1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file SimInfo.cpp |
45 |
* @author tlin |
46 |
* @date 11/02/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include <algorithm> |
51 |
#include <set> |
52 |
#include <map> |
53 |
|
54 |
#include "brains/SimInfo.hpp" |
55 |
#include "math/Vector3.hpp" |
56 |
#include "primitives/Molecule.hpp" |
57 |
#include "primitives/StuntDouble.hpp" |
58 |
#include "utils/MemoryUtils.hpp" |
59 |
#include "utils/simError.h" |
60 |
#include "selection/SelectionManager.hpp" |
61 |
#include "io/ForceFieldOptions.hpp" |
62 |
#include "UseTheForce/ForceField.hpp" |
63 |
#include "nonbonded/SwitchingFunction.hpp" |
64 |
#ifdef IS_MPI |
65 |
#include <mpi.h> |
66 |
#endif |
67 |
|
68 |
using namespace std; |
69 |
namespace OpenMD { |
70 |
|
71 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
72 |
forceField_(ff), simParams_(simParams), |
73 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
74 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
75 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), nGlobalFluctuatingCharges_(0), |
76 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
77 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
78 |
nConstraints_(0), nFluctuatingCharges_(0), sman_(NULL), topologyDone_(false), |
79 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
80 |
|
81 |
MoleculeStamp* molStamp; |
82 |
int nMolWithSameStamp; |
83 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
84 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
85 |
CutoffGroupStamp* cgStamp; |
86 |
RigidBodyStamp* rbStamp; |
87 |
int nRigidAtoms = 0; |
88 |
|
89 |
vector<Component*> components = simParams->getComponents(); |
90 |
|
91 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
92 |
molStamp = (*i)->getMoleculeStamp(); |
93 |
nMolWithSameStamp = (*i)->getNMol(); |
94 |
|
95 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
96 |
|
97 |
//calculate atoms in molecules |
98 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
99 |
|
100 |
//calculate atoms in cutoff groups |
101 |
int nAtomsInGroups = 0; |
102 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
103 |
|
104 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
105 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
106 |
nAtomsInGroups += cgStamp->getNMembers(); |
107 |
} |
108 |
|
109 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
110 |
|
111 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
112 |
|
113 |
//calculate atoms in rigid bodies |
114 |
int nAtomsInRigidBodies = 0; |
115 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
116 |
|
117 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
118 |
rbStamp = molStamp->getRigidBodyStamp(j); |
119 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
120 |
} |
121 |
|
122 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
123 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
124 |
|
125 |
} |
126 |
|
127 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
128 |
//group therefore the total number of cutoff groups in the system is |
129 |
//equal to the total number of atoms minus number of atoms belong to |
130 |
//cutoff group defined in meta-data file plus the number of cutoff |
131 |
//groups defined in meta-data file |
132 |
|
133 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
134 |
|
135 |
//every free atom (atom does not belong to rigid bodies) is an |
136 |
//integrable object therefore the total number of integrable objects |
137 |
//in the system is equal to the total number of atoms minus number of |
138 |
//atoms belong to rigid body defined in meta-data file plus the number |
139 |
//of rigid bodies defined in meta-data file |
140 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
141 |
+ nGlobalRigidBodies_; |
142 |
|
143 |
nGlobalMols_ = molStampIds_.size(); |
144 |
molToProcMap_.resize(nGlobalMols_); |
145 |
} |
146 |
|
147 |
SimInfo::~SimInfo() { |
148 |
map<int, Molecule*>::iterator i; |
149 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
150 |
delete i->second; |
151 |
} |
152 |
molecules_.clear(); |
153 |
|
154 |
delete sman_; |
155 |
delete simParams_; |
156 |
delete forceField_; |
157 |
} |
158 |
|
159 |
|
160 |
bool SimInfo::addMolecule(Molecule* mol) { |
161 |
MoleculeIterator i; |
162 |
|
163 |
i = molecules_.find(mol->getGlobalIndex()); |
164 |
if (i == molecules_.end() ) { |
165 |
|
166 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
167 |
|
168 |
nAtoms_ += mol->getNAtoms(); |
169 |
nBonds_ += mol->getNBonds(); |
170 |
nBends_ += mol->getNBends(); |
171 |
nTorsions_ += mol->getNTorsions(); |
172 |
nInversions_ += mol->getNInversions(); |
173 |
nRigidBodies_ += mol->getNRigidBodies(); |
174 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
175 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
176 |
nConstraints_ += mol->getNConstraintPairs(); |
177 |
|
178 |
addInteractionPairs(mol); |
179 |
|
180 |
return true; |
181 |
} else { |
182 |
return false; |
183 |
} |
184 |
} |
185 |
|
186 |
bool SimInfo::removeMolecule(Molecule* mol) { |
187 |
MoleculeIterator i; |
188 |
i = molecules_.find(mol->getGlobalIndex()); |
189 |
|
190 |
if (i != molecules_.end() ) { |
191 |
|
192 |
assert(mol == i->second); |
193 |
|
194 |
nAtoms_ -= mol->getNAtoms(); |
195 |
nBonds_ -= mol->getNBonds(); |
196 |
nBends_ -= mol->getNBends(); |
197 |
nTorsions_ -= mol->getNTorsions(); |
198 |
nInversions_ -= mol->getNInversions(); |
199 |
nRigidBodies_ -= mol->getNRigidBodies(); |
200 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
201 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
202 |
nConstraints_ -= mol->getNConstraintPairs(); |
203 |
|
204 |
removeInteractionPairs(mol); |
205 |
molecules_.erase(mol->getGlobalIndex()); |
206 |
|
207 |
delete mol; |
208 |
|
209 |
return true; |
210 |
} else { |
211 |
return false; |
212 |
} |
213 |
} |
214 |
|
215 |
|
216 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
217 |
i = molecules_.begin(); |
218 |
return i == molecules_.end() ? NULL : i->second; |
219 |
} |
220 |
|
221 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
222 |
++i; |
223 |
return i == molecules_.end() ? NULL : i->second; |
224 |
} |
225 |
|
226 |
|
227 |
void SimInfo::calcNdf() { |
228 |
int ndf_local, nfq_local; |
229 |
MoleculeIterator i; |
230 |
vector<StuntDouble*>::iterator j; |
231 |
vector<Atom*>::iterator k; |
232 |
|
233 |
Molecule* mol; |
234 |
StuntDouble* integrableObject; |
235 |
Atom* atom; |
236 |
|
237 |
ndf_local = 0; |
238 |
nfq_local = 0; |
239 |
|
240 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
241 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
242 |
integrableObject = mol->nextIntegrableObject(j)) { |
243 |
|
244 |
ndf_local += 3; |
245 |
|
246 |
if (integrableObject->isDirectional()) { |
247 |
if (integrableObject->isLinear()) { |
248 |
ndf_local += 2; |
249 |
} else { |
250 |
ndf_local += 3; |
251 |
} |
252 |
} |
253 |
} |
254 |
for (atom = mol->beginFluctuatingCharge(k); atom != NULL; |
255 |
atom = mol->nextFluctuatingCharge(k)) { |
256 |
if (atom->isFluctuatingCharge()) { |
257 |
nfq_local++; |
258 |
} |
259 |
} |
260 |
} |
261 |
|
262 |
// n_constraints is local, so subtract them on each processor |
263 |
ndf_local -= nConstraints_; |
264 |
|
265 |
#ifdef IS_MPI |
266 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
267 |
MPI_Allreduce(&nfq_local,&nGlobalFluctuatingCharges_,1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
268 |
#else |
269 |
ndf_ = ndf_local; |
270 |
nGlobalFluctuatingCharges_ = nfq_local; |
271 |
#endif |
272 |
|
273 |
// nZconstraints_ is global, as are the 3 COM translations for the |
274 |
// entire system: |
275 |
ndf_ = ndf_ - 3 - nZconstraint_; |
276 |
|
277 |
} |
278 |
|
279 |
int SimInfo::getFdf() { |
280 |
#ifdef IS_MPI |
281 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
282 |
#else |
283 |
fdf_ = fdf_local; |
284 |
#endif |
285 |
return fdf_; |
286 |
} |
287 |
|
288 |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
289 |
int nLocalCutoffAtoms = 0; |
290 |
Molecule* mol; |
291 |
MoleculeIterator mi; |
292 |
CutoffGroup* cg; |
293 |
Molecule::CutoffGroupIterator ci; |
294 |
|
295 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
296 |
|
297 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
298 |
cg = mol->nextCutoffGroup(ci)) { |
299 |
nLocalCutoffAtoms += cg->getNumAtom(); |
300 |
|
301 |
} |
302 |
} |
303 |
|
304 |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
305 |
} |
306 |
|
307 |
void SimInfo::calcNdfRaw() { |
308 |
int ndfRaw_local; |
309 |
|
310 |
MoleculeIterator i; |
311 |
vector<StuntDouble*>::iterator j; |
312 |
Molecule* mol; |
313 |
StuntDouble* integrableObject; |
314 |
|
315 |
// Raw degrees of freedom that we have to set |
316 |
ndfRaw_local = 0; |
317 |
|
318 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
319 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
320 |
integrableObject = mol->nextIntegrableObject(j)) { |
321 |
|
322 |
ndfRaw_local += 3; |
323 |
|
324 |
if (integrableObject->isDirectional()) { |
325 |
if (integrableObject->isLinear()) { |
326 |
ndfRaw_local += 2; |
327 |
} else { |
328 |
ndfRaw_local += 3; |
329 |
} |
330 |
} |
331 |
|
332 |
} |
333 |
} |
334 |
|
335 |
#ifdef IS_MPI |
336 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
337 |
#else |
338 |
ndfRaw_ = ndfRaw_local; |
339 |
#endif |
340 |
} |
341 |
|
342 |
void SimInfo::calcNdfTrans() { |
343 |
int ndfTrans_local; |
344 |
|
345 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
346 |
|
347 |
|
348 |
#ifdef IS_MPI |
349 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
350 |
#else |
351 |
ndfTrans_ = ndfTrans_local; |
352 |
#endif |
353 |
|
354 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
355 |
|
356 |
} |
357 |
|
358 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
359 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
360 |
vector<Bond*>::iterator bondIter; |
361 |
vector<Bend*>::iterator bendIter; |
362 |
vector<Torsion*>::iterator torsionIter; |
363 |
vector<Inversion*>::iterator inversionIter; |
364 |
Bond* bond; |
365 |
Bend* bend; |
366 |
Torsion* torsion; |
367 |
Inversion* inversion; |
368 |
int a; |
369 |
int b; |
370 |
int c; |
371 |
int d; |
372 |
|
373 |
// atomGroups can be used to add special interaction maps between |
374 |
// groups of atoms that are in two separate rigid bodies. |
375 |
// However, most site-site interactions between two rigid bodies |
376 |
// are probably not special, just the ones between the physically |
377 |
// bonded atoms. Interactions *within* a single rigid body should |
378 |
// always be excluded. These are done at the bottom of this |
379 |
// function. |
380 |
|
381 |
map<int, set<int> > atomGroups; |
382 |
Molecule::RigidBodyIterator rbIter; |
383 |
RigidBody* rb; |
384 |
Molecule::IntegrableObjectIterator ii; |
385 |
StuntDouble* integrableObject; |
386 |
|
387 |
for (integrableObject = mol->beginIntegrableObject(ii); |
388 |
integrableObject != NULL; |
389 |
integrableObject = mol->nextIntegrableObject(ii)) { |
390 |
|
391 |
if (integrableObject->isRigidBody()) { |
392 |
rb = static_cast<RigidBody*>(integrableObject); |
393 |
vector<Atom*> atoms = rb->getAtoms(); |
394 |
set<int> rigidAtoms; |
395 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
396 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
397 |
} |
398 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
399 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
400 |
} |
401 |
} else { |
402 |
set<int> oneAtomSet; |
403 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
404 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
405 |
} |
406 |
} |
407 |
|
408 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
409 |
bond = mol->nextBond(bondIter)) { |
410 |
|
411 |
a = bond->getAtomA()->getGlobalIndex(); |
412 |
b = bond->getAtomB()->getGlobalIndex(); |
413 |
|
414 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
415 |
oneTwoInteractions_.addPair(a, b); |
416 |
} else { |
417 |
excludedInteractions_.addPair(a, b); |
418 |
} |
419 |
} |
420 |
|
421 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
422 |
bend = mol->nextBend(bendIter)) { |
423 |
|
424 |
a = bend->getAtomA()->getGlobalIndex(); |
425 |
b = bend->getAtomB()->getGlobalIndex(); |
426 |
c = bend->getAtomC()->getGlobalIndex(); |
427 |
|
428 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
429 |
oneTwoInteractions_.addPair(a, b); |
430 |
oneTwoInteractions_.addPair(b, c); |
431 |
} else { |
432 |
excludedInteractions_.addPair(a, b); |
433 |
excludedInteractions_.addPair(b, c); |
434 |
} |
435 |
|
436 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
437 |
oneThreeInteractions_.addPair(a, c); |
438 |
} else { |
439 |
excludedInteractions_.addPair(a, c); |
440 |
} |
441 |
} |
442 |
|
443 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
444 |
torsion = mol->nextTorsion(torsionIter)) { |
445 |
|
446 |
a = torsion->getAtomA()->getGlobalIndex(); |
447 |
b = torsion->getAtomB()->getGlobalIndex(); |
448 |
c = torsion->getAtomC()->getGlobalIndex(); |
449 |
d = torsion->getAtomD()->getGlobalIndex(); |
450 |
|
451 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
452 |
oneTwoInteractions_.addPair(a, b); |
453 |
oneTwoInteractions_.addPair(b, c); |
454 |
oneTwoInteractions_.addPair(c, d); |
455 |
} else { |
456 |
excludedInteractions_.addPair(a, b); |
457 |
excludedInteractions_.addPair(b, c); |
458 |
excludedInteractions_.addPair(c, d); |
459 |
} |
460 |
|
461 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
462 |
oneThreeInteractions_.addPair(a, c); |
463 |
oneThreeInteractions_.addPair(b, d); |
464 |
} else { |
465 |
excludedInteractions_.addPair(a, c); |
466 |
excludedInteractions_.addPair(b, d); |
467 |
} |
468 |
|
469 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
470 |
oneFourInteractions_.addPair(a, d); |
471 |
} else { |
472 |
excludedInteractions_.addPair(a, d); |
473 |
} |
474 |
} |
475 |
|
476 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
477 |
inversion = mol->nextInversion(inversionIter)) { |
478 |
|
479 |
a = inversion->getAtomA()->getGlobalIndex(); |
480 |
b = inversion->getAtomB()->getGlobalIndex(); |
481 |
c = inversion->getAtomC()->getGlobalIndex(); |
482 |
d = inversion->getAtomD()->getGlobalIndex(); |
483 |
|
484 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
485 |
oneTwoInteractions_.addPair(a, b); |
486 |
oneTwoInteractions_.addPair(a, c); |
487 |
oneTwoInteractions_.addPair(a, d); |
488 |
} else { |
489 |
excludedInteractions_.addPair(a, b); |
490 |
excludedInteractions_.addPair(a, c); |
491 |
excludedInteractions_.addPair(a, d); |
492 |
} |
493 |
|
494 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
495 |
oneThreeInteractions_.addPair(b, c); |
496 |
oneThreeInteractions_.addPair(b, d); |
497 |
oneThreeInteractions_.addPair(c, d); |
498 |
} else { |
499 |
excludedInteractions_.addPair(b, c); |
500 |
excludedInteractions_.addPair(b, d); |
501 |
excludedInteractions_.addPair(c, d); |
502 |
} |
503 |
} |
504 |
|
505 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
506 |
rb = mol->nextRigidBody(rbIter)) { |
507 |
vector<Atom*> atoms = rb->getAtoms(); |
508 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
509 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
510 |
a = atoms[i]->getGlobalIndex(); |
511 |
b = atoms[j]->getGlobalIndex(); |
512 |
excludedInteractions_.addPair(a, b); |
513 |
} |
514 |
} |
515 |
} |
516 |
|
517 |
} |
518 |
|
519 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
520 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
521 |
vector<Bond*>::iterator bondIter; |
522 |
vector<Bend*>::iterator bendIter; |
523 |
vector<Torsion*>::iterator torsionIter; |
524 |
vector<Inversion*>::iterator inversionIter; |
525 |
Bond* bond; |
526 |
Bend* bend; |
527 |
Torsion* torsion; |
528 |
Inversion* inversion; |
529 |
int a; |
530 |
int b; |
531 |
int c; |
532 |
int d; |
533 |
|
534 |
map<int, set<int> > atomGroups; |
535 |
Molecule::RigidBodyIterator rbIter; |
536 |
RigidBody* rb; |
537 |
Molecule::IntegrableObjectIterator ii; |
538 |
StuntDouble* integrableObject; |
539 |
|
540 |
for (integrableObject = mol->beginIntegrableObject(ii); |
541 |
integrableObject != NULL; |
542 |
integrableObject = mol->nextIntegrableObject(ii)) { |
543 |
|
544 |
if (integrableObject->isRigidBody()) { |
545 |
rb = static_cast<RigidBody*>(integrableObject); |
546 |
vector<Atom*> atoms = rb->getAtoms(); |
547 |
set<int> rigidAtoms; |
548 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
549 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
550 |
} |
551 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
552 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
553 |
} |
554 |
} else { |
555 |
set<int> oneAtomSet; |
556 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
557 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
558 |
} |
559 |
} |
560 |
|
561 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
562 |
bond = mol->nextBond(bondIter)) { |
563 |
|
564 |
a = bond->getAtomA()->getGlobalIndex(); |
565 |
b = bond->getAtomB()->getGlobalIndex(); |
566 |
|
567 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
568 |
oneTwoInteractions_.removePair(a, b); |
569 |
} else { |
570 |
excludedInteractions_.removePair(a, b); |
571 |
} |
572 |
} |
573 |
|
574 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
575 |
bend = mol->nextBend(bendIter)) { |
576 |
|
577 |
a = bend->getAtomA()->getGlobalIndex(); |
578 |
b = bend->getAtomB()->getGlobalIndex(); |
579 |
c = bend->getAtomC()->getGlobalIndex(); |
580 |
|
581 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
582 |
oneTwoInteractions_.removePair(a, b); |
583 |
oneTwoInteractions_.removePair(b, c); |
584 |
} else { |
585 |
excludedInteractions_.removePair(a, b); |
586 |
excludedInteractions_.removePair(b, c); |
587 |
} |
588 |
|
589 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
590 |
oneThreeInteractions_.removePair(a, c); |
591 |
} else { |
592 |
excludedInteractions_.removePair(a, c); |
593 |
} |
594 |
} |
595 |
|
596 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
597 |
torsion = mol->nextTorsion(torsionIter)) { |
598 |
|
599 |
a = torsion->getAtomA()->getGlobalIndex(); |
600 |
b = torsion->getAtomB()->getGlobalIndex(); |
601 |
c = torsion->getAtomC()->getGlobalIndex(); |
602 |
d = torsion->getAtomD()->getGlobalIndex(); |
603 |
|
604 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
605 |
oneTwoInteractions_.removePair(a, b); |
606 |
oneTwoInteractions_.removePair(b, c); |
607 |
oneTwoInteractions_.removePair(c, d); |
608 |
} else { |
609 |
excludedInteractions_.removePair(a, b); |
610 |
excludedInteractions_.removePair(b, c); |
611 |
excludedInteractions_.removePair(c, d); |
612 |
} |
613 |
|
614 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
615 |
oneThreeInteractions_.removePair(a, c); |
616 |
oneThreeInteractions_.removePair(b, d); |
617 |
} else { |
618 |
excludedInteractions_.removePair(a, c); |
619 |
excludedInteractions_.removePair(b, d); |
620 |
} |
621 |
|
622 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
623 |
oneFourInteractions_.removePair(a, d); |
624 |
} else { |
625 |
excludedInteractions_.removePair(a, d); |
626 |
} |
627 |
} |
628 |
|
629 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
630 |
inversion = mol->nextInversion(inversionIter)) { |
631 |
|
632 |
a = inversion->getAtomA()->getGlobalIndex(); |
633 |
b = inversion->getAtomB()->getGlobalIndex(); |
634 |
c = inversion->getAtomC()->getGlobalIndex(); |
635 |
d = inversion->getAtomD()->getGlobalIndex(); |
636 |
|
637 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
638 |
oneTwoInteractions_.removePair(a, b); |
639 |
oneTwoInteractions_.removePair(a, c); |
640 |
oneTwoInteractions_.removePair(a, d); |
641 |
} else { |
642 |
excludedInteractions_.removePair(a, b); |
643 |
excludedInteractions_.removePair(a, c); |
644 |
excludedInteractions_.removePair(a, d); |
645 |
} |
646 |
|
647 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
648 |
oneThreeInteractions_.removePair(b, c); |
649 |
oneThreeInteractions_.removePair(b, d); |
650 |
oneThreeInteractions_.removePair(c, d); |
651 |
} else { |
652 |
excludedInteractions_.removePair(b, c); |
653 |
excludedInteractions_.removePair(b, d); |
654 |
excludedInteractions_.removePair(c, d); |
655 |
} |
656 |
} |
657 |
|
658 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
659 |
rb = mol->nextRigidBody(rbIter)) { |
660 |
vector<Atom*> atoms = rb->getAtoms(); |
661 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
662 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
663 |
a = atoms[i]->getGlobalIndex(); |
664 |
b = atoms[j]->getGlobalIndex(); |
665 |
excludedInteractions_.removePair(a, b); |
666 |
} |
667 |
} |
668 |
} |
669 |
|
670 |
} |
671 |
|
672 |
|
673 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
674 |
int curStampId; |
675 |
|
676 |
//index from 0 |
677 |
curStampId = moleculeStamps_.size(); |
678 |
|
679 |
moleculeStamps_.push_back(molStamp); |
680 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
681 |
} |
682 |
|
683 |
|
684 |
/** |
685 |
* update |
686 |
* |
687 |
* Performs the global checks and variable settings after the |
688 |
* objects have been created. |
689 |
* |
690 |
*/ |
691 |
void SimInfo::update() { |
692 |
setupSimVariables(); |
693 |
calcNdf(); |
694 |
calcNdfRaw(); |
695 |
calcNdfTrans(); |
696 |
} |
697 |
|
698 |
/** |
699 |
* getSimulatedAtomTypes |
700 |
* |
701 |
* Returns an STL set of AtomType* that are actually present in this |
702 |
* simulation. Must query all processors to assemble this information. |
703 |
* |
704 |
*/ |
705 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
706 |
SimInfo::MoleculeIterator mi; |
707 |
Molecule* mol; |
708 |
Molecule::AtomIterator ai; |
709 |
Atom* atom; |
710 |
set<AtomType*> atomTypes; |
711 |
|
712 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
713 |
for(atom = mol->beginAtom(ai); atom != NULL; |
714 |
atom = mol->nextAtom(ai)) { |
715 |
atomTypes.insert(atom->getAtomType()); |
716 |
} |
717 |
} |
718 |
|
719 |
#ifdef IS_MPI |
720 |
|
721 |
// loop over the found atom types on this processor, and add their |
722 |
// numerical idents to a vector: |
723 |
|
724 |
vector<int> foundTypes; |
725 |
set<AtomType*>::iterator i; |
726 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
727 |
foundTypes.push_back( (*i)->getIdent() ); |
728 |
|
729 |
// count_local holds the number of found types on this processor |
730 |
int count_local = foundTypes.size(); |
731 |
|
732 |
int nproc = MPI::COMM_WORLD.Get_size(); |
733 |
|
734 |
// we need arrays to hold the counts and displacement vectors for |
735 |
// all processors |
736 |
vector<int> counts(nproc, 0); |
737 |
vector<int> disps(nproc, 0); |
738 |
|
739 |
// fill the counts array |
740 |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
741 |
1, MPI::INT); |
742 |
|
743 |
// use the processor counts to compute the displacement array |
744 |
disps[0] = 0; |
745 |
int totalCount = counts[0]; |
746 |
for (int iproc = 1; iproc < nproc; iproc++) { |
747 |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
748 |
totalCount += counts[iproc]; |
749 |
} |
750 |
|
751 |
// we need a (possibly redundant) set of all found types: |
752 |
vector<int> ftGlobal(totalCount); |
753 |
|
754 |
// now spray out the foundTypes to all the other processors: |
755 |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
756 |
&ftGlobal[0], &counts[0], &disps[0], |
757 |
MPI::INT); |
758 |
|
759 |
vector<int>::iterator j; |
760 |
|
761 |
// foundIdents is a stl set, so inserting an already found ident |
762 |
// will have no effect. |
763 |
set<int> foundIdents; |
764 |
|
765 |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
766 |
foundIdents.insert((*j)); |
767 |
|
768 |
// now iterate over the foundIdents and get the actual atom types |
769 |
// that correspond to these: |
770 |
set<int>::iterator it; |
771 |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
772 |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
773 |
|
774 |
#endif |
775 |
|
776 |
return atomTypes; |
777 |
} |
778 |
|
779 |
void SimInfo::setupSimVariables() { |
780 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
781 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
782 |
calcBoxDipole_ = false; |
783 |
if ( simParams_->haveAccumulateBoxDipole() ) |
784 |
if ( simParams_->getAccumulateBoxDipole() ) { |
785 |
calcBoxDipole_ = true; |
786 |
} |
787 |
|
788 |
set<AtomType*>::iterator i; |
789 |
set<AtomType*> atomTypes; |
790 |
atomTypes = getSimulatedAtomTypes(); |
791 |
int usesElectrostatic = 0; |
792 |
int usesMetallic = 0; |
793 |
int usesDirectional = 0; |
794 |
int usesFluctuatingCharges = 0; |
795 |
//loop over all of the atom types |
796 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
797 |
usesElectrostatic |= (*i)->isElectrostatic(); |
798 |
usesMetallic |= (*i)->isMetal(); |
799 |
usesDirectional |= (*i)->isDirectional(); |
800 |
usesFluctuatingCharges |= (*i)->isFluctuatingCharge(); |
801 |
} |
802 |
|
803 |
#ifdef IS_MPI |
804 |
int temp; |
805 |
temp = usesDirectional; |
806 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
807 |
|
808 |
temp = usesMetallic; |
809 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
810 |
|
811 |
temp = usesElectrostatic; |
812 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
|
814 |
temp = usesFluctuatingCharges; |
815 |
MPI_Allreduce(&temp, &usesFluctuatingCharges_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
#else |
817 |
|
818 |
usesDirectionalAtoms_ = usesDirectional; |
819 |
usesMetallicAtoms_ = usesMetallic; |
820 |
usesElectrostaticAtoms_ = usesElectrostatic; |
821 |
usesFluctuatingCharges_ = usesFluctuatingCharges; |
822 |
|
823 |
#endif |
824 |
|
825 |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
826 |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
827 |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
828 |
} |
829 |
|
830 |
|
831 |
vector<int> SimInfo::getGlobalAtomIndices() { |
832 |
SimInfo::MoleculeIterator mi; |
833 |
Molecule* mol; |
834 |
Molecule::AtomIterator ai; |
835 |
Atom* atom; |
836 |
|
837 |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
838 |
|
839 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
840 |
|
841 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
842 |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
843 |
} |
844 |
} |
845 |
return GlobalAtomIndices; |
846 |
} |
847 |
|
848 |
|
849 |
vector<int> SimInfo::getGlobalGroupIndices() { |
850 |
SimInfo::MoleculeIterator mi; |
851 |
Molecule* mol; |
852 |
Molecule::CutoffGroupIterator ci; |
853 |
CutoffGroup* cg; |
854 |
|
855 |
vector<int> GlobalGroupIndices; |
856 |
|
857 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
858 |
|
859 |
//local index of cutoff group is trivial, it only depends on the |
860 |
//order of travesing |
861 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
862 |
cg = mol->nextCutoffGroup(ci)) { |
863 |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
864 |
} |
865 |
} |
866 |
return GlobalGroupIndices; |
867 |
} |
868 |
|
869 |
|
870 |
void SimInfo::prepareTopology() { |
871 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
872 |
|
873 |
//calculate mass ratio of cutoff group |
874 |
SimInfo::MoleculeIterator mi; |
875 |
Molecule* mol; |
876 |
Molecule::CutoffGroupIterator ci; |
877 |
CutoffGroup* cg; |
878 |
Molecule::AtomIterator ai; |
879 |
Atom* atom; |
880 |
RealType totalMass; |
881 |
|
882 |
/** |
883 |
* The mass factor is the relative mass of an atom to the total |
884 |
* mass of the cutoff group it belongs to. By default, all atoms |
885 |
* are their own cutoff groups, and therefore have mass factors of |
886 |
* 1. We need some special handling for massless atoms, which |
887 |
* will be treated as carrying the entire mass of the cutoff |
888 |
* group. |
889 |
*/ |
890 |
massFactors_.clear(); |
891 |
massFactors_.resize(getNAtoms(), 1.0); |
892 |
|
893 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
894 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
895 |
cg = mol->nextCutoffGroup(ci)) { |
896 |
|
897 |
totalMass = cg->getMass(); |
898 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
899 |
// Check for massless groups - set mfact to 1 if true |
900 |
if (totalMass != 0) |
901 |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
902 |
else |
903 |
massFactors_[atom->getLocalIndex()] = 1.0; |
904 |
} |
905 |
} |
906 |
} |
907 |
|
908 |
// Build the identArray_ |
909 |
|
910 |
identArray_.clear(); |
911 |
identArray_.reserve(getNAtoms()); |
912 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
913 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
914 |
identArray_.push_back(atom->getIdent()); |
915 |
} |
916 |
} |
917 |
|
918 |
//scan topology |
919 |
|
920 |
nExclude = excludedInteractions_.getSize(); |
921 |
nOneTwo = oneTwoInteractions_.getSize(); |
922 |
nOneThree = oneThreeInteractions_.getSize(); |
923 |
nOneFour = oneFourInteractions_.getSize(); |
924 |
|
925 |
int* excludeList = excludedInteractions_.getPairList(); |
926 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
927 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
928 |
int* oneFourList = oneFourInteractions_.getPairList(); |
929 |
|
930 |
topologyDone_ = true; |
931 |
} |
932 |
|
933 |
void SimInfo::addProperty(GenericData* genData) { |
934 |
properties_.addProperty(genData); |
935 |
} |
936 |
|
937 |
void SimInfo::removeProperty(const string& propName) { |
938 |
properties_.removeProperty(propName); |
939 |
} |
940 |
|
941 |
void SimInfo::clearProperties() { |
942 |
properties_.clearProperties(); |
943 |
} |
944 |
|
945 |
vector<string> SimInfo::getPropertyNames() { |
946 |
return properties_.getPropertyNames(); |
947 |
} |
948 |
|
949 |
vector<GenericData*> SimInfo::getProperties() { |
950 |
return properties_.getProperties(); |
951 |
} |
952 |
|
953 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
954 |
return properties_.getPropertyByName(propName); |
955 |
} |
956 |
|
957 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
958 |
if (sman_ == sman) { |
959 |
return; |
960 |
} |
961 |
delete sman_; |
962 |
sman_ = sman; |
963 |
|
964 |
Molecule* mol; |
965 |
RigidBody* rb; |
966 |
Atom* atom; |
967 |
CutoffGroup* cg; |
968 |
SimInfo::MoleculeIterator mi; |
969 |
Molecule::RigidBodyIterator rbIter; |
970 |
Molecule::AtomIterator atomIter; |
971 |
Molecule::CutoffGroupIterator cgIter; |
972 |
|
973 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
974 |
|
975 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
976 |
atom->setSnapshotManager(sman_); |
977 |
} |
978 |
|
979 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
980 |
rb->setSnapshotManager(sman_); |
981 |
} |
982 |
|
983 |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
984 |
cg->setSnapshotManager(sman_); |
985 |
} |
986 |
} |
987 |
|
988 |
} |
989 |
|
990 |
Vector3d SimInfo::getComVel(){ |
991 |
SimInfo::MoleculeIterator i; |
992 |
Molecule* mol; |
993 |
|
994 |
Vector3d comVel(0.0); |
995 |
RealType totalMass = 0.0; |
996 |
|
997 |
|
998 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
999 |
RealType mass = mol->getMass(); |
1000 |
totalMass += mass; |
1001 |
comVel += mass * mol->getComVel(); |
1002 |
} |
1003 |
|
1004 |
#ifdef IS_MPI |
1005 |
RealType tmpMass = totalMass; |
1006 |
Vector3d tmpComVel(comVel); |
1007 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1008 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1009 |
#endif |
1010 |
|
1011 |
comVel /= totalMass; |
1012 |
|
1013 |
return comVel; |
1014 |
} |
1015 |
|
1016 |
Vector3d SimInfo::getCom(){ |
1017 |
SimInfo::MoleculeIterator i; |
1018 |
Molecule* mol; |
1019 |
|
1020 |
Vector3d com(0.0); |
1021 |
RealType totalMass = 0.0; |
1022 |
|
1023 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1024 |
RealType mass = mol->getMass(); |
1025 |
totalMass += mass; |
1026 |
com += mass * mol->getCom(); |
1027 |
} |
1028 |
|
1029 |
#ifdef IS_MPI |
1030 |
RealType tmpMass = totalMass; |
1031 |
Vector3d tmpCom(com); |
1032 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1033 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1034 |
#endif |
1035 |
|
1036 |
com /= totalMass; |
1037 |
|
1038 |
return com; |
1039 |
|
1040 |
} |
1041 |
|
1042 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1043 |
|
1044 |
return o; |
1045 |
} |
1046 |
|
1047 |
|
1048 |
/* |
1049 |
Returns center of mass and center of mass velocity in one function call. |
1050 |
*/ |
1051 |
|
1052 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1053 |
SimInfo::MoleculeIterator i; |
1054 |
Molecule* mol; |
1055 |
|
1056 |
|
1057 |
RealType totalMass = 0.0; |
1058 |
|
1059 |
|
1060 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1061 |
RealType mass = mol->getMass(); |
1062 |
totalMass += mass; |
1063 |
com += mass * mol->getCom(); |
1064 |
comVel += mass * mol->getComVel(); |
1065 |
} |
1066 |
|
1067 |
#ifdef IS_MPI |
1068 |
RealType tmpMass = totalMass; |
1069 |
Vector3d tmpCom(com); |
1070 |
Vector3d tmpComVel(comVel); |
1071 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1072 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1073 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1074 |
#endif |
1075 |
|
1076 |
com /= totalMass; |
1077 |
comVel /= totalMass; |
1078 |
} |
1079 |
|
1080 |
/* |
1081 |
Return intertia tensor for entire system and angular momentum Vector. |
1082 |
|
1083 |
|
1084 |
[ Ixx -Ixy -Ixz ] |
1085 |
J =| -Iyx Iyy -Iyz | |
1086 |
[ -Izx -Iyz Izz ] |
1087 |
*/ |
1088 |
|
1089 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1090 |
|
1091 |
|
1092 |
RealType xx = 0.0; |
1093 |
RealType yy = 0.0; |
1094 |
RealType zz = 0.0; |
1095 |
RealType xy = 0.0; |
1096 |
RealType xz = 0.0; |
1097 |
RealType yz = 0.0; |
1098 |
Vector3d com(0.0); |
1099 |
Vector3d comVel(0.0); |
1100 |
|
1101 |
getComAll(com, comVel); |
1102 |
|
1103 |
SimInfo::MoleculeIterator i; |
1104 |
Molecule* mol; |
1105 |
|
1106 |
Vector3d thisq(0.0); |
1107 |
Vector3d thisv(0.0); |
1108 |
|
1109 |
RealType thisMass = 0.0; |
1110 |
|
1111 |
|
1112 |
|
1113 |
|
1114 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1115 |
|
1116 |
thisq = mol->getCom()-com; |
1117 |
thisv = mol->getComVel()-comVel; |
1118 |
thisMass = mol->getMass(); |
1119 |
// Compute moment of intertia coefficients. |
1120 |
xx += thisq[0]*thisq[0]*thisMass; |
1121 |
yy += thisq[1]*thisq[1]*thisMass; |
1122 |
zz += thisq[2]*thisq[2]*thisMass; |
1123 |
|
1124 |
// compute products of intertia |
1125 |
xy += thisq[0]*thisq[1]*thisMass; |
1126 |
xz += thisq[0]*thisq[2]*thisMass; |
1127 |
yz += thisq[1]*thisq[2]*thisMass; |
1128 |
|
1129 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1130 |
|
1131 |
} |
1132 |
|
1133 |
|
1134 |
inertiaTensor(0,0) = yy + zz; |
1135 |
inertiaTensor(0,1) = -xy; |
1136 |
inertiaTensor(0,2) = -xz; |
1137 |
inertiaTensor(1,0) = -xy; |
1138 |
inertiaTensor(1,1) = xx + zz; |
1139 |
inertiaTensor(1,2) = -yz; |
1140 |
inertiaTensor(2,0) = -xz; |
1141 |
inertiaTensor(2,1) = -yz; |
1142 |
inertiaTensor(2,2) = xx + yy; |
1143 |
|
1144 |
#ifdef IS_MPI |
1145 |
Mat3x3d tmpI(inertiaTensor); |
1146 |
Vector3d tmpAngMom; |
1147 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1148 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1149 |
#endif |
1150 |
|
1151 |
return; |
1152 |
} |
1153 |
|
1154 |
//Returns the angular momentum of the system |
1155 |
Vector3d SimInfo::getAngularMomentum(){ |
1156 |
|
1157 |
Vector3d com(0.0); |
1158 |
Vector3d comVel(0.0); |
1159 |
Vector3d angularMomentum(0.0); |
1160 |
|
1161 |
getComAll(com,comVel); |
1162 |
|
1163 |
SimInfo::MoleculeIterator i; |
1164 |
Molecule* mol; |
1165 |
|
1166 |
Vector3d thisr(0.0); |
1167 |
Vector3d thisp(0.0); |
1168 |
|
1169 |
RealType thisMass; |
1170 |
|
1171 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1172 |
thisMass = mol->getMass(); |
1173 |
thisr = mol->getCom()-com; |
1174 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1175 |
|
1176 |
angularMomentum += cross( thisr, thisp ); |
1177 |
|
1178 |
} |
1179 |
|
1180 |
#ifdef IS_MPI |
1181 |
Vector3d tmpAngMom; |
1182 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1183 |
#endif |
1184 |
|
1185 |
return angularMomentum; |
1186 |
} |
1187 |
|
1188 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1189 |
return IOIndexToIntegrableObject.at(index); |
1190 |
} |
1191 |
|
1192 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1193 |
IOIndexToIntegrableObject= v; |
1194 |
} |
1195 |
|
1196 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1197 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1198 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1199 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1200 |
*/ |
1201 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1202 |
Mat3x3d intTensor; |
1203 |
RealType det; |
1204 |
Vector3d dummyAngMom; |
1205 |
RealType sysconstants; |
1206 |
RealType geomCnst; |
1207 |
|
1208 |
geomCnst = 3.0/2.0; |
1209 |
/* Get the inertial tensor and angular momentum for free*/ |
1210 |
getInertiaTensor(intTensor,dummyAngMom); |
1211 |
|
1212 |
det = intTensor.determinant(); |
1213 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1214 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
1215 |
return; |
1216 |
} |
1217 |
|
1218 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1219 |
Mat3x3d intTensor; |
1220 |
Vector3d dummyAngMom; |
1221 |
RealType sysconstants; |
1222 |
RealType geomCnst; |
1223 |
|
1224 |
geomCnst = 3.0/2.0; |
1225 |
/* Get the inertial tensor and angular momentum for free*/ |
1226 |
getInertiaTensor(intTensor,dummyAngMom); |
1227 |
|
1228 |
detI = intTensor.determinant(); |
1229 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1230 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
1231 |
return; |
1232 |
} |
1233 |
/* |
1234 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1235 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1236 |
sdByGlobalIndex_ = v; |
1237 |
} |
1238 |
|
1239 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1240 |
//assert(index < nAtoms_ + nRigidBodies_); |
1241 |
return sdByGlobalIndex_.at(index); |
1242 |
} |
1243 |
*/ |
1244 |
int SimInfo::getNGlobalConstraints() { |
1245 |
int nGlobalConstraints; |
1246 |
#ifdef IS_MPI |
1247 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1248 |
MPI_COMM_WORLD); |
1249 |
#else |
1250 |
nGlobalConstraints = nConstraints_; |
1251 |
#endif |
1252 |
return nGlobalConstraints; |
1253 |
} |
1254 |
|
1255 |
}//end namespace OpenMD |
1256 |
|