ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 1045 by chrisfen, Thu Sep 21 18:25:17 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 < #include "UseTheForce/fCutoffPolicy.h"
58 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 #include "UseTheForce/DarkSide/switcheroo_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62   #include "io/ForceFieldOptions.hpp"
63   #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 <    std::map<int, std::set<int> >::iterator i = container.find(index);
78 <    std::set<int> result;
79 <    if (i != container.end()) {
80 <        result = i->second;
81 <    }
82 <
83 <    return result;
84 <  }
71 > using namespace std;
72 > namespace OpenMD {
73    
74    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75      forceField_(ff), simParams_(simParams),
76      ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
82 <
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
90 <      std::vector<Component*> components = simParams->getComponents();
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97        
98 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 <        molStamp = (*i)->getMoleculeStamp();
100 <        nMolWithSameStamp = (*i)->getNMol();
101 <        
102 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
103 <
104 <        //calculate atoms in molecules
105 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 <
107 <        //calculate atoms in cutoff groups
108 <        int nAtomsInGroups = 0;
109 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116 <        
117 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <          cgStamp = molStamp->getCutoffGroupStamp(j);
119 <          nAtomsInGroups += cgStamp->getNMembers();
120 <        }
121 <
122 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
123 <
124 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
125 <
126 <        //calculate atoms in rigid bodies
127 <        int nAtomsInRigidBodies = 0;
128 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129 <        
130 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBodyStamp(j);
132 <          nAtomsInRigidBodies += rbStamp->getNMembers();
133 <        }
134 <
135 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
136 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
137 <        
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110        }
111 <
112 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
113 <      //group therefore the total number of cutoff groups in the system is
114 <      //equal to the total number of atoms minus number of atoms belong to
115 <      //cutoff group defined in meta-data file plus the number of cutoff
116 <      //groups defined in meta-data file
117 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
118 <
119 <      //every free atom (atom does not belong to rigid bodies) is an
120 <      //integrable object therefore the total number of integrable objects
121 <      //in the system is equal to the total number of atoms minus number of
122 <      //atoms belong to rigid body defined in meta-data file plus the number
123 <      //of rigid bodies defined in meta-data file
124 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
125 <                                                + nGlobalRigidBodies_;
126 <  
127 <      nGlobalMols_ = molStampIds_.size();
156 <
157 < #ifdef IS_MPI    
158 <      molToProcMap_.resize(nGlobalMols_);
159 < #endif
160 <
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 +    
130 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 +    //group therefore the total number of cutoff groups in the system is
132 +    //equal to the total number of atoms minus number of atoms belong to
133 +    //cutoff group defined in meta-data file plus the number of cutoff
134 +    //groups defined in meta-data file
135 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 +    std::cerr << "nG = " << nGroups << "\n";
138  
139 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 +
141 +    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 +    
143 +    //every free atom (atom does not belong to rigid bodies) is an
144 +    //integrable object therefore the total number of integrable objects
145 +    //in the system is equal to the total number of atoms minus number of
146 +    //atoms belong to rigid body defined in meta-data file plus the number
147 +    //of rigid bodies defined in meta-data file
148 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 +      + nGlobalRigidBodies_;
150 +    
151 +    nGlobalMols_ = molStampIds_.size();
152 +    molToProcMap_.resize(nGlobalMols_);
153 +  }
154 +  
155    SimInfo::~SimInfo() {
156 <    std::map<int, Molecule*>::iterator i;
156 >    map<int, Molecule*>::iterator i;
157      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158        delete i->second;
159      }
# Line 172 | Line 164 | namespace oopse {
164      delete forceField_;
165    }
166  
175  int SimInfo::getNGlobalConstraints() {
176    int nGlobalConstraints;
177 #ifdef IS_MPI
178    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
179                  MPI_COMM_WORLD);    
180 #else
181    nGlobalConstraints =  nConstraints_;
182 #endif
183    return nGlobalConstraints;
184  }
167  
168    bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176        nAtoms_ += mol->getNAtoms();
177        nBonds_ += mol->getNBonds();
178        nBends_ += mol->getNBends();
179        nTorsions_ += mol->getNTorsions();
180 +      nInversions_ += mol->getNInversions();
181        nRigidBodies_ += mol->getNRigidBodies();
182        nIntegrableObjects_ += mol->getNIntegrableObjects();
183        nCutoffGroups_ += mol->getNCutoffGroups();
184        nConstraints_ += mol->getNConstraintPairs();
185 <
186 <      addExcludePairs(mol);
187 <        
185 >      
186 >      addInteractionPairs(mol);
187 >      
188        return true;
189      } else {
190        return false;
191      }
192    }
193 <
193 >  
194    bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
# Line 220 | Line 203 | namespace oopse {
203        nBonds_ -= mol->getNBonds();
204        nBends_ -= mol->getNBends();
205        nTorsions_ -= mol->getNTorsions();
206 +      nInversions_ -= mol->getNInversions();
207        nRigidBodies_ -= mol->getNRigidBodies();
208        nIntegrableObjects_ -= mol->getNIntegrableObjects();
209        nCutoffGroups_ -= mol->getNCutoffGroups();
210        nConstraints_ -= mol->getNConstraintPairs();
211  
212 <      removeExcludePairs(mol);
212 >      removeInteractionPairs(mol);
213        molecules_.erase(mol->getGlobalIndex());
214  
215        delete mol;
# Line 234 | Line 218 | namespace oopse {
218      } else {
219        return false;
220      }
237
238
221    }    
222  
223          
# Line 253 | Line 235 | namespace oopse {
235    void SimInfo::calcNdf() {
236      int ndf_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239      Molecule* mol;
240      StuntDouble* integrableObject;
241  
# Line 304 | Line 286 | namespace oopse {
286      int ndfRaw_local;
287  
288      MoleculeIterator i;
289 <    std::vector<StuntDouble*>::iterator j;
289 >    vector<StuntDouble*>::iterator j;
290      Molecule* mol;
291      StuntDouble* integrableObject;
292  
# Line 351 | Line 333 | namespace oopse {
333  
334    }
335  
336 <  void SimInfo::addExcludePairs(Molecule* mol) {
337 <    std::vector<Bond*>::iterator bondIter;
338 <    std::vector<Bend*>::iterator bendIter;
339 <    std::vector<Torsion*>::iterator torsionIter;
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342      Bond* bond;
343      Bend* bend;
344      Torsion* torsion;
345 +    Inversion* inversion;
346      int a;
347      int b;
348      int c;
349      int d;
350  
351 <    std::map<int, std::set<int> > atomGroups;
351 >    // atomGroups can be used to add special interaction maps between
352 >    // groups of atoms that are in two separate rigid bodies.
353 >    // However, most site-site interactions between two rigid bodies
354 >    // are probably not special, just the ones between the physically
355 >    // bonded atoms.  Interactions *within* a single rigid body should
356 >    // always be excluded.  These are done at the bottom of this
357 >    // function.
358  
359 +    map<int, set<int> > atomGroups;
360      Molecule::RigidBodyIterator rbIter;
361      RigidBody* rb;
362      Molecule::IntegrableObjectIterator ii;
363      StuntDouble* integrableObject;
364      
365 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
366 <           integrableObject = mol->nextIntegrableObject(ii)) {
367 <
365 >    for (integrableObject = mol->beginIntegrableObject(ii);
366 >         integrableObject != NULL;
367 >         integrableObject = mol->nextIntegrableObject(ii)) {
368 >      
369        if (integrableObject->isRigidBody()) {
370 <          rb = static_cast<RigidBody*>(integrableObject);
371 <          std::vector<Atom*> atoms = rb->getAtoms();
372 <          std::set<int> rigidAtoms;
373 <          for (int i = 0; i < atoms.size(); ++i) {
374 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 <          }
376 <          for (int i = 0; i < atoms.size(); ++i) {
377 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 <          }      
370 >        rb = static_cast<RigidBody*>(integrableObject);
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >        }
376 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >        }      
379        } else {
380 <        std::set<int> oneAtomSet;
380 >        set<int> oneAtomSet;
381          oneAtomSet.insert(integrableObject->getGlobalIndex());
382 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383        }
384      }  
385 +          
386 +    for (bond= mol->beginBond(bondIter); bond != NULL;
387 +         bond = mol->nextBond(bondIter)) {
388  
393    
394    
395    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
389        a = bond->getAtomA()->getGlobalIndex();
390 <      b = bond->getAtomB()->getGlobalIndex();        
391 <      exclude_.addPair(a, b);
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397      }
398  
399 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401 >
402        a = bend->getAtomA()->getGlobalIndex();
403        b = bend->getAtomB()->getGlobalIndex();        
404        c = bend->getAtomC()->getGlobalIndex();
405      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408
409      exclude_.addPairs(rigidSetA, rigidSetB);
410      exclude_.addPairs(rigidSetA, rigidSetC);
411      exclude_.addPairs(rigidSetB, rigidSetC);
405        
406 <      //exclude_.addPair(a, b);
407 <      //exclude_.addPair(a, c);
408 <      //exclude_.addPair(b, c);        
406 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 >        oneTwoInteractions_.addPair(a, b);      
408 >        oneTwoInteractions_.addPair(b, c);
409 >      } else {
410 >        excludedInteractions_.addPair(a, b);
411 >        excludedInteractions_.addPair(b, c);
412 >      }
413 >
414 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 >        oneThreeInteractions_.addPair(a, c);      
416 >      } else {
417 >        excludedInteractions_.addPair(a, c);
418 >      }
419      }
420  
421 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423 >
424        a = torsion->getAtomA()->getGlobalIndex();
425        b = torsion->getAtomB()->getGlobalIndex();        
426        c = torsion->getAtomC()->getGlobalIndex();        
427 <      d = torsion->getAtomD()->getGlobalIndex();        
423 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428  
429 <      exclude_.addPairs(rigidSetA, rigidSetB);
430 <      exclude_.addPairs(rigidSetA, rigidSetC);
431 <      exclude_.addPairs(rigidSetA, rigidSetD);
432 <      exclude_.addPairs(rigidSetB, rigidSetC);
433 <      exclude_.addPairs(rigidSetB, rigidSetD);
434 <      exclude_.addPairs(rigidSetC, rigidSetD);
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438  
439 <      /*
440 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
441 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
442 <      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
443 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
444 <      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
445 <      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
446 <        
447 <      
448 <      exclude_.addPair(a, b);
449 <      exclude_.addPair(a, c);
450 <      exclude_.addPair(a, d);
451 <      exclude_.addPair(b, c);
448 <      exclude_.addPair(b, d);
449 <      exclude_.addPair(c, d);        
450 <      */
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446 >
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452      }
453  
454 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
455 <      std::vector<Atom*> atoms = rb->getAtoms();
456 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
457 <        for (int j = i + 1; j < atoms.size(); ++j) {
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456 >
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461 >
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471 >
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482 >
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488            a = atoms[i]->getGlobalIndex();
489            b = atoms[j]->getGlobalIndex();
490 <          exclude_.addPair(a, b);
490 >          excludedInteractions_.addPair(a, b);
491          }
492        }
493      }        
494  
495    }
496  
497 <  void SimInfo::removeExcludePairs(Molecule* mol) {
498 <    std::vector<Bond*>::iterator bondIter;
499 <    std::vector<Bend*>::iterator bendIter;
500 <    std::vector<Torsion*>::iterator torsionIter;
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503      Bond* bond;
504      Bend* bend;
505      Torsion* torsion;
506 +    Inversion* inversion;
507      int a;
508      int b;
509      int c;
510      int d;
511  
512 <    std::map<int, std::set<int> > atomGroups;
479 <
512 >    map<int, set<int> > atomGroups;
513      Molecule::RigidBodyIterator rbIter;
514      RigidBody* rb;
515      Molecule::IntegrableObjectIterator ii;
516      StuntDouble* integrableObject;
517      
518 <    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
519 <           integrableObject = mol->nextIntegrableObject(ii)) {
520 <
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522        if (integrableObject->isRigidBody()) {
523 <          rb = static_cast<RigidBody*>(integrableObject);
524 <          std::vector<Atom*> atoms = rb->getAtoms();
525 <          std::set<int> rigidAtoms;
526 <          for (int i = 0; i < atoms.size(); ++i) {
527 <            rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 <          }
529 <          for (int i = 0; i < atoms.size(); ++i) {
530 <            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 <          }      
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532        } else {
533 <        std::set<int> oneAtomSet;
533 >        set<int> oneAtomSet;
534          oneAtomSet.insert(integrableObject->getGlobalIndex());
535 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536        }
537      }  
538  
539 <    
540 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542        a = bond->getAtomA()->getGlobalIndex();
543 <      b = bond->getAtomB()->getGlobalIndex();        
544 <      exclude_.removePair(a, b);
543 >      b = bond->getAtomB()->getGlobalIndex();  
544 >    
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550      }
551  
552 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
552 >    for (bend= mol->beginBend(bendIter); bend != NULL;
553 >         bend = mol->nextBend(bendIter)) {
554 >
555        a = bend->getAtomA()->getGlobalIndex();
556        b = bend->getAtomB()->getGlobalIndex();        
557        c = bend->getAtomC()->getGlobalIndex();
516
517      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520
521      exclude_.removePairs(rigidSetA, rigidSetB);
522      exclude_.removePairs(rigidSetA, rigidSetC);
523      exclude_.removePairs(rigidSetB, rigidSetC);
558        
559 <      //exclude_.removePair(a, b);
560 <      //exclude_.removePair(a, c);
561 <      //exclude_.removePair(b, c);        
559 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 >        oneTwoInteractions_.removePair(a, b);      
561 >        oneTwoInteractions_.removePair(b, c);
562 >      } else {
563 >        excludedInteractions_.removePair(a, b);
564 >        excludedInteractions_.removePair(b, c);
565 >      }
566 >
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
573  
574 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576 >
577        a = torsion->getAtomA()->getGlobalIndex();
578        b = torsion->getAtomB()->getGlobalIndex();        
579        c = torsion->getAtomC()->getGlobalIndex();        
580 <      d = torsion->getAtomD()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591  
592 <      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
593 <      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
594 <      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
595 <      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599  
600 <      exclude_.removePairs(rigidSetA, rigidSetB);
601 <      exclude_.removePairs(rigidSetA, rigidSetC);
602 <      exclude_.removePairs(rigidSetA, rigidSetD);
603 <      exclude_.removePairs(rigidSetB, rigidSetC);
604 <      exclude_.removePairs(rigidSetB, rigidSetD);
605 <      exclude_.removePairs(rigidSetC, rigidSetD);
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605 >    }
606  
607 <      /*
608 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 <      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 <      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 <      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609  
610 <      
611 <      exclude_.removePair(a, b);
612 <      exclude_.removePair(a, c);
613 <      exclude_.removePair(a, d);
614 <      exclude_.removePair(b, c);
615 <      exclude_.removePair(b, d);
616 <      exclude_.removePair(c, d);        
617 <      */
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614 >
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624 >
625 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 >        oneThreeInteractions_.removePair(b, c);    
627 >        oneThreeInteractions_.removePair(b, d);    
628 >        oneThreeInteractions_.removePair(c, d);      
629 >      } else {
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(b, d);
632 >        excludedInteractions_.removePair(c, d);
633 >      }
634      }
635  
636 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
637 <      std::vector<Atom*> atoms = rb->getAtoms();
638 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
639 <        for (int j = i + 1; j < atoms.size(); ++j) {
636 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 >         rb = mol->nextRigidBody(rbIter)) {
638 >      vector<Atom*> atoms = rb->getAtoms();
639 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641            a = atoms[i]->getGlobalIndex();
642            b = atoms[j]->getGlobalIndex();
643 <          exclude_.removePair(a, b);
643 >          excludedInteractions_.removePair(a, b);
644          }
645        }
646      }        
647 <
647 >    
648    }
649 <
650 <
649 >  
650 >  
651    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652      int curStampId;
653 <
653 >    
654      //index from 0
655      curStampId = moleculeStamps_.size();
656  
# Line 587 | Line 658 | namespace oopse {
658      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659    }
660  
590  void SimInfo::update() {
661  
662 <    setupSimType();
663 <
664 < #ifdef IS_MPI
665 <    setupFortranParallel();
666 < #endif
667 <
668 <    setupFortranSim();
669 <
670 <    //setup fortran force field
601 <    /** @deprecate */    
602 <    int isError = 0;
603 <    
604 <    setupCutoff();
605 <    
606 <    setupElectrostaticSummationMethod( isError );
607 <    setupSwitchingFunction();
608 <    setupAccumulateBoxDipole();
609 <
610 <    if(isError){
611 <      sprintf( painCave.errMsg,
612 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
613 <      painCave.isFatal = 1;
614 <      simError();
615 <    }
616 <
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671      calcNdf();
672      calcNdfRaw();
673      calcNdfTrans();
620
621    fortranInitialized_ = true;
674    }
675 <
676 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
689 <
690 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
632 <
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692          atomTypes.insert(atom->getAtomType());
693 <      }
694 <        
637 <    }
693 >      }      
694 >    }    
695  
696 <    return atomTypes;        
697 <  }
696 > #ifdef IS_MPI
697 >
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <  void SimInfo::setupSimType() {
702 <    std::set<AtomType*>::iterator i;
703 <    std::set<AtomType*> atomTypes;
704 <    atomTypes = getUniqueAtomTypes();
646 <    
647 <    int useLennardJones = 0;
648 <    int useElectrostatic = 0;
649 <    int useEAM = 0;
650 <    int useSC = 0;
651 <    int useCharge = 0;
652 <    int useDirectional = 0;
653 <    int useDipole = 0;
654 <    int useGayBerne = 0;
655 <    int useSticky = 0;
656 <    int useStickyPower = 0;
657 <    int useShape = 0;
658 <    int useFLARB = 0; //it is not in AtomType yet
659 <    int useDirectionalAtom = 0;    
660 <    int useElectrostatics = 0;
661 <    //usePBC and useRF are from simParams
662 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663 <    int useRF;
664 <    int useSF;
665 <    int useSP;
666 <    int useBoxDipole;
667 <    std::string myMethod;
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 <    // set the useRF logical
707 <    useRF = 0;
671 <    useSF = 0;
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 +    // count holds the total number of found types on all processors
710 +    // (some will be redundant with the ones found locally):
711 +    int count;
712 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713  
714 <    if (simParams_->haveElectrostaticSummationMethod()) {
715 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
716 <      toUpper(myMethod);
717 <      if (myMethod == "REACTION_FIELD"){
718 <        useRF=1;
719 <      } else if (myMethod == "SHIFTED_FORCE"){
720 <        useSF = 1;
721 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
722 <        useSP = 1;
723 <      }
724 <    }
714 >    // create a vector to hold the globally found types, and resize it:
715 >    vector<int> ftGlobal;
716 >    ftGlobal.resize(count);
717 >    vector<int> counts;
718 >
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723 >
724 >    // now spray out the foundTypes to all the other processors:
725      
726 <    if (simParams_->haveAccumulateBoxDipole())
727 <      if (simParams_->getAccumulateBoxDipole())
688 <        useBoxDipole = 1;
726 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728  
729 +    // foundIdents is a stl set, so inserting an already found ident
730 +    // will have no effect.
731 +    set<int> foundIdents;
732 +    vector<int>::iterator j;
733 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 +      foundIdents.insert((*j));
735 +    
736 +    // now iterate over the foundIdents and get the actual atom types
737 +    // that correspond to these:
738 +    set<int>::iterator it;
739 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 +      atomTypes.insert( forceField_->getAtomType((*it)) );
741 +
742 + #endif
743 +    
744 +    return atomTypes;        
745 +  }
746 +
747 +  void SimInfo::setupSimVariables() {
748 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 +    calcBoxDipole_ = false;
751 +    if ( simParams_->haveAccumulateBoxDipole() )
752 +      if ( simParams_->getAccumulateBoxDipole() ) {
753 +        calcBoxDipole_ = true;      
754 +      }
755 +
756 +    set<AtomType*>::iterator i;
757 +    set<AtomType*> atomTypes;
758 +    atomTypes = getSimulatedAtomTypes();    
759 +    int usesElectrostatic = 0;
760 +    int usesMetallic = 0;
761 +    int usesDirectional = 0;
762      //loop over all of the atom types
763      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 <      useLennardJones |= (*i)->isLennardJones();
765 <      useElectrostatic |= (*i)->isElectrostatic();
766 <      useEAM |= (*i)->isEAM();
695 <      useSC |= (*i)->isSC();
696 <      useCharge |= (*i)->isCharge();
697 <      useDirectional |= (*i)->isDirectional();
698 <      useDipole |= (*i)->isDipole();
699 <      useGayBerne |= (*i)->isGayBerne();
700 <      useSticky |= (*i)->isSticky();
701 <      useStickyPower |= (*i)->isStickyPower();
702 <      useShape |= (*i)->isShape();
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767      }
768  
705    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
706      useDirectionalAtom = 1;
707    }
708
709    if (useCharge || useDipole) {
710      useElectrostatics = 1;
711    }
712
769   #ifdef IS_MPI    
770      int temp;
771 <
772 <    temp = usePBC;
717 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
718 <
719 <    temp = useDirectionalAtom;
720 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 <
722 <    temp = useLennardJones;
723 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 <
725 <    temp = useElectrostatics;
726 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 <
728 <    temp = useCharge;
729 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 <
731 <    temp = useDipole;
732 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 <
734 <    temp = useSticky;
735 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 <
737 <    temp = useStickyPower;
738 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 <    
740 <    temp = useGayBerne;
741 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 <
743 <    temp = useEAM;
744 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 <
746 <    temp = useSC;
747 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 <    
749 <    temp = useShape;
750 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
771 >    temp = usesDirectional;
772 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 <    temp = useFLARB;
775 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776  
777 <    temp = useRF;
778 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 <
758 <    temp = useSF;
759 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760 <
761 <    temp = useSP;
762 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 <
764 <    temp = useBoxDipole;
765 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 <
777 >    temp = usesElectrostatic;
778 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779   #endif
780 <
781 <    fInfo_.SIM_uses_PBC = usePBC;    
782 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
783 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
784 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
785 <    fInfo_.SIM_uses_Charges = useCharge;
774 <    fInfo_.SIM_uses_Dipoles = useDipole;
775 <    fInfo_.SIM_uses_Sticky = useSticky;
776 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
777 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
778 <    fInfo_.SIM_uses_EAM = useEAM;
779 <    fInfo_.SIM_uses_SC = useSC;
780 <    fInfo_.SIM_uses_Shapes = useShape;
781 <    fInfo_.SIM_uses_FLARB = useFLARB;
782 <    fInfo_.SIM_uses_RF = useRF;
783 <    fInfo_.SIM_uses_SF = useSF;
784 <    fInfo_.SIM_uses_SP = useSP;
785 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786 <
787 <    if( myMethod == "REACTION_FIELD") {
788 <      
789 <      if (simParams_->haveDielectric()) {
790 <        fInfo_.dielect = simParams_->getDielectric();
791 <      } else {
792 <        sprintf(painCave.errMsg,
793 <                "SimSetup Error: No Dielectric constant was set.\n"
794 <                "\tYou are trying to use Reaction Field without"
795 <                "\tsetting a dielectric constant!\n");
796 <        painCave.isFatal = 1;
797 <        simError();
798 <      }      
799 <    }
800 <
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786    }
787  
788 <  void SimInfo::setupFortranSim() {
788 >  void SimInfo::setupFortran() {
789      int isError;
790 <    int nExclude;
791 <    std::vector<int> fortranGlobalGroupMembership;
790 >    int nExclude, nOneTwo, nOneThree, nOneFour;
791 >    vector<int> fortranGlobalGroupMembership;
792      
808    nExclude = exclude_.getSize();
793      isError = 0;
794  
795      //globalGroupMembership_ is filled by SimCreator    
# Line 814 | Line 798 | namespace oopse {
798      }
799  
800      //calculate mass ratio of cutoff group
801 <    std::vector<RealType> mfact;
801 >    vector<RealType> mfact;
802      SimInfo::MoleculeIterator mi;
803      Molecule* mol;
804      Molecule::CutoffGroupIterator ci;
# Line 837 | Line 821 | namespace oopse {
821            else
822              mfact.push_back( 1.0 );
823          }
840
824        }      
825      }
826  
827 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
845 <    std::vector<int> identArray;
827 >    // Build the identArray_
828  
829 <    //to avoid memory reallocation, reserve enough space identArray
830 <    identArray.reserve(getNAtoms());
849 <    
829 >    identArray_.clear();
830 >    identArray_.reserve(getNAtoms());    
831      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
833 <        identArray.push_back(atom->getIdent());
833 >        identArray_.push_back(atom->getIdent());
834        }
835      }    
836  
837      //fill molMembershipArray
838      //molMembershipArray is filled by SimCreator    
839 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
839 >    vector<int> molMembershipArray(nGlobalAtoms_);
840      for (int i = 0; i < nGlobalAtoms_; i++) {
841        molMembershipArray[i] = globalMolMembership_[i] + 1;
842      }
843      
844      //setup fortran simulation
864    int nGlobalExcludes = 0;
865    int* globalExcludes = NULL;
866    int* excludeList = exclude_.getExcludeList();
867    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
868                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
869                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
845  
846 <    if( isError ){
846 >    nExclude = excludedInteractions_.getSize();
847 >    nOneTwo = oneTwoInteractions_.getSize();
848 >    nOneThree = oneThreeInteractions_.getSize();
849 >    nOneFour = oneFourInteractions_.getSize();
850  
851 +    int* excludeList = excludedInteractions_.getPairList();
852 +    int* oneTwoList = oneTwoInteractions_.getPairList();
853 +    int* oneThreeList = oneThreeInteractions_.getPairList();
854 +    int* oneFourList = oneFourInteractions_.getPairList();
855 +
856 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
857 +                   &nExclude, excludeList,
858 +                   &nOneTwo, oneTwoList,
859 +                   &nOneThree, oneThreeList,
860 +                   &nOneFour, oneFourList,
861 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 +                   &fortranGlobalGroupMembership[0], &isError);
863 +    
864 +    if( isError ){
865 +      
866        sprintf( painCave.errMsg,
867                 "There was an error setting the simulation information in fortran.\n" );
868        painCave.isFatal = 1;
869 <      painCave.severity = OOPSE_ERROR;
869 >      painCave.severity = OPENMD_ERROR;
870        simError();
871      }
872 <
873 < #ifdef IS_MPI
872 >    
873 >    
874      sprintf( checkPointMsg,
875               "succesfully sent the simulation information to fortran.\n");
883    MPIcheckPoint();
884 #endif // is_mpi
885  }
886
887
888 #ifdef IS_MPI
889  void SimInfo::setupFortranParallel() {
876      
877 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
878 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
879 <    std::vector<int> localToGlobalCutoffGroupIndex;
880 <    SimInfo::MoleculeIterator mi;
881 <    Molecule::AtomIterator ai;
882 <    Molecule::CutoffGroupIterator ci;
883 <    Molecule* mol;
884 <    Atom* atom;
885 <    CutoffGroup* cg;
877 >    errorCheckPoint();
878 >    
879 >    // Setup number of neighbors in neighbor list if present
880 >    if (simParams_->haveNeighborListNeighbors()) {
881 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 >      setNeighbors(&nlistNeighbors);
883 >    }
884 >  
885 > #ifdef IS_MPI    
886 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
887 >    //localToGlobalGroupIndex
888 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 >    vector<int> localToGlobalCutoffGroupIndex;
890      mpiSimData parallelData;
901    int isError;
891  
892      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893  
# Line 937 | Line 926 | namespace oopse {
926      }
927  
928      sprintf(checkPointMsg, " mpiRefresh successful.\n");
929 <    MPIcheckPoint();
941 <
942 <
943 <  }
944 <
929 >    errorCheckPoint();
930   #endif
931  
932 <  void SimInfo::setupCutoff() {          
933 <    
934 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935 <
936 <    // Check the cutoff policy
937 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
953 <
954 <    std::string myPolicy;
955 <    if (forceFieldOptions_.haveCutoffPolicy()){
956 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
957 <    }else if (simParams_->haveCutoffPolicy()) {
958 <      myPolicy = simParams_->getCutoffPolicy();
959 <    }
960 <
961 <    if (!myPolicy.empty()){
962 <      toUpper(myPolicy);
963 <      if (myPolicy == "MIX") {
964 <        cp = MIX_CUTOFF_POLICY;
965 <      } else {
966 <        if (myPolicy == "MAX") {
967 <          cp = MAX_CUTOFF_POLICY;
968 <        } else {
969 <          if (myPolicy == "TRADITIONAL") {            
970 <            cp = TRADITIONAL_CUTOFF_POLICY;
971 <          } else {
972 <            // throw error        
973 <            sprintf( painCave.errMsg,
974 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
975 <            painCave.isFatal = 1;
976 <            simError();
977 <          }    
978 <        }          
979 <      }
980 <    }          
981 <    notifyFortranCutoffPolicy(&cp);
982 <
983 <    // Check the Skin Thickness for neighborlists
984 <    RealType skin;
985 <    if (simParams_->haveSkinThickness()) {
986 <      skin = simParams_->getSkinThickness();
987 <      notifyFortranSkinThickness(&skin);
988 <    }            
989 <        
990 <    // Check if the cutoff was set explicitly:
991 <    if (simParams_->haveCutoffRadius()) {
992 <      rcut_ = simParams_->getCutoffRadius();
993 <      if (simParams_->haveSwitchingRadius()) {
994 <        rsw_  = simParams_->getSwitchingRadius();
995 <      } else {
996 <        if (fInfo_.SIM_uses_Charges |
997 <            fInfo_.SIM_uses_Dipoles |
998 <            fInfo_.SIM_uses_RF) {
999 <          
1000 <          rsw_ = 0.85 * rcut_;
1001 <          sprintf(painCave.errMsg,
1002 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1003 <                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1004 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1005 <        painCave.isFatal = 0;
1006 <        simError();
1007 <        } else {
1008 <          rsw_ = rcut_;
1009 <          sprintf(painCave.errMsg,
1010 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1011 <                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1012 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1013 <          painCave.isFatal = 0;
1014 <          simError();
1015 <        }
1016 <      }
1017 <      
1018 <      notifyFortranCutoffs(&rcut_, &rsw_);
1019 <      
1020 <    } else {
1021 <      
1022 <      // For electrostatic atoms, we'll assume a large safe value:
1023 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1024 <        sprintf(painCave.errMsg,
1025 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1026 <                "\tOOPSE will use a default value of 15.0 angstroms"
1027 <                "\tfor the cutoffRadius.\n");
1028 <        painCave.isFatal = 0;
1029 <        simError();
1030 <        rcut_ = 15.0;
1031 <      
1032 <        if (simParams_->haveElectrostaticSummationMethod()) {
1033 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1034 <          toUpper(myMethod);
1035 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1036 <            if (simParams_->haveSwitchingRadius()){
1037 <              sprintf(painCave.errMsg,
1038 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1039 <                      "\teven though the electrostaticSummationMethod was\n"
1040 <                      "\tset to %s\n", myMethod.c_str());
1041 <              painCave.isFatal = 1;
1042 <              simError();            
1043 <            }
1044 <          }
1045 <        }
1046 <      
1047 <        if (simParams_->haveSwitchingRadius()){
1048 <          rsw_ = simParams_->getSwitchingRadius();
1049 <        } else {        
1050 <          sprintf(painCave.errMsg,
1051 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1052 <                  "\tOOPSE will use a default value of\n"
1053 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1054 <          painCave.isFatal = 0;
1055 <          simError();
1056 <          rsw_ = 0.85 * rcut_;
1057 <        }
1058 <        notifyFortranCutoffs(&rcut_, &rsw_);
1059 <      } else {
1060 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1061 <        // We'll punt and let fortran figure out the cutoffs later.
