59 |
|
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
|
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
|
#include "UseTheForce/doForces_interface.h" |
62 |
+ |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
|
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
|
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 |
|
#include "utils/MemoryUtils.hpp" |
68 |
|
#include "io/ForceFieldOptions.hpp" |
69 |
|
#include "UseTheForce/ForceField.hpp" |
70 |
|
|
71 |
+ |
|
72 |
|
#ifdef IS_MPI |
73 |
|
#include "UseTheForce/mpiComponentPlan.h" |
74 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
92 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
94 |
|
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
95 |
< |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) { |
95 |
> |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false), |
96 |
> |
useAtomicVirial_(true) { |
97 |
|
|
98 |
|
MoleculeStamp* molStamp; |
99 |
|
int nMolWithSameStamp; |
667 |
|
int useSF; |
668 |
|
int useSP; |
669 |
|
int useBoxDipole; |
670 |
+ |
|
671 |
|
std::string myMethod; |
672 |
|
|
673 |
|
// set the useRF logical |
692 |
|
if (simParams_->getAccumulateBoxDipole()) |
693 |
|
useBoxDipole = 1; |
694 |
|
|
695 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
696 |
+ |
|
697 |
|
//loop over all of the atom types |
698 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
699 |
|
useLennardJones |= (*i)->isLennardJones(); |
771 |
|
temp = useBoxDipole; |
772 |
|
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
773 |
|
|
774 |
+ |
temp = useAtomicVirial_; |
775 |
+ |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
776 |
+ |
|
777 |
|
#endif |
778 |
|
|
779 |
|
fInfo_.SIM_uses_PBC = usePBC; |
793 |
|
fInfo_.SIM_uses_SF = useSF; |
794 |
|
fInfo_.SIM_uses_SP = useSP; |
795 |
|
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
796 |
+ |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
797 |
|
} |
798 |
|
|
799 |
|
void SimInfo::setupFortranSim() { |
878 |
|
"succesfully sent the simulation information to fortran.\n"); |
879 |
|
MPIcheckPoint(); |
880 |
|
#endif // is_mpi |
881 |
+ |
|
882 |
+ |
// Setup number of neighbors in neighbor list if present |
883 |
+ |
if (simParams_->haveNeighborListNeighbors()) { |
884 |
+ |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
885 |
+ |
setNeighbors(&nlistNeighbors); |
886 |
+ |
} |
887 |
+ |
|
888 |
+ |
|
889 |
|
} |
890 |
|
|
891 |
|
|
954 |
|
|
955 |
|
// Check the cutoff policy |
956 |
|
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
957 |
+ |
|
958 |
+ |
// Set LJ shifting bools to false |
959 |
+ |
ljsp_ = false; |
960 |
+ |
ljsf_ = false; |
961 |
|
|
962 |
|
std::string myPolicy; |
963 |
|
if (forceFieldOptions_.haveCutoffPolicy()){ |
1022 |
|
simError(); |
1023 |
|
} |
1024 |
|
} |
1025 |
+ |
|
1026 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
1027 |
+ |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1028 |
+ |
toUpper(myMethod); |
1029 |
+ |
|
1030 |
+ |
if (myMethod == "SHIFTED_POTENTIAL") { |
1031 |
+ |
ljsp_ = true; |
1032 |
+ |
} else if (myMethod == "SHIFTED_FORCE") { |
1033 |
+ |
ljsf_ = true; |
1034 |
+ |
} |
1035 |
+ |
} |
1036 |
+ |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1037 |
|
|
1004 |
– |
notifyFortranCutoffs(&rcut_, &rsw_); |
1005 |
– |
|
1038 |
|
} else { |
1039 |
|
|
1040 |
|
// For electrostatic atoms, we'll assume a large safe value: |
1050 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
1051 |
|
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1052 |
|
toUpper(myMethod); |
1053 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1053 |
> |
|
1054 |
> |
// For the time being, we're tethering the LJ shifted behavior to the |
1055 |
> |
// electrostaticSummationMethod keyword options |
1056 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1057 |
> |
ljsp_ = true; |
1058 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1059 |
> |
ljsf_ = true; |
1060 |
> |
} |
1061 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1062 |
|
if (simParams_->haveSwitchingRadius()){ |
1063 |
|
sprintf(painCave.errMsg, |
1064 |
|
"SimInfo Warning: A value was set for the switchingRadius\n" |
1081 |
|
simError(); |
1082 |
|
rsw_ = 0.85 * rcut_; |
1083 |
|
} |
1084 |
< |
notifyFortranCutoffs(&rcut_, &rsw_); |
1084 |
> |
|
1085 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1086 |
> |
|
1087 |
|
} else { |
1088 |
|
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1089 |
|
// We'll punt and let fortran figure out the cutoffs later. |
1168 |
|
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1169 |
|
painCave.isFatal = 0; |
1170 |
|
simError(); |
1171 |
+ |
} else { |
1172 |
+ |
alphaVal = simParams_->getDampingAlpha(); |
1173 |
|
} |
1174 |
+ |
|
1175 |
|
} else { |
1176 |
|
// throw error |
1177 |
|
sprintf( painCave.errMsg, |
1487 |
|
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1488 |
|
IOIndexToIntegrableObject= v; |
1489 |
|
} |
1490 |
+ |
|
1491 |
+ |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1492 |
+ |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1493 |
+ |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1494 |
+ |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1495 |
+ |
*/ |
1496 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1497 |
+ |
Mat3x3d intTensor; |
1498 |
+ |
RealType det; |
1499 |
+ |
Vector3d dummyAngMom; |
1500 |
+ |
RealType sysconstants; |
1501 |
+ |
RealType geomCnst; |
1502 |
|
|
1503 |
+ |
geomCnst = 3.0/2.0; |
1504 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1505 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1506 |
+ |
|
1507 |
+ |
det = intTensor.determinant(); |
1508 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1509 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1510 |
+ |
return; |
1511 |
+ |
} |
1512 |
+ |
|
1513 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1514 |
+ |
Mat3x3d intTensor; |
1515 |
+ |
Vector3d dummyAngMom; |
1516 |
+ |
RealType sysconstants; |
1517 |
+ |
RealType geomCnst; |
1518 |
+ |
|
1519 |
+ |
geomCnst = 3.0/2.0; |
1520 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1521 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1522 |
+ |
|
1523 |
+ |
detI = intTensor.determinant(); |
1524 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1525 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1526 |
+ |
return; |
1527 |
+ |
} |
1528 |
|
/* |
1529 |
|
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1530 |
|
assert( v.size() == nAtoms_ + nRigidBodies_); |