::getProperties() {
929      return properties_.getProperties();
930    }
931  
932 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
932 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
933      return properties_.getPropertyByName(propName);
934    }
935  
# Line 1220 | Line 943 | namespace oopse {
943      Molecule* mol;
944      RigidBody* rb;
945      Atom* atom;
946 +    CutoffGroup* cg;
947      SimInfo::MoleculeIterator mi;
948      Molecule::RigidBodyIterator rbIter;
949 <    Molecule::AtomIterator atomIter;;
949 >    Molecule::AtomIterator atomIter;
950 >    Molecule::CutoffGroupIterator cgIter;
951  
952      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
953          
# Line 1233 | Line 958 | namespace oopse {
958        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
959          rb->setSnapshotManager(sman_);
960        }
961 +
962 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
963 +        cg->setSnapshotManager(sman_);
964 +      }
965      }    
966      
967    }
# Line 1289 | Line 1018 | namespace oopse {
1018  
1019    }        
1020  
1021 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1021 >  ostream& operator <<(ostream& o, SimInfo& info) {
1022  
1023      return o;
1024    }
# Line 1332 | Line 1061 | namespace oopse {
1061  
1062  
1063         [  Ixx -Ixy  -Ixz ]
1064 <  J =| -Iyx  Iyy  -Iyz |
1064 >    J =| -Iyx  Iyy  -Iyz |
1065         [ -Izx -Iyz   Izz ]
1066      */
1067  
# Line 1439 | Line 1168 | namespace oopse {
1168      return IOIndexToIntegrableObject.at(index);
1169    }
1170    
1171 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1171 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1172      IOIndexToIntegrableObject= v;
1173    }
1174  
1175 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1176 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1177 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1178 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1179 +  */
1180 +  void SimInfo::getGyrationalVolume(RealType &volume){
1181 +    Mat3x3d intTensor;
1182 +    RealType det;
1183 +    Vector3d dummyAngMom;
1184 +    RealType sysconstants;
1185 +    RealType geomCnst;
1186 +
1187 +    geomCnst = 3.0/2.0;
1188 +    /* Get the inertial tensor and angular momentum for free*/
1189 +    getInertiaTensor(intTensor,dummyAngMom);
1190 +    
1191 +    det = intTensor.determinant();
1192 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1193 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1194 +    return;
1195 +  }
1196 +
1197 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1198 +    Mat3x3d intTensor;
1199 +    Vector3d dummyAngMom;
1200 +    RealType sysconstants;
1201 +    RealType geomCnst;
1202 +
1203 +    geomCnst = 3.0/2.0;
1204 +    /* Get the inertial tensor and angular momentum for free*/
1205 +    getInertiaTensor(intTensor,dummyAngMom);
1206 +    
1207 +    detI = intTensor.determinant();
1208 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1209 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1210 +    return;
1211 +  }
1212   /*
1213 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1213 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1214        assert( v.size() == nAtoms_ + nRigidBodies_);
1215        sdByGlobalIndex_ = v;
1216      }
# Line 1454 | Line 1220 | namespace oopse {
1220        return sdByGlobalIndex_.at(index);
1221      }  
1222   */  
1223 < }//end namespace oopse
1223 >  int SimInfo::getNGlobalConstraints() {
1224 >    int nGlobalConstraints;
1225 > #ifdef IS_MPI
1226 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1227 >                  MPI_COMM_WORLD);    
1228 > #else
1229 >    nGlobalConstraints =  nConstraints_;
1230 > #endif
1231 >    return nGlobalConstraints;
1232 >  }
1233  
1234 + }//end namespace OpenMD
1235 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1078 by gezelter, Wed Oct 18 21:58:48 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1601 by gezelter, Thu Aug 4 20:04:35 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines