48 |
|
|
49 |
|
#include <algorithm> |
50 |
|
#include <set> |
51 |
+ |
#include <map> |
52 |
|
|
53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
+ |
#include "primitives/StuntDouble.hpp" |
57 |
+ |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
+ |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
|
#include "UseTheForce/doForces_interface.h" |
62 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
62 |
> |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
63 |
> |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
64 |
|
#include "utils/MemoryUtils.hpp" |
65 |
|
#include "utils/simError.h" |
66 |
|
#include "selection/SelectionManager.hpp" |
67 |
+ |
#include "io/ForceFieldOptions.hpp" |
68 |
+ |
#include "UseTheForce/ForceField.hpp" |
69 |
|
|
70 |
|
#ifdef IS_MPI |
71 |
|
#include "UseTheForce/mpiComponentPlan.h" |
73 |
|
#endif |
74 |
|
|
75 |
|
namespace oopse { |
76 |
+ |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
77 |
+ |
std::map<int, std::set<int> >::iterator i = container.find(index); |
78 |
+ |
std::set<int> result; |
79 |
+ |
if (i != container.end()) { |
80 |
+ |
result = i->second; |
81 |
+ |
} |
82 |
|
|
83 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
84 |
< |
ForceField* ff, Globals* simParams) : |
85 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
86 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
83 |
> |
return result; |
84 |
> |
} |
85 |
> |
|
86 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
87 |
> |
forceField_(ff), simParams_(simParams), |
88 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
89 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
90 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
91 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
92 |
|
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
93 |
< |
sman_(NULL), fortranInitialized_(false) { |
93 |
> |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) { |
94 |
|
|
78 |
– |
|
79 |
– |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
95 |
|
MoleculeStamp* molStamp; |
96 |
|
int nMolWithSameStamp; |
97 |
|
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
98 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
98 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
99 |
|
CutoffGroupStamp* cgStamp; |
100 |
|
RigidBodyStamp* rbStamp; |
101 |
|
int nRigidAtoms = 0; |
102 |
< |
|
103 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
104 |
< |
molStamp = i->first; |
105 |
< |
nMolWithSameStamp = i->second; |
102 |
> |
std::vector<Component*> components = simParams->getComponents(); |
103 |
> |
|
104 |
> |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
105 |
> |
molStamp = (*i)->getMoleculeStamp(); |
106 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
107 |
|
|
108 |
|
addMoleculeStamp(molStamp, nMolWithSameStamp); |
109 |
|
|
110 |
|
//calculate atoms in molecules |
111 |
|
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
112 |
|
|
97 |
– |
|
113 |
|
//calculate atoms in cutoff groups |
114 |
|
int nAtomsInGroups = 0; |
115 |
|
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
116 |
|
|
117 |
|
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
118 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
118 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
119 |
|
nAtomsInGroups += cgStamp->getNMembers(); |
120 |
|
} |
121 |
|
|
122 |
|
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
123 |
+ |
|
124 |
|
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
125 |
|
|
126 |
|
//calculate atoms in rigid bodies |
128 |
|
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
129 |
|
|
130 |
|
for (int j=0; j < nRigidBodiesInStamp; j++) { |
131 |
< |
rbStamp = molStamp->getRigidBody(j); |
131 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
132 |
|
nAtomsInRigidBodies += rbStamp->getNMembers(); |
133 |
|
} |
134 |
|
|
137 |
|
|
138 |
|
} |
139 |
|
|
140 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
141 |
< |
//therefore the total number of cutoff groups in the system is equal to |
142 |
< |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
143 |
< |
//file plus the number of cutoff groups defined in meta-data file |
140 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
141 |
> |
//group therefore the total number of cutoff groups in the system is |
142 |
> |
//equal to the total number of atoms minus number of atoms belong to |
143 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
144 |
> |
//groups defined in meta-data file |
145 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
146 |
|
|
147 |
< |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
148 |
< |
//therefore the total number of integrable objects in the system is equal to |
149 |
< |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
150 |
< |
//file plus the number of rigid bodies defined in meta-data file |
151 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
152 |
< |
|
147 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
148 |
> |
//integrable object therefore the total number of integrable objects |
149 |
> |
//in the system is equal to the total number of atoms minus number of |
150 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
151 |
> |
//of rigid bodies defined in meta-data file |
152 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
153 |
> |
+ nGlobalRigidBodies_; |
154 |
> |
|
155 |
|
nGlobalMols_ = molStampIds_.size(); |
156 |
|
|
157 |
|
#ifdef IS_MPI |
167 |
|
} |
168 |
|
molecules_.clear(); |
169 |
|
|
151 |
– |
delete stamps_; |
170 |
|
delete sman_; |
171 |
|
delete simParams_; |
172 |
|
delete forceField_; |
273 |
|
} |
274 |
|
} |
275 |
|
|
276 |
< |
}//end for (integrableObject) |
277 |
< |
}// end for (mol) |
276 |
> |
} |
277 |
> |
} |
278 |
|
|
279 |
|
// n_constraints is local, so subtract them on each processor |
280 |
|
ndf_local -= nConstraints_; |
291 |
|
|
292 |
|
} |
293 |
|
|
294 |
+ |
int SimInfo::getFdf() { |
295 |
+ |
#ifdef IS_MPI |
296 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
297 |
+ |
#else |
298 |
+ |
fdf_ = fdf_local; |
299 |
+ |
#endif |
300 |
+ |
return fdf_; |
301 |
+ |
} |
302 |
+ |
|
303 |
|
void SimInfo::calcNdfRaw() { |
304 |
|
int ndfRaw_local; |
305 |
|
|
362 |
|
int b; |
363 |
|
int c; |
364 |
|
int d; |
365 |
+ |
|
366 |
+ |
std::map<int, std::set<int> > atomGroups; |
367 |
+ |
|
368 |
+ |
Molecule::RigidBodyIterator rbIter; |
369 |
+ |
RigidBody* rb; |
370 |
+ |
Molecule::IntegrableObjectIterator ii; |
371 |
+ |
StuntDouble* integrableObject; |
372 |
|
|
373 |
+ |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
374 |
+ |
integrableObject = mol->nextIntegrableObject(ii)) { |
375 |
+ |
|
376 |
+ |
if (integrableObject->isRigidBody()) { |
377 |
+ |
rb = static_cast<RigidBody*>(integrableObject); |
378 |
+ |
std::vector<Atom*> atoms = rb->getAtoms(); |
379 |
+ |
std::set<int> rigidAtoms; |
380 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
381 |
+ |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
382 |
+ |
} |
383 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
384 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
385 |
+ |
} |
386 |
+ |
} else { |
387 |
+ |
std::set<int> oneAtomSet; |
388 |
+ |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
389 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
390 |
+ |
} |
391 |
+ |
} |
392 |
+ |
|
393 |
+ |
|
394 |
+ |
|
395 |
|
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
396 |
|
a = bond->getAtomA()->getGlobalIndex(); |
397 |
|
b = bond->getAtomB()->getGlobalIndex(); |
402 |
|
a = bend->getAtomA()->getGlobalIndex(); |
403 |
|
b = bend->getAtomB()->getGlobalIndex(); |
404 |
|
c = bend->getAtomC()->getGlobalIndex(); |
405 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
406 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
407 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
408 |
|
|
409 |
< |
exclude_.addPair(a, b); |
410 |
< |
exclude_.addPair(a, c); |
411 |
< |
exclude_.addPair(b, c); |
409 |
> |
exclude_.addPairs(rigidSetA, rigidSetB); |
410 |
> |
exclude_.addPairs(rigidSetA, rigidSetC); |
411 |
> |
exclude_.addPairs(rigidSetB, rigidSetC); |
412 |
> |
|
413 |
> |
//exclude_.addPair(a, b); |
414 |
> |
//exclude_.addPair(a, c); |
415 |
> |
//exclude_.addPair(b, c); |
416 |
|
} |
417 |
|
|
418 |
|
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
420 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
421 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
422 |
|
d = torsion->getAtomD()->getGlobalIndex(); |
423 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
424 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
425 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
426 |
+ |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
427 |
|
|
428 |
+ |
exclude_.addPairs(rigidSetA, rigidSetB); |
429 |
+ |
exclude_.addPairs(rigidSetA, rigidSetC); |
430 |
+ |
exclude_.addPairs(rigidSetA, rigidSetD); |
431 |
+ |
exclude_.addPairs(rigidSetB, rigidSetC); |
432 |
+ |
exclude_.addPairs(rigidSetB, rigidSetD); |
433 |
+ |
exclude_.addPairs(rigidSetC, rigidSetD); |
434 |
+ |
|
435 |
+ |
/* |
436 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
437 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
438 |
+ |
exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
439 |
+ |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
440 |
+ |
exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
441 |
+ |
exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
442 |
+ |
|
443 |
+ |
|
444 |
|
exclude_.addPair(a, b); |
445 |
|
exclude_.addPair(a, c); |
446 |
|
exclude_.addPair(a, d); |
447 |
|
exclude_.addPair(b, c); |
448 |
|
exclude_.addPair(b, d); |
449 |
|
exclude_.addPair(c, d); |
450 |
+ |
*/ |
451 |
|
} |
452 |
|
|
369 |
– |
Molecule::RigidBodyIterator rbIter; |
370 |
– |
RigidBody* rb; |
453 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
454 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
455 |
|
for (int i = 0; i < atoms.size() -1 ; ++i) { |
474 |
|
int b; |
475 |
|
int c; |
476 |
|
int d; |
477 |
+ |
|
478 |
+ |
std::map<int, std::set<int> > atomGroups; |
479 |
+ |
|
480 |
+ |
Molecule::RigidBodyIterator rbIter; |
481 |
+ |
RigidBody* rb; |
482 |
+ |
Molecule::IntegrableObjectIterator ii; |
483 |
+ |
StuntDouble* integrableObject; |
484 |
|
|
485 |
+ |
for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
486 |
+ |
integrableObject = mol->nextIntegrableObject(ii)) { |
487 |
+ |
|
488 |
+ |
if (integrableObject->isRigidBody()) { |
489 |
+ |
rb = static_cast<RigidBody*>(integrableObject); |
490 |
+ |
std::vector<Atom*> atoms = rb->getAtoms(); |
491 |
+ |
std::set<int> rigidAtoms; |
492 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
493 |
+ |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
494 |
+ |
} |
495 |
+ |
for (int i = 0; i < atoms.size(); ++i) { |
496 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
497 |
+ |
} |
498 |
+ |
} else { |
499 |
+ |
std::set<int> oneAtomSet; |
500 |
+ |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
501 |
+ |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
502 |
+ |
} |
503 |
+ |
} |
504 |
+ |
|
505 |
+ |
|
506 |
|
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
507 |
|
a = bond->getAtomA()->getGlobalIndex(); |
508 |
|
b = bond->getAtomB()->getGlobalIndex(); |
514 |
|
b = bend->getAtomB()->getGlobalIndex(); |
515 |
|
c = bend->getAtomC()->getGlobalIndex(); |
516 |
|
|
517 |
< |
exclude_.removePair(a, b); |
518 |
< |
exclude_.removePair(a, c); |
519 |
< |
exclude_.removePair(b, c); |
517 |
> |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
518 |
> |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
519 |
> |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
520 |
> |
|
521 |
> |
exclude_.removePairs(rigidSetA, rigidSetB); |
522 |
> |
exclude_.removePairs(rigidSetA, rigidSetC); |
523 |
> |
exclude_.removePairs(rigidSetB, rigidSetC); |
524 |
> |
|
525 |
> |
//exclude_.removePair(a, b); |
526 |
> |
//exclude_.removePair(a, c); |
527 |
> |
//exclude_.removePair(b, c); |
528 |
|
} |
529 |
|
|
530 |
|
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
533 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
534 |
|
d = torsion->getAtomD()->getGlobalIndex(); |
535 |
|
|
536 |
+ |
std::set<int> rigidSetA = getRigidSet(a, atomGroups); |
537 |
+ |
std::set<int> rigidSetB = getRigidSet(b, atomGroups); |
538 |
+ |
std::set<int> rigidSetC = getRigidSet(c, atomGroups); |
539 |
+ |
std::set<int> rigidSetD = getRigidSet(d, atomGroups); |
540 |
+ |
|
541 |
+ |
exclude_.removePairs(rigidSetA, rigidSetB); |
542 |
+ |
exclude_.removePairs(rigidSetA, rigidSetC); |
543 |
+ |
exclude_.removePairs(rigidSetA, rigidSetD); |
544 |
+ |
exclude_.removePairs(rigidSetB, rigidSetC); |
545 |
+ |
exclude_.removePairs(rigidSetB, rigidSetD); |
546 |
+ |
exclude_.removePairs(rigidSetC, rigidSetD); |
547 |
+ |
|
548 |
+ |
/* |
549 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end()); |
550 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end()); |
551 |
+ |
exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end()); |
552 |
+ |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end()); |
553 |
+ |
exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end()); |
554 |
+ |
exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end()); |
555 |
+ |
|
556 |
+ |
|
557 |
|
exclude_.removePair(a, b); |
558 |
|
exclude_.removePair(a, c); |
559 |
|
exclude_.removePair(a, d); |
560 |
|
exclude_.removePair(b, c); |
561 |
|
exclude_.removePair(b, d); |
562 |
|
exclude_.removePair(c, d); |
563 |
+ |
*/ |
564 |
|
} |
565 |
|
|
426 |
– |
Molecule::RigidBodyIterator rbIter; |
427 |
– |
RigidBody* rb; |
566 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
567 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
568 |
|
for (int i = 0; i < atoms.size() -1 ; ++i) { |
600 |
|
//setup fortran force field |
601 |
|
/** @deprecate */ |
602 |
|
int isError = 0; |
603 |
< |
initFortranFF( &fInfo_.SIM_uses_RF , &isError ); |
603 |
> |
|
604 |
> |
setupElectrostaticSummationMethod( isError ); |
605 |
> |
setupSwitchingFunction(); |
606 |
> |
setupAccumulateBoxDipole(); |
607 |
> |
|
608 |
|
if(isError){ |
609 |
|
sprintf( painCave.errMsg, |
610 |
|
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
648 |
|
int useLennardJones = 0; |
649 |
|
int useElectrostatic = 0; |
650 |
|
int useEAM = 0; |
651 |
+ |
int useSC = 0; |
652 |
|
int useCharge = 0; |
653 |
|
int useDirectional = 0; |
654 |
|
int useDipole = 0; |
660 |
|
int useDirectionalAtom = 0; |
661 |
|
int useElectrostatics = 0; |
662 |
|
//usePBC and useRF are from simParams |
663 |
< |
int usePBC = simParams_->getPBC(); |
664 |
< |
int useRF = simParams_->getUseRF(); |
663 |
> |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
664 |
> |
int useRF; |
665 |
> |
int useSF; |
666 |
> |
int useSP; |
667 |
> |
int useBoxDipole; |
668 |
> |
std::string myMethod; |
669 |
> |
|
670 |
> |
// set the useRF logical |
671 |
> |
useRF = 0; |
672 |
> |
useSF = 0; |
673 |
> |
|
674 |
> |
|
675 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
676 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
677 |
> |
toUpper(myMethod); |
678 |
> |
if (myMethod == "REACTION_FIELD"){ |
679 |
> |
useRF=1; |
680 |
> |
} else if (myMethod == "SHIFTED_FORCE"){ |
681 |
> |
useSF = 1; |
682 |
> |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
683 |
> |
useSP = 1; |
684 |
> |
} |
685 |
> |
} |
686 |
> |
|
687 |
> |
if (simParams_->haveAccumulateBoxDipole()) |
688 |
> |
if (simParams_->getAccumulateBoxDipole()) |
689 |
> |
useBoxDipole = 1; |
690 |
|
|
691 |
|
//loop over all of the atom types |
692 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
693 |
|
useLennardJones |= (*i)->isLennardJones(); |
694 |
|
useElectrostatic |= (*i)->isElectrostatic(); |
695 |
|
useEAM |= (*i)->isEAM(); |
696 |
+ |
useSC |= (*i)->isSC(); |
697 |
|
useCharge |= (*i)->isCharge(); |
698 |
|
useDirectional |= (*i)->isDirectional(); |
699 |
|
useDipole |= (*i)->isDipole(); |
744 |
|
temp = useEAM; |
745 |
|
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
746 |
|
|
747 |
+ |
temp = useSC; |
748 |
+ |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
749 |
+ |
|
750 |
|
temp = useShape; |
751 |
|
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
752 |
|
|
755 |
|
|
756 |
|
temp = useRF; |
757 |
|
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
758 |
< |
|
758 |
> |
|
759 |
> |
temp = useSF; |
760 |
> |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
761 |
> |
|
762 |
> |
temp = useSP; |
763 |
> |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
764 |
> |
|
765 |
> |
temp = useBoxDipole; |
766 |
> |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
767 |
> |
|
768 |
|
#endif |
769 |
|
|
770 |
|
fInfo_.SIM_uses_PBC = usePBC; |
777 |
|
fInfo_.SIM_uses_StickyPower = useStickyPower; |
778 |
|
fInfo_.SIM_uses_GayBerne = useGayBerne; |
779 |
|
fInfo_.SIM_uses_EAM = useEAM; |
780 |
+ |
fInfo_.SIM_uses_SC = useSC; |
781 |
|
fInfo_.SIM_uses_Shapes = useShape; |
782 |
|
fInfo_.SIM_uses_FLARB = useFLARB; |
783 |
|
fInfo_.SIM_uses_RF = useRF; |
784 |
+ |
fInfo_.SIM_uses_SF = useSF; |
785 |
+ |
fInfo_.SIM_uses_SP = useSP; |
786 |
+ |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
787 |
|
|
788 |
< |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
789 |
< |
|
788 |
> |
if( myMethod == "REACTION_FIELD") { |
789 |
> |
|
790 |
|
if (simParams_->haveDielectric()) { |
791 |
|
fInfo_.dielect = simParams_->getDielectric(); |
792 |
|
} else { |
796 |
|
"\tsetting a dielectric constant!\n"); |
797 |
|
painCave.isFatal = 1; |
798 |
|
simError(); |
799 |
< |
} |
615 |
< |
|
616 |
< |
} else { |
617 |
< |
fInfo_.dielect = 0.0; |
799 |
> |
} |
800 |
|
} |
801 |
|
|
802 |
|
} |
815 |
|
} |
816 |
|
|
817 |
|
//calculate mass ratio of cutoff group |
818 |
< |
std::vector<double> mfact; |
818 |
> |
std::vector<RealType> mfact; |
819 |
|
SimInfo::MoleculeIterator mi; |
820 |
|
Molecule* mol; |
821 |
|
Molecule::CutoffGroupIterator ci; |
822 |
|
CutoffGroup* cg; |
823 |
|
Molecule::AtomIterator ai; |
824 |
|
Atom* atom; |
825 |
< |
double totalMass; |
825 |
> |
RealType totalMass; |
826 |
|
|
827 |
|
//to avoid memory reallocation, reserve enough space for mfact |
828 |
|
mfact.reserve(getNCutoffGroups()); |
832 |
|
|
833 |
|
totalMass = cg->getMass(); |
834 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
835 |
< |
mfact.push_back(atom->getMass()/totalMass); |
835 |
> |
// Check for massless groups - set mfact to 1 if true |
836 |
> |
if (totalMass != 0) |
837 |
> |
mfact.push_back(atom->getMass()/totalMass); |
838 |
> |
else |
839 |
> |
mfact.push_back( 1.0 ); |
840 |
|
} |
841 |
|
|
842 |
|
} |
945 |
|
|
946 |
|
#endif |
947 |
|
|
948 |
< |
double SimInfo::calcMaxCutoffRadius() { |
948 |
> |
void SimInfo::setupCutoff() { |
949 |
> |
|
950 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
951 |
|
|
952 |
+ |
// Check the cutoff policy |
953 |
+ |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
954 |
|
|
955 |
< |
std::set<AtomType*> atomTypes; |
956 |
< |
std::set<AtomType*>::iterator i; |
957 |
< |
std::vector<double> cutoffRadius; |
958 |
< |
|
959 |
< |
//get the unique atom types |
770 |
< |
atomTypes = getUniqueAtomTypes(); |
771 |
< |
|
772 |
< |
//query the max cutoff radius among these atom types |
773 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
774 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
955 |
> |
std::string myPolicy; |
956 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
957 |
> |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
958 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
959 |
> |
myPolicy = simParams_->getCutoffPolicy(); |
960 |
|
} |
961 |
|
|
962 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
963 |
< |
#ifdef IS_MPI |
964 |
< |
//pick the max cutoff radius among the processors |
965 |
< |
#endif |
962 |
> |
if (!myPolicy.empty()){ |
963 |
> |
toUpper(myPolicy); |
964 |
> |
if (myPolicy == "MIX") { |
965 |
> |
cp = MIX_CUTOFF_POLICY; |
966 |
> |
} else { |
967 |
> |
if (myPolicy == "MAX") { |
968 |
> |
cp = MAX_CUTOFF_POLICY; |
969 |
> |
} else { |
970 |
> |
if (myPolicy == "TRADITIONAL") { |
971 |
> |
cp = TRADITIONAL_CUTOFF_POLICY; |
972 |
> |
} else { |
973 |
> |
// throw error |
974 |
> |
sprintf( painCave.errMsg, |
975 |
> |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
976 |
> |
painCave.isFatal = 1; |
977 |
> |
simError(); |
978 |
> |
} |
979 |
> |
} |
980 |
> |
} |
981 |
> |
} |
982 |
> |
notifyFortranCutoffPolicy(&cp); |
983 |
|
|
984 |
< |
return maxCutoffRadius; |
985 |
< |
} |
986 |
< |
|
987 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
988 |
< |
|
989 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
984 |
> |
// Check the Skin Thickness for neighborlists |
985 |
> |
RealType skin; |
986 |
> |
if (simParams_->haveSkinThickness()) { |
987 |
> |
skin = simParams_->getSkinThickness(); |
988 |
> |
notifyFortranSkinThickness(&skin); |
989 |
> |
} |
990 |
|
|
991 |
< |
if (!simParams_->haveRcut()){ |
992 |
< |
sprintf(painCave.errMsg, |
993 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
994 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
995 |
< |
"\tfor the cutoffRadius.\n"); |
996 |
< |
painCave.isFatal = 0; |
991 |
> |
// Check if the cutoff was set explicitly: |
992 |
> |
if (simParams_->haveCutoffRadius()) { |
993 |
> |
rcut_ = simParams_->getCutoffRadius(); |
994 |
> |
if (simParams_->haveSwitchingRadius()) { |
995 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
996 |
> |
} else { |
997 |
> |
if (fInfo_.SIM_uses_Charges | |
998 |
> |
fInfo_.SIM_uses_Dipoles | |
999 |
> |
fInfo_.SIM_uses_RF) { |
1000 |
> |
|
1001 |
> |
rsw_ = 0.85 * rcut_; |
1002 |
> |
sprintf(painCave.errMsg, |
1003 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1004 |
> |
"\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n" |
1005 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1006 |
> |
painCave.isFatal = 0; |
1007 |
|
simError(); |
1008 |
< |
rcut = 15.0; |
1009 |
< |
} else{ |
1010 |
< |
rcut = simParams_->getRcut(); |
1008 |
> |
} else { |
1009 |
> |
rsw_ = rcut_; |
1010 |
> |
sprintf(painCave.errMsg, |
1011 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1012 |
> |
"\tOOPSE will use the same value as the cutoffRadius.\n" |
1013 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1014 |
> |
painCave.isFatal = 0; |
1015 |
> |
simError(); |
1016 |
> |
} |
1017 |
|
} |
1018 |
< |
|
1019 |
< |
if (!simParams_->haveRsw()){ |
1020 |
< |
sprintf(painCave.errMsg, |
1021 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1022 |
< |
"\tOOPSE will use a default value of\n" |
1023 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
1024 |
< |
painCave.isFatal = 0; |
1018 |
> |
|
1019 |
> |
notifyFortranCutoffs(&rcut_, &rsw_); |
1020 |
> |
|
1021 |
> |
} else { |
1022 |
> |
|
1023 |
> |
// For electrostatic atoms, we'll assume a large safe value: |
1024 |
> |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1025 |
> |
sprintf(painCave.errMsg, |
1026 |
> |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1027 |
> |
"\tOOPSE will use a default value of 15.0 angstroms" |
1028 |
> |
"\tfor the cutoffRadius.\n"); |
1029 |
> |
painCave.isFatal = 0; |
1030 |
|
simError(); |
1031 |
< |
rsw = 0.95 * rcut; |
1032 |
< |
} else{ |
1033 |
< |
rsw = simParams_->getRsw(); |
1031 |
> |
rcut_ = 15.0; |
1032 |
> |
|
1033 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1034 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1035 |
> |
toUpper(myMethod); |
1036 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1037 |
> |
if (simParams_->haveSwitchingRadius()){ |
1038 |
> |
sprintf(painCave.errMsg, |
1039 |
> |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1040 |
> |
"\teven though the electrostaticSummationMethod was\n" |
1041 |
> |
"\tset to %s\n", myMethod.c_str()); |
1042 |
> |
painCave.isFatal = 1; |
1043 |
> |
simError(); |
1044 |
> |
} |
1045 |
> |
} |
1046 |
> |
} |
1047 |
> |
|
1048 |
> |
if (simParams_->haveSwitchingRadius()){ |
1049 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
1050 |
> |
} else { |
1051 |
> |
sprintf(painCave.errMsg, |
1052 |
> |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1053 |
> |
"\tOOPSE will use a default value of\n" |
1054 |
> |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1055 |
> |
painCave.isFatal = 0; |
1056 |
> |
simError(); |
1057 |
> |
rsw_ = 0.85 * rcut_; |
1058 |
> |
} |
1059 |
> |
notifyFortranCutoffs(&rcut_, &rsw_); |
1060 |
> |
} else { |
1061 |
> |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1062 |
> |
// We'll punt and let fortran figure out the cutoffs later. |
1063 |
> |
|
1064 |
> |
notifyFortranYouAreOnYourOwn(); |
1065 |
> |
|
1066 |
|
} |
1067 |
+ |
} |
1068 |
+ |
} |
1069 |
|
|
1070 |
< |
} else { |
1071 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
1072 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
1073 |
< |
|
1074 |
< |
if (simParams_->haveRcut()) { |
1075 |
< |
rcut = simParams_->getRcut(); |
1070 |
> |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1071 |
> |
|
1072 |
> |
int errorOut; |
1073 |
> |
int esm = NONE; |
1074 |
> |
int sm = UNDAMPED; |
1075 |
> |
RealType alphaVal; |
1076 |
> |
RealType dielectric; |
1077 |
> |
|
1078 |
> |
errorOut = isError; |
1079 |
> |
alphaVal = simParams_->getDampingAlpha(); |
1080 |
> |
dielectric = simParams_->getDielectric(); |
1081 |
> |
|
1082 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1083 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1084 |
> |
toUpper(myMethod); |
1085 |
> |
if (myMethod == "NONE") { |
1086 |
> |
esm = NONE; |
1087 |
|
} else { |
1088 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
1089 |
< |
rcut = calcMaxCutoffRadius(); |
1088 |
> |
if (myMethod == "SWITCHING_FUNCTION") { |
1089 |
> |
esm = SWITCHING_FUNCTION; |
1090 |
> |
} else { |
1091 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1092 |
> |
esm = SHIFTED_POTENTIAL; |
1093 |
> |
} else { |
1094 |
> |
if (myMethod == "SHIFTED_FORCE") { |
1095 |
> |
esm = SHIFTED_FORCE; |
1096 |
> |
} else { |
1097 |
> |
if (myMethod == "REACTION_FIELD") { |
1098 |
> |
esm = REACTION_FIELD; |
1099 |
> |
} else { |
1100 |
> |
// throw error |
1101 |
> |
sprintf( painCave.errMsg, |
1102 |
> |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1103 |
> |
"\t(Input file specified %s .)\n" |
1104 |
> |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1105 |
> |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1106 |
> |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1107 |
> |
painCave.isFatal = 1; |
1108 |
> |
simError(); |
1109 |
> |
} |
1110 |
> |
} |
1111 |
> |
} |
1112 |
> |
} |
1113 |
|
} |
1114 |
< |
|
1115 |
< |
if (simParams_->haveRsw()) { |
1116 |
< |
rsw = simParams_->getRsw(); |
1114 |
> |
} |
1115 |
> |
|
1116 |
> |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1117 |
> |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1118 |
> |
toUpper(myScreen); |
1119 |
> |
if (myScreen == "UNDAMPED") { |
1120 |
> |
sm = UNDAMPED; |
1121 |
|
} else { |
1122 |
< |
rsw = rcut; |
1122 |
> |
if (myScreen == "DAMPED") { |
1123 |
> |
sm = DAMPED; |
1124 |
> |
if (!simParams_->haveDampingAlpha()) { |
1125 |
> |
//throw error |
1126 |
> |
sprintf( painCave.errMsg, |
1127 |
> |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1128 |
> |
"\tA default value of %f (1/ang) will be used.\n", alphaVal); |
1129 |
> |
painCave.isFatal = 0; |
1130 |
> |
simError(); |
1131 |
> |
} |
1132 |
> |
} else { |
1133 |
> |
// throw error |
1134 |
> |
sprintf( painCave.errMsg, |
1135 |
> |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1136 |
> |
"\t(Input file specified %s .)\n" |
1137 |
> |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1138 |
> |
"or \"damped\".\n", myScreen.c_str() ); |
1139 |
> |
painCave.isFatal = 1; |
1140 |
> |
simError(); |
1141 |
> |
} |
1142 |
|
} |
1143 |
+ |
} |
1144 |
|
|
1145 |
+ |
// let's pass some summation method variables to fortran |
1146 |
+ |
setElectrostaticSummationMethod( &esm ); |
1147 |
+ |
setFortranElectrostaticMethod( &esm ); |
1148 |
+ |
setScreeningMethod( &sm ); |
1149 |
+ |
setDampingAlpha( &alphaVal ); |
1150 |
+ |
setReactionFieldDielectric( &dielectric ); |
1151 |
+ |
initFortranFF( &errorOut ); |
1152 |
+ |
} |
1153 |
+ |
|
1154 |
+ |
void SimInfo::setupSwitchingFunction() { |
1155 |
+ |
int ft = CUBIC; |
1156 |
+ |
|
1157 |
+ |
if (simParams_->haveSwitchingFunctionType()) { |
1158 |
+ |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1159 |
+ |
toUpper(funcType); |
1160 |
+ |
if (funcType == "CUBIC") { |
1161 |
+ |
ft = CUBIC; |
1162 |
+ |
} else { |
1163 |
+ |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1164 |
+ |
ft = FIFTH_ORDER_POLY; |
1165 |
+ |
} else { |
1166 |
+ |
// throw error |
1167 |
+ |
sprintf( painCave.errMsg, |
1168 |
+ |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1169 |
+ |
painCave.isFatal = 1; |
1170 |
+ |
simError(); |
1171 |
+ |
} |
1172 |
+ |
} |
1173 |
|
} |
1174 |
+ |
|
1175 |
+ |
// send switching function notification to switcheroo |
1176 |
+ |
setFunctionType(&ft); |
1177 |
+ |
|
1178 |
|
} |
1179 |
|
|
1180 |
< |
void SimInfo::setupCutoff() { |
834 |
< |
getCutoff(rcut_, rsw_); |
835 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
1180 |
> |
void SimInfo::setupAccumulateBoxDipole() { |
1181 |
|
|
1182 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
1183 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); |
1182 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1183 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
1184 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
1185 |
> |
setAccumulateBoxDipole(); |
1186 |
> |
calcBoxDipole_ = true; |
1187 |
> |
} |
1188 |
> |
|
1189 |
|
} |
1190 |
|
|
1191 |
|
void SimInfo::addProperty(GenericData* genData) { |
1244 |
|
Molecule* mol; |
1245 |
|
|
1246 |
|
Vector3d comVel(0.0); |
1247 |
< |
double totalMass = 0.0; |
1247 |
> |
RealType totalMass = 0.0; |
1248 |
|
|
1249 |
|
|
1250 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1251 |
< |
double mass = mol->getMass(); |
1251 |
> |
RealType mass = mol->getMass(); |
1252 |
|
totalMass += mass; |
1253 |
|
comVel += mass * mol->getComVel(); |
1254 |
|
} |
1255 |
|
|
1256 |
|
#ifdef IS_MPI |
1257 |
< |
double tmpMass = totalMass; |
1257 |
> |
RealType tmpMass = totalMass; |
1258 |
|
Vector3d tmpComVel(comVel); |
1259 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1260 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1259 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1260 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1261 |
|
#endif |
1262 |
|
|
1263 |
|
comVel /= totalMass; |
1270 |
|
Molecule* mol; |
1271 |
|
|
1272 |
|
Vector3d com(0.0); |
1273 |
< |
double totalMass = 0.0; |
1273 |
> |
RealType totalMass = 0.0; |
1274 |
|
|
1275 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1276 |
< |
double mass = mol->getMass(); |
1276 |
> |
RealType mass = mol->getMass(); |
1277 |
|
totalMass += mass; |
1278 |
|
com += mass * mol->getCom(); |
1279 |
|
} |
1280 |
|
|
1281 |
|
#ifdef IS_MPI |
1282 |
< |
double tmpMass = totalMass; |
1282 |
> |
RealType tmpMass = totalMass; |
1283 |
|
Vector3d tmpCom(com); |
1284 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1285 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1284 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1285 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1286 |
|
#endif |
1287 |
|
|
1288 |
|
com /= totalMass; |
1295 |
|
|
1296 |
|
return o; |
1297 |
|
} |
1298 |
+ |
|
1299 |
+ |
|
1300 |
+ |
/* |
1301 |
+ |
Returns center of mass and center of mass velocity in one function call. |
1302 |
+ |
*/ |
1303 |
+ |
|
1304 |
+ |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1305 |
+ |
SimInfo::MoleculeIterator i; |
1306 |
+ |
Molecule* mol; |
1307 |
+ |
|
1308 |
+ |
|
1309 |
+ |
RealType totalMass = 0.0; |
1310 |
+ |
|
1311 |
|
|
1312 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1313 |
+ |
RealType mass = mol->getMass(); |
1314 |
+ |
totalMass += mass; |
1315 |
+ |
com += mass * mol->getCom(); |
1316 |
+ |
comVel += mass * mol->getComVel(); |
1317 |
+ |
} |
1318 |
+ |
|
1319 |
+ |
#ifdef IS_MPI |
1320 |
+ |
RealType tmpMass = totalMass; |
1321 |
+ |
Vector3d tmpCom(com); |
1322 |
+ |
Vector3d tmpComVel(comVel); |
1323 |
+ |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1324 |
+ |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1325 |
+ |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1326 |
+ |
#endif |
1327 |
+ |
|
1328 |
+ |
com /= totalMass; |
1329 |
+ |
comVel /= totalMass; |
1330 |
+ |
} |
1331 |
+ |
|
1332 |
+ |
/* |
1333 |
+ |
Return intertia tensor for entire system and angular momentum Vector. |
1334 |
+ |
|
1335 |
+ |
|
1336 |
+ |
[ Ixx -Ixy -Ixz ] |
1337 |
+ |
J =| -Iyx Iyy -Iyz | |
1338 |
+ |
[ -Izx -Iyz Izz ] |
1339 |
+ |
*/ |
1340 |
+ |
|
1341 |
+ |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1342 |
+ |
|
1343 |
+ |
|
1344 |
+ |
RealType xx = 0.0; |
1345 |
+ |
RealType yy = 0.0; |
1346 |
+ |
RealType zz = 0.0; |
1347 |
+ |
RealType xy = 0.0; |
1348 |
+ |
RealType xz = 0.0; |
1349 |
+ |
RealType yz = 0.0; |
1350 |
+ |
Vector3d com(0.0); |
1351 |
+ |
Vector3d comVel(0.0); |
1352 |
+ |
|
1353 |
+ |
getComAll(com, comVel); |
1354 |
+ |
|
1355 |
+ |
SimInfo::MoleculeIterator i; |
1356 |
+ |
Molecule* mol; |
1357 |
+ |
|
1358 |
+ |
Vector3d thisq(0.0); |
1359 |
+ |
Vector3d thisv(0.0); |
1360 |
+ |
|
1361 |
+ |
RealType thisMass = 0.0; |
1362 |
+ |
|
1363 |
+ |
|
1364 |
+ |
|
1365 |
+ |
|
1366 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1367 |
+ |
|
1368 |
+ |
thisq = mol->getCom()-com; |
1369 |
+ |
thisv = mol->getComVel()-comVel; |
1370 |
+ |
thisMass = mol->getMass(); |
1371 |
+ |
// Compute moment of intertia coefficients. |
1372 |
+ |
xx += thisq[0]*thisq[0]*thisMass; |
1373 |
+ |
yy += thisq[1]*thisq[1]*thisMass; |
1374 |
+ |
zz += thisq[2]*thisq[2]*thisMass; |
1375 |
+ |
|
1376 |
+ |
// compute products of intertia |
1377 |
+ |
xy += thisq[0]*thisq[1]*thisMass; |
1378 |
+ |
xz += thisq[0]*thisq[2]*thisMass; |
1379 |
+ |
yz += thisq[1]*thisq[2]*thisMass; |
1380 |
+ |
|
1381 |
+ |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1382 |
+ |
|
1383 |
+ |
} |
1384 |
+ |
|
1385 |
+ |
|
1386 |
+ |
inertiaTensor(0,0) = yy + zz; |
1387 |
+ |
inertiaTensor(0,1) = -xy; |
1388 |
+ |
inertiaTensor(0,2) = -xz; |
1389 |
+ |
inertiaTensor(1,0) = -xy; |
1390 |
+ |
inertiaTensor(1,1) = xx + zz; |
1391 |
+ |
inertiaTensor(1,2) = -yz; |
1392 |
+ |
inertiaTensor(2,0) = -xz; |
1393 |
+ |
inertiaTensor(2,1) = -yz; |
1394 |
+ |
inertiaTensor(2,2) = xx + yy; |
1395 |
+ |
|
1396 |
+ |
#ifdef IS_MPI |
1397 |
+ |
Mat3x3d tmpI(inertiaTensor); |
1398 |
+ |
Vector3d tmpAngMom; |
1399 |
+ |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1400 |
+ |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1401 |
+ |
#endif |
1402 |
+ |
|
1403 |
+ |
return; |
1404 |
+ |
} |
1405 |
+ |
|
1406 |
+ |
//Returns the angular momentum of the system |
1407 |
+ |
Vector3d SimInfo::getAngularMomentum(){ |
1408 |
+ |
|
1409 |
+ |
Vector3d com(0.0); |
1410 |
+ |
Vector3d comVel(0.0); |
1411 |
+ |
Vector3d angularMomentum(0.0); |
1412 |
+ |
|
1413 |
+ |
getComAll(com,comVel); |
1414 |
+ |
|
1415 |
+ |
SimInfo::MoleculeIterator i; |
1416 |
+ |
Molecule* mol; |
1417 |
+ |
|
1418 |
+ |
Vector3d thisr(0.0); |
1419 |
+ |
Vector3d thisp(0.0); |
1420 |
+ |
|
1421 |
+ |
RealType thisMass; |
1422 |
+ |
|
1423 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1424 |
+ |
thisMass = mol->getMass(); |
1425 |
+ |
thisr = mol->getCom()-com; |
1426 |
+ |
thisp = (mol->getComVel()-comVel)*thisMass; |
1427 |
+ |
|
1428 |
+ |
angularMomentum += cross( thisr, thisp ); |
1429 |
+ |
|
1430 |
+ |
} |
1431 |
+ |
|
1432 |
+ |
#ifdef IS_MPI |
1433 |
+ |
Vector3d tmpAngMom; |
1434 |
+ |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1435 |
+ |
#endif |
1436 |
+ |
|
1437 |
+ |
return angularMomentum; |
1438 |
+ |
} |
1439 |
+ |
|
1440 |
+ |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1441 |
+ |
return IOIndexToIntegrableObject.at(index); |
1442 |
+ |
} |
1443 |
+ |
|
1444 |
+ |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1445 |
+ |
IOIndexToIntegrableObject= v; |
1446 |
+ |
} |
1447 |
+ |
|
1448 |
+ |
/* |
1449 |
+ |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1450 |
+ |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1451 |
+ |
sdByGlobalIndex_ = v; |
1452 |
+ |
} |
1453 |
+ |
|
1454 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1455 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1456 |
+ |
return sdByGlobalIndex_.at(index); |
1457 |
+ |
} |
1458 |
+ |
*/ |
1459 |
|
}//end namespace oopse |
1460 |
|
|