1062 <        
1063 <        notifyFortranYouAreOnYourOwn();
1064 <
1065 <      }
1066 <    }
1067 <  }
1068 <
1069 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1070 <    
1071 <    int errorOut;
1072 <    int esm =  NONE;
1073 <    int sm = UNDAMPED;
1074 <    RealType alphaVal;
1075 <    RealType dielectric;
1076 <    
1077 <    errorOut = isError;
1078 <    dielectric = simParams_->getDielectric();
1079 <
1080 <    if (simParams_->haveElectrostaticSummationMethod()) {
1081 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1082 <      toUpper(myMethod);
1083 <      if (myMethod == "NONE") {
1084 <        esm = NONE;
1085 <      } else {
1086 <        if (myMethod == "SWITCHING_FUNCTION") {
1087 <          esm = SWITCHING_FUNCTION;
1088 <        } else {
1089 <          if (myMethod == "SHIFTED_POTENTIAL") {
1090 <            esm = SHIFTED_POTENTIAL;
1091 <          } else {
1092 <            if (myMethod == "SHIFTED_FORCE") {            
1093 <              esm = SHIFTED_FORCE;
1094 <            } else {
1095 <              if (myMethod == "REACTION_FIELD") {            
1096 <                esm = REACTION_FIELD;
1097 <              } else {
1098 <                // throw error        
1099 <                sprintf( painCave.errMsg,
1100 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1101 <                         "\t(Input file specified %s .)\n"
1102 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1103 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1104 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1105 <                painCave.isFatal = 1;
1106 <                simError();
1107 <              }    
1108 <            }          
1109 <          }
1110 <        }
1111 <      }
932 >    initFortranFF(&isError);
933 >    if (isError) {
934 >      sprintf(painCave.errMsg,
935 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
936 >      painCave.isFatal = 1;
937 >      simError();
938      }
939 <    
1114 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1115 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1116 <      toUpper(myScreen);
1117 <      if (myScreen == "UNDAMPED") {
1118 <        sm = UNDAMPED;
1119 <      } else {
1120 <        if (myScreen == "DAMPED") {
1121 <          sm = DAMPED;
1122 <          if (!simParams_->haveDampingAlpha()) {
1123 <            // first set a cutoff dependent alpha value
1124 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1125 <            alphaVal = 0.5125 - rcut_* 0.025;
1126 <            // for values rcut > 20.5, alpha is zero
1127 <            if (alphaVal < 0) alphaVal = 0;
1128 <
1129 <            // throw warning
1130 <            sprintf( painCave.errMsg,
1131 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1132 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1133 <            painCave.isFatal = 0;
1134 <            simError();
1135 <          }
1136 <        } else {
1137 <          // throw error        
1138 <          sprintf( painCave.errMsg,
1139 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1140 <                   "\t(Input file specified %s .)\n"
1141 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1142 <                   "or \"damped\".\n", myScreen.c_str() );
1143 <          painCave.isFatal = 1;
1144 <          simError();
1145 <        }
1146 <      }
1147 <    }
1148 <    
1149 <    // let's pass some summation method variables to fortran
1150 <    setElectrostaticSummationMethod( &esm );
1151 <    setFortranElectrostaticMethod( &esm );
1152 <    setScreeningMethod( &sm );
1153 <    setDampingAlpha( &alphaVal );
1154 <    setReactionFieldDielectric( &dielectric );
1155 <    initFortranFF( &errorOut );
1156 <  }
1157 <
1158 <  void SimInfo::setupSwitchingFunction() {    
1159 <    int ft = CUBIC;
1160 <
1161 <    if (simParams_->haveSwitchingFunctionType()) {
1162 <      std::string funcType = simParams_->getSwitchingFunctionType();
1163 <      toUpper(funcType);
1164 <      if (funcType == "CUBIC") {
1165 <        ft = CUBIC;
1166 <      } else {
1167 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1168 <          ft = FIFTH_ORDER_POLY;
1169 <        } else {
1170 <          // throw error        
1171 <          sprintf( painCave.errMsg,
1172 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1173 <          painCave.isFatal = 1;
1174 <          simError();
1175 <        }          
1176 <      }
1177 <    }
1178 <
1179 <    // send switching function notification to switcheroo
1180 <    setFunctionType(&ft);
1181 <
1182 <  }
1183 <
1184 <  void SimInfo::setupAccumulateBoxDipole() {    
1185 <
1186 <    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1187 <    if ( simParams_->haveAccumulateBoxDipole() )
1188 <      if ( simParams_->getAccumulateBoxDipole() ) {
1189 <        setAccumulateBoxDipole();
1190 <        calcBoxDipole_ = true;
1191 <      }
1192 <
939 >    fortranInitialized_ = true;
940    }
941  
942    void SimInfo::addProperty(GenericData* genData) {
943      properties_.addProperty(genData);  
944    }
945  
946 <  void SimInfo::removeProperty(const std::string& propName) {
946 >  void SimInfo::removeProperty(const string& propName) {
947      properties_.removeProperty(propName);  
948    }
949  
# Line 1204 | Line 951 | namespace oopse {
951      properties_.clearProperties();
952    }
953  
954 <  std::vector<std::string> SimInfo::getPropertyNames() {
954 >  vector<string> SimInfo::getPropertyNames() {
955      return properties_.getPropertyNames();  
956    }
957        
958 <  std::vector<GenericData*> SimInfo::getProperties() {
958 >  vector<GenericData*> SimInfo::getProperties() {
959      return properties_.getProperties();
960    }
961  
962 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963      return properties_.getPropertyByName(propName);
964    }
965  
# Line 1226 | Line 973 | namespace oopse {
973      Molecule* mol;
974      RigidBody* rb;
975      Atom* atom;
976 +    CutoffGroup* cg;
977      SimInfo::MoleculeIterator mi;
978      Molecule::RigidBodyIterator rbIter;
979 <    Molecule::AtomIterator atomIter;;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981  
982      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983          
# Line 1239 | Line 988 | namespace oopse {
988        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989          rb->setSnapshotManager(sman_);
990        }
991 +
992 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
993 +        cg->setSnapshotManager(sman_);
994 +      }
995      }    
996      
997    }
# Line 1295 | Line 1048 | namespace oopse {
1048  
1049    }        
1050  
1051 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1051 >  ostream& operator <<(ostream& o, SimInfo& info) {
1052  
1053      return o;
1054    }
# Line 1338 | Line 1091 | namespace oopse {
1091  
1092  
1093         [  Ixx -Ixy  -Ixz ]
1094 <  J =| -Iyx  Iyy  -Iyz |
1094 >    J =| -Iyx  Iyy  -Iyz |
1095         [ -Izx -Iyz   Izz ]
1096      */
1097  
# Line 1445 | Line 1198 | namespace oopse {
1198      return IOIndexToIntegrableObject.at(index);
1199    }
1200    
1201 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1201 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1202      IOIndexToIntegrableObject= v;
1203 +  }
1204 +
1205 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1206 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1207 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1208 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1209 +  */
1210 +  void SimInfo::getGyrationalVolume(RealType &volume){
1211 +    Mat3x3d intTensor;
1212 +    RealType det;
1213 +    Vector3d dummyAngMom;
1214 +    RealType sysconstants;
1215 +    RealType geomCnst;
1216 +
1217 +    geomCnst = 3.0/2.0;
1218 +    /* Get the inertial tensor and angular momentum for free*/
1219 +    getInertiaTensor(intTensor,dummyAngMom);
1220 +    
1221 +    det = intTensor.determinant();
1222 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1223 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1224 +    return;
1225    }
1226  
1227 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1228 +    Mat3x3d intTensor;
1229 +    Vector3d dummyAngMom;
1230 +    RealType sysconstants;
1231 +    RealType geomCnst;
1232 +
1233 +    geomCnst = 3.0/2.0;
1234 +    /* Get the inertial tensor and angular momentum for free*/
1235 +    getInertiaTensor(intTensor,dummyAngMom);
1236 +    
1237 +    detI = intTensor.determinant();
1238 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1239 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1240 +    return;
1241 +  }
1242   /*
1243 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1243 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1244        assert( v.size() == nAtoms_ + nRigidBodies_);
1245        sdByGlobalIndex_ = v;
1246      }
# Line 1460 | Line 1250 | namespace oopse {
1250        return sdByGlobalIndex_.at(index);
1251      }  
1252   */  
1253 < }//end namespace oopse
1253 >  int SimInfo::getNGlobalConstraints() {
1254 >    int nGlobalConstraints;
1255 > #ifdef IS_MPI
1256 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1257 >                  MPI_COMM_WORLD);    
1258 > #else
1259 >    nGlobalConstraints =  nConstraints_;
1260 > #endif
1261 >    return nGlobalConstraints;
1262 >  }
1263  
1264 + }//end namespace OpenMD
1265 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 1045 by chrisfen, Thu Sep 21 18:25:17 2006 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1544 by gezelter, Fri Mar 18 19:31:52 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines