ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 701 by chrisfen, Wed Oct 26 23:32:25 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1601 by gezelter, Thu Aug 4 20:04:35 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
59 < #include "UseTheForce/notifyCutoffs_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 + #include "io/ForceFieldOptions.hpp"
61 + #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
68 <
69 < namespace oopse {
70 <
71 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
72 <                   ForceField* ff, Globals* simParams) :
73 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
74 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
73 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
74 <    sman_(NULL), fortranInitialized_(false) {
75 <
81 <            
82 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
83 <      MoleculeStamp* molStamp;
84 <      int nMolWithSameStamp;
85 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
87 <      CutoffGroupStamp* cgStamp;    
88 <      RigidBodyStamp* rbStamp;
89 <      int nRigidAtoms = 0;
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76      
77 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
78 <        molStamp = i->first;
79 <        nMolWithSameStamp = i->second;
80 <        
81 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
82 <
83 <        //calculate atoms in molecules
84 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
85 <
86 <
87 <        //calculate atoms in cutoff groups
88 <        int nAtomsInGroups = 0;
89 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
90 <        
91 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
92 <          cgStamp = molStamp->getCutoffGroup(j);
93 <          nAtomsInGroups += cgStamp->getNMembers();
94 <        }
95 <
96 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
97 <
98 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
99 <
100 <        //calculate atoms in rigid bodies
101 <        int nAtomsInRigidBodies = 0;
102 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <          rbStamp = molStamp->getRigidBody(j);
120 <          nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
144 <
145 < #ifdef IS_MPI    
146 <      molToProcMap_.resize(nGlobalMols_);
147 < #endif
148 <
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128  
129 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 +    
131 +    //every free atom (atom does not belong to rigid bodies) is an
132 +    //integrable object therefore the total number of integrable objects
133 +    //in the system is equal to the total number of atoms minus number of
134 +    //atoms belong to rigid body defined in meta-data file plus the number
135 +    //of rigid bodies defined in meta-data file
136 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 +      + nGlobalRigidBodies_;
138 +    
139 +    nGlobalMols_ = molStampIds_.size();
140 +    molToProcMap_.resize(nGlobalMols_);
141 +  }
142 +  
143    SimInfo::~SimInfo() {
144 <    std::map<int, Molecule*>::iterator i;
144 >    map<int, Molecule*>::iterator i;
145      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146        delete i->second;
147      }
148      molecules_.clear();
149        
158    delete stamps_;
150      delete sman_;
151      delete simParams_;
152      delete forceField_;
153    }
154  
164  int SimInfo::getNGlobalConstraints() {
165    int nGlobalConstraints;
166 #ifdef IS_MPI
167    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
168                  MPI_COMM_WORLD);    
169 #else
170    nGlobalConstraints =  nConstraints_;
171 #endif
172    return nGlobalConstraints;
173  }
155  
156    bool SimInfo::addMolecule(Molecule* mol) {
157      MoleculeIterator i;
158 <
158 >    
159      i = molecules_.find(mol->getGlobalIndex());
160      if (i == molecules_.end() ) {
161 <
162 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
163 <        
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164        nAtoms_ += mol->getNAtoms();
165        nBonds_ += mol->getNBonds();
166        nBends_ += mol->getNBends();
167        nTorsions_ += mol->getNTorsions();
168 +      nInversions_ += mol->getNInversions();
169        nRigidBodies_ += mol->getNRigidBodies();
170        nIntegrableObjects_ += mol->getNIntegrableObjects();
171        nCutoffGroups_ += mol->getNCutoffGroups();
172        nConstraints_ += mol->getNConstraintPairs();
173 <
174 <      addExcludePairs(mol);
175 <        
173 >      
174 >      addInteractionPairs(mol);
175 >      
176        return true;
177      } else {
178        return false;
179      }
180    }
181 <
181 >  
182    bool SimInfo::removeMolecule(Molecule* mol) {
183      MoleculeIterator i;
184      i = molecules_.find(mol->getGlobalIndex());
# Line 209 | Line 191 | namespace oopse {
191        nBonds_ -= mol->getNBonds();
192        nBends_ -= mol->getNBends();
193        nTorsions_ -= mol->getNTorsions();
194 +      nInversions_ -= mol->getNInversions();
195        nRigidBodies_ -= mol->getNRigidBodies();
196        nIntegrableObjects_ -= mol->getNIntegrableObjects();
197        nCutoffGroups_ -= mol->getNCutoffGroups();
198        nConstraints_ -= mol->getNConstraintPairs();
199  
200 <      removeExcludePairs(mol);
200 >      removeInteractionPairs(mol);
201        molecules_.erase(mol->getGlobalIndex());
202  
203        delete mol;
# Line 223 | Line 206 | namespace oopse {
206      } else {
207        return false;
208      }
226
227
209    }    
210  
211          
# Line 242 | Line 223 | namespace oopse {
223    void SimInfo::calcNdf() {
224      int ndf_local;
225      MoleculeIterator i;
226 <    std::vector<StuntDouble*>::iterator j;
226 >    vector<StuntDouble*>::iterator j;
227      Molecule* mol;
228      StuntDouble* integrableObject;
229  
# Line 262 | Line 243 | namespace oopse {
243            }
244          }
245              
246 <      }//end for (integrableObject)
247 <    }// end for (mol)
246 >      }
247 >    }
248      
249      // n_constraints is local, so subtract them on each processor
250      ndf_local -= nConstraints_;
# Line 280 | Line 261 | namespace oopse {
261  
262    }
263  
264 +  int SimInfo::getFdf() {
265 + #ifdef IS_MPI
266 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 + #else
268 +    fdf_ = fdf_local;
269 + #endif
270 +    return fdf_;
271 +  }
272 +  
273 +  unsigned int SimInfo::getNLocalCutoffGroups(){
274 +    int nLocalCutoffAtoms = 0;
275 +    Molecule* mol;
276 +    MoleculeIterator mi;
277 +    CutoffGroup* cg;
278 +    Molecule::CutoffGroupIterator ci;
279 +    
280 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 +      
282 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 +           cg = mol->nextCutoffGroup(ci)) {
284 +        nLocalCutoffAtoms += cg->getNumAtom();
285 +        
286 +      }        
287 +    }
288 +    
289 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 +  }
291 +    
292    void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
295      MoleculeIterator i;
296 <    std::vector<StuntDouble*>::iterator j;
296 >    vector<StuntDouble*>::iterator j;
297      Molecule* mol;
298      StuntDouble* integrableObject;
299  
# Line 331 | Line 340 | namespace oopse {
340  
341    }
342  
343 <  void SimInfo::addExcludePairs(Molecule* mol) {
344 <    std::vector<Bond*>::iterator bondIter;
345 <    std::vector<Bend*>::iterator bendIter;
346 <    std::vector<Torsion*>::iterator torsionIter;
343 >  void SimInfo::addInteractionPairs(Molecule* mol) {
344 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349      Bond* bond;
350      Bend* bend;
351      Torsion* torsion;
352 +    Inversion* inversion;
353      int a;
354      int b;
355      int c;
356      int d;
357 +
358 +    // atomGroups can be used to add special interaction maps between
359 +    // groups of atoms that are in two separate rigid bodies.
360 +    // However, most site-site interactions between two rigid bodies
361 +    // are probably not special, just the ones between the physically
362 +    // bonded atoms.  Interactions *within* a single rigid body should
363 +    // always be excluded.  These are done at the bottom of this
364 +    // function.
365 +
366 +    map<int, set<int> > atomGroups;
367 +    Molecule::RigidBodyIterator rbIter;
368 +    RigidBody* rb;
369 +    Molecule::IntegrableObjectIterator ii;
370 +    StuntDouble* integrableObject;
371      
372 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
372 >    for (integrableObject = mol->beginIntegrableObject(ii);
373 >         integrableObject != NULL;
374 >         integrableObject = mol->nextIntegrableObject(ii)) {
375 >      
376 >      if (integrableObject->isRigidBody()) {
377 >        rb = static_cast<RigidBody*>(integrableObject);
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >        }
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >        }      
386 >      } else {
387 >        set<int> oneAtomSet;
388 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 >      }
391 >    }  
392 >          
393 >    for (bond= mol->beginBond(bondIter); bond != NULL;
394 >         bond = mol->nextBond(bondIter)) {
395 >
396        a = bond->getAtomA()->getGlobalIndex();
397 <      b = bond->getAtomB()->getGlobalIndex();        
398 <      exclude_.addPair(a, b);
397 >      b = bond->getAtomB()->getGlobalIndex();  
398 >    
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);
401 >      } else {
402 >        excludedInteractions_.addPair(a, b);
403 >      }
404      }
405  
406 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
406 >    for (bend= mol->beginBend(bendIter); bend != NULL;
407 >         bend = mol->nextBend(bendIter)) {
408 >
409        a = bend->getAtomA()->getGlobalIndex();
410        b = bend->getAtomB()->getGlobalIndex();        
411        c = bend->getAtomC()->getGlobalIndex();
412 +      
413 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 +        oneTwoInteractions_.addPair(a, b);      
415 +        oneTwoInteractions_.addPair(b, c);
416 +      } else {
417 +        excludedInteractions_.addPair(a, b);
418 +        excludedInteractions_.addPair(b, c);
419 +      }
420  
421 <      exclude_.addPair(a, b);
422 <      exclude_.addPair(a, c);
423 <      exclude_.addPair(b, c);        
421 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
422 >        oneThreeInteractions_.addPair(a, c);      
423 >      } else {
424 >        excludedInteractions_.addPair(a, c);
425 >      }
426      }
427  
428 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
428 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
429 >         torsion = mol->nextTorsion(torsionIter)) {
430 >
431        a = torsion->getAtomA()->getGlobalIndex();
432        b = torsion->getAtomB()->getGlobalIndex();        
433        c = torsion->getAtomC()->getGlobalIndex();        
434 <      d = torsion->getAtomD()->getGlobalIndex();        
434 >      d = torsion->getAtomD()->getGlobalIndex();      
435  
436 <      exclude_.addPair(a, b);
437 <      exclude_.addPair(a, c);
438 <      exclude_.addPair(a, d);
439 <      exclude_.addPair(b, c);
440 <      exclude_.addPair(b, d);
441 <      exclude_.addPair(c, d);        
436 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
437 >        oneTwoInteractions_.addPair(a, b);      
438 >        oneTwoInteractions_.addPair(b, c);
439 >        oneTwoInteractions_.addPair(c, d);
440 >      } else {
441 >        excludedInteractions_.addPair(a, b);
442 >        excludedInteractions_.addPair(b, c);
443 >        excludedInteractions_.addPair(c, d);
444 >      }
445 >
446 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
447 >        oneThreeInteractions_.addPair(a, c);      
448 >        oneThreeInteractions_.addPair(b, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, c);
451 >        excludedInteractions_.addPair(b, d);
452 >      }
453 >
454 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
455 >        oneFourInteractions_.addPair(a, d);      
456 >      } else {
457 >        excludedInteractions_.addPair(a, d);
458 >      }
459      }
460  
461 <    Molecule::RigidBodyIterator rbIter;
462 <    RigidBody* rb;
463 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
464 <      std::vector<Atom*> atoms = rb->getAtoms();
465 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
466 <        for (int j = i + 1; j < atoms.size(); ++j) {
461 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
462 >         inversion = mol->nextInversion(inversionIter)) {
463 >
464 >      a = inversion->getAtomA()->getGlobalIndex();
465 >      b = inversion->getAtomB()->getGlobalIndex();        
466 >      c = inversion->getAtomC()->getGlobalIndex();        
467 >      d = inversion->getAtomD()->getGlobalIndex();        
468 >
469 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
470 >        oneTwoInteractions_.addPair(a, b);      
471 >        oneTwoInteractions_.addPair(a, c);
472 >        oneTwoInteractions_.addPair(a, d);
473 >      } else {
474 >        excludedInteractions_.addPair(a, b);
475 >        excludedInteractions_.addPair(a, c);
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478 >
479 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
480 >        oneThreeInteractions_.addPair(b, c);    
481 >        oneThreeInteractions_.addPair(b, d);    
482 >        oneThreeInteractions_.addPair(c, d);      
483 >      } else {
484 >        excludedInteractions_.addPair(b, c);
485 >        excludedInteractions_.addPair(b, d);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488 >    }
489 >
490 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >         rb = mol->nextRigidBody(rbIter)) {
492 >      vector<Atom*> atoms = rb->getAtoms();
493 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495            a = atoms[i]->getGlobalIndex();
496            b = atoms[j]->getGlobalIndex();
497 <          exclude_.addPair(a, b);
497 >          excludedInteractions_.addPair(a, b);
498          }
499        }
500      }        
501  
502    }
503  
504 <  void SimInfo::removeExcludePairs(Molecule* mol) {
505 <    std::vector<Bond*>::iterator bondIter;
506 <    std::vector<Bend*>::iterator bendIter;
507 <    std::vector<Torsion*>::iterator torsionIter;
504 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
505 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
513 +    Inversion* inversion;
514      int a;
515      int b;
516      int c;
517      int d;
518 +
519 +    map<int, set<int> > atomGroups;
520 +    Molecule::RigidBodyIterator rbIter;
521 +    RigidBody* rb;
522 +    Molecule::IntegrableObjectIterator ii;
523 +    StuntDouble* integrableObject;
524      
525 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
525 >    for (integrableObject = mol->beginIntegrableObject(ii);
526 >         integrableObject != NULL;
527 >         integrableObject = mol->nextIntegrableObject(ii)) {
528 >      
529 >      if (integrableObject->isRigidBody()) {
530 >        rb = static_cast<RigidBody*>(integrableObject);
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 >        }
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 >        }      
539 >      } else {
540 >        set<int> oneAtomSet;
541 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543 >      }
544 >    }  
545 >
546 >    for (bond= mol->beginBond(bondIter); bond != NULL;
547 >         bond = mol->nextBond(bondIter)) {
548 >      
549        a = bond->getAtomA()->getGlobalIndex();
550 <      b = bond->getAtomB()->getGlobalIndex();        
551 <      exclude_.removePair(a, b);
550 >      b = bond->getAtomB()->getGlobalIndex();  
551 >    
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);
554 >      } else {
555 >        excludedInteractions_.removePair(a, b);
556 >      }
557      }
558  
559 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
559 >    for (bend= mol->beginBend(bendIter); bend != NULL;
560 >         bend = mol->nextBend(bendIter)) {
561 >
562        a = bend->getAtomA()->getGlobalIndex();
563        b = bend->getAtomB()->getGlobalIndex();        
564        c = bend->getAtomC()->getGlobalIndex();
565 +      
566 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 +        oneTwoInteractions_.removePair(a, b);      
568 +        oneTwoInteractions_.removePair(b, c);
569 +      } else {
570 +        excludedInteractions_.removePair(a, b);
571 +        excludedInteractions_.removePair(b, c);
572 +      }
573  
574 <      exclude_.removePair(a, b);
575 <      exclude_.removePair(a, c);
576 <      exclude_.removePair(b, c);        
574 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
575 >        oneThreeInteractions_.removePair(a, c);      
576 >      } else {
577 >        excludedInteractions_.removePair(a, c);
578 >      }
579      }
580  
581 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
581 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
582 >         torsion = mol->nextTorsion(torsionIter)) {
583 >
584        a = torsion->getAtomA()->getGlobalIndex();
585        b = torsion->getAtomB()->getGlobalIndex();        
586        c = torsion->getAtomC()->getGlobalIndex();        
587 <      d = torsion->getAtomD()->getGlobalIndex();        
587 >      d = torsion->getAtomD()->getGlobalIndex();      
588 >  
589 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
590 >        oneTwoInteractions_.removePair(a, b);      
591 >        oneTwoInteractions_.removePair(b, c);
592 >        oneTwoInteractions_.removePair(c, d);
593 >      } else {
594 >        excludedInteractions_.removePair(a, b);
595 >        excludedInteractions_.removePair(b, c);
596 >        excludedInteractions_.removePair(c, d);
597 >      }
598  
599 <      exclude_.removePair(a, b);
600 <      exclude_.removePair(a, c);
601 <      exclude_.removePair(a, d);
602 <      exclude_.removePair(b, c);
603 <      exclude_.removePair(b, d);
604 <      exclude_.removePair(c, d);        
599 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
600 >        oneThreeInteractions_.removePair(a, c);      
601 >        oneThreeInteractions_.removePair(b, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, c);
604 >        excludedInteractions_.removePair(b, d);
605 >      }
606 >
607 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
608 >        oneFourInteractions_.removePair(a, d);      
609 >      } else {
610 >        excludedInteractions_.removePair(a, d);
611 >      }
612      }
613  
614 <    Molecule::RigidBodyIterator rbIter;
615 <    RigidBody* rb;
616 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
617 <      std::vector<Atom*> atoms = rb->getAtoms();
618 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
619 <        for (int j = i + 1; j < atoms.size(); ++j) {
614 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
615 >         inversion = mol->nextInversion(inversionIter)) {
616 >
617 >      a = inversion->getAtomA()->getGlobalIndex();
618 >      b = inversion->getAtomB()->getGlobalIndex();        
619 >      c = inversion->getAtomC()->getGlobalIndex();        
620 >      d = inversion->getAtomD()->getGlobalIndex();        
621 >
622 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
623 >        oneTwoInteractions_.removePair(a, b);      
624 >        oneTwoInteractions_.removePair(a, c);
625 >        oneTwoInteractions_.removePair(a, d);
626 >      } else {
627 >        excludedInteractions_.removePair(a, b);
628 >        excludedInteractions_.removePair(a, c);
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631 >
632 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
633 >        oneThreeInteractions_.removePair(b, c);    
634 >        oneThreeInteractions_.removePair(b, d);    
635 >        oneThreeInteractions_.removePair(c, d);      
636 >      } else {
637 >        excludedInteractions_.removePair(b, c);
638 >        excludedInteractions_.removePair(b, d);
639 >        excludedInteractions_.removePair(c, d);
640 >      }
641 >    }
642 >
643 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644 >         rb = mol->nextRigidBody(rbIter)) {
645 >      vector<Atom*> atoms = rb->getAtoms();
646 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648            a = atoms[i]->getGlobalIndex();
649            b = atoms[j]->getGlobalIndex();
650 <          exclude_.removePair(a, b);
650 >          excludedInteractions_.removePair(a, b);
651          }
652        }
653      }        
654 <
654 >    
655    }
656 <
657 <
656 >  
657 >  
658    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
659      int curStampId;
660 <
660 >    
661      //index from 0
662      curStampId = moleculeStamps_.size();
663  
# Line 456 | Line 665 | namespace oopse {
665      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666    }
667  
459  void SimInfo::update() {
668  
669 <    setupSimType();
670 <
671 < #ifdef IS_MPI
672 <    setupFortranParallel();
673 < #endif
674 <
675 <    setupFortranSim();
676 <
677 <    //setup fortran force field
470 <    /** @deprecate */    
471 <    int isError = 0;
472 <    
473 <    setupElectrostaticSummationMethod( isError );
474 <
475 <    if(isError){
476 <      sprintf( painCave.errMsg,
477 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
478 <      painCave.isFatal = 1;
479 <      simError();
480 <    }
481 <  
482 <    
483 <    setupCutoff();
484 <
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
488
489    fortranInitialized_ = true;
681    }
682 <
683 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
682 >  
683 >  /**
684 >   * getSimulatedAtomTypes
685 >   *
686 >   * Returns an STL set of AtomType* that are actually present in this
687 >   * simulation.  Must query all processors to assemble this information.
688 >   *
689 >   */
690 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691      SimInfo::MoleculeIterator mi;
692      Molecule* mol;
693      Molecule::AtomIterator ai;
694      Atom* atom;
695 <    std::set<AtomType*> atomTypes;
696 <
695 >    set<AtomType*> atomTypes;
696 >    
697      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
698 <
699 <      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
698 >      for(atom = mol->beginAtom(ai); atom != NULL;
699 >          atom = mol->nextAtom(ai)) {
700          atomTypes.insert(atom->getAtomType());
701 <      }
702 <        
703 <    }
701 >      }      
702 >    }    
703 >    
704 > #ifdef IS_MPI
705  
706 <    return atomTypes;        
707 <  }
509 <
510 <  void SimInfo::setupSimType() {
511 <    std::set<AtomType*>::iterator i;
512 <    std::set<AtomType*> atomTypes;
513 <    atomTypes = getUniqueAtomTypes();
706 >    // loop over the found atom types on this processor, and add their
707 >    // numerical idents to a vector:
708      
709 <    int useLennardJones = 0;
710 <    int useElectrostatic = 0;
711 <    int useEAM = 0;
712 <    int useCharge = 0;
519 <    int useDirectional = 0;
520 <    int useDipole = 0;
521 <    int useGayBerne = 0;
522 <    int useSticky = 0;
523 <    int useStickyPower = 0;
524 <    int useShape = 0;
525 <    int useFLARB = 0; //it is not in AtomType yet
526 <    int useDirectionalAtom = 0;    
527 <    int useElectrostatics = 0;
528 <    //usePBC and useRF are from simParams
529 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
530 <    int useRF;
531 <    std::string myMethod;
709 >    vector<int> foundTypes;
710 >    set<AtomType*>::iterator i;
711 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
712 >      foundTypes.push_back( (*i)->getIdent() );
713  
714 <    // set the useRF logical
715 <    useRF = 0;
714 >    // count_local holds the number of found types on this processor
715 >    int count_local = foundTypes.size();
716  
717 +    int nproc = MPI::COMM_WORLD.Get_size();
718  
719 <    if (simParams_->haveElectrostaticSummationMethod()) {
720 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
721 <      toUpper(myMethod);
722 <      if (myMethod == "REACTION_FIELD") {
541 <        useRF=1;
542 <      }
543 <    }
719 >    // we need arrays to hold the counts and displacement vectors for
720 >    // all processors
721 >    vector<int> counts(nproc, 0);
722 >    vector<int> disps(nproc, 0);
723  
724 <    //loop over all of the atom types
725 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
726 <      useLennardJones |= (*i)->isLennardJones();
727 <      useElectrostatic |= (*i)->isElectrostatic();
728 <      useEAM |= (*i)->isEAM();
729 <      useCharge |= (*i)->isCharge();
730 <      useDirectional |= (*i)->isDirectional();
731 <      useDipole |= (*i)->isDipole();
732 <      useGayBerne |= (*i)->isGayBerne();
733 <      useSticky |= (*i)->isSticky();
555 <      useStickyPower |= (*i)->isStickyPower();
556 <      useShape |= (*i)->isShape();
724 >    // fill the counts array
725 >    MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0],
726 >                              1, MPI::INT);
727 >  
728 >    // use the processor counts to compute the displacement array
729 >    disps[0] = 0;    
730 >    int totalCount = counts[0];
731 >    for (int iproc = 1; iproc < nproc; iproc++) {
732 >      disps[iproc] = disps[iproc-1] + counts[iproc-1];
733 >      totalCount += counts[iproc];
734      }
735  
736 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
737 <      useDirectionalAtom = 1;
738 <    }
736 >    // we need a (possibly redundant) set of all found types:
737 >    vector<int> ftGlobal(totalCount);
738 >    
739 >    // now spray out the foundTypes to all the other processors:    
740 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
741 >                               &ftGlobal[0], &counts[0], &disps[0],
742 >                               MPI::INT);
743  
744 <    if (useCharge || useDipole) {
564 <      useElectrostatics = 1;
565 <    }
744 >    vector<int>::iterator j;
745  
746 < #ifdef IS_MPI    
747 <    int temp;
746 >    // foundIdents is a stl set, so inserting an already found ident
747 >    // will have no effect.
748 >    set<int> foundIdents;
749  
750 <    temp = usePBC;
751 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
750 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
751 >      foundIdents.insert((*j));
752 >    
753 >    // now iterate over the foundIdents and get the actual atom types
754 >    // that correspond to these:
755 >    set<int>::iterator it;
756 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
757 >      atomTypes.insert( forceField_->getAtomType((*it)) );
758 >
759 > #endif
760  
761 <    temp = useDirectionalAtom;
762 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
761 >    return atomTypes;        
762 >  }
763  
764 <    temp = useLennardJones;
765 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 >  void SimInfo::setupSimVariables() {
765 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
766 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
767 >    calcBoxDipole_ = false;
768 >    if ( simParams_->haveAccumulateBoxDipole() )
769 >      if ( simParams_->getAccumulateBoxDipole() ) {
770 >        calcBoxDipole_ = true;      
771 >      }
772 >    
773 >    set<AtomType*>::iterator i;
774 >    set<AtomType*> atomTypes;
775 >    atomTypes = getSimulatedAtomTypes();    
776 >    int usesElectrostatic = 0;
777 >    int usesMetallic = 0;
778 >    int usesDirectional = 0;
779 >    //loop over all of the atom types
780 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
781 >      usesElectrostatic |= (*i)->isElectrostatic();
782 >      usesMetallic |= (*i)->isMetal();
783 >      usesDirectional |= (*i)->isDirectional();
784 >    }
785 >    
786 > #ifdef IS_MPI    
787 >    int temp;
788 >    temp = usesDirectional;
789 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
790 >    
791 >    temp = usesMetallic;
792 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
793 >    
794 >    temp = usesElectrostatic;
795 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
796 > #else
797  
798 <    temp = useElectrostatics;
799 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
798 >    usesDirectionalAtoms_ = usesDirectional;
799 >    usesMetallicAtoms_ = usesMetallic;
800 >    usesElectrostaticAtoms_ = usesElectrostatic;
801  
802 <    temp = useCharge;
803 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
802 > #endif
803 >    
804 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
805 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
806 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
807 >  }
808  
585    temp = useDipole;
586    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
809  
810 <    temp = useSticky;
811 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810 >  vector<int> SimInfo::getGlobalAtomIndices() {
811 >    SimInfo::MoleculeIterator mi;
812 >    Molecule* mol;
813 >    Molecule::AtomIterator ai;
814 >    Atom* atom;
815  
816 <    temp = useStickyPower;
592 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
816 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
817      
818 <    temp = useGayBerne;
819 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
818 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
819 >      
820 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
821 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
822 >      }
823 >    }
824 >    return GlobalAtomIndices;
825 >  }
826  
597    temp = useEAM;
598    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
827  
828 <    temp = useShape;
829 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
828 >  vector<int> SimInfo::getGlobalGroupIndices() {
829 >    SimInfo::MoleculeIterator mi;
830 >    Molecule* mol;
831 >    Molecule::CutoffGroupIterator ci;
832 >    CutoffGroup* cg;
833  
834 <    temp = useFLARB;
835 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
836 <
606 <    temp = useRF;
607 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
608 <
609 < #endif
610 <
611 <    fInfo_.SIM_uses_PBC = usePBC;    
612 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
613 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
614 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
615 <    fInfo_.SIM_uses_Charges = useCharge;
616 <    fInfo_.SIM_uses_Dipoles = useDipole;
617 <    fInfo_.SIM_uses_Sticky = useSticky;
618 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
619 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
620 <    fInfo_.SIM_uses_EAM = useEAM;
621 <    fInfo_.SIM_uses_Shapes = useShape;
622 <    fInfo_.SIM_uses_FLARB = useFLARB;
623 <    fInfo_.SIM_uses_RF = useRF;
624 <
625 <    if( myMethod == "REACTION_FIELD") {
834 >    vector<int> GlobalGroupIndices;
835 >    
836 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
837        
838 <      if (simParams_->haveDielectric()) {
839 <        fInfo_.dielect = simParams_->getDielectric();
840 <      } else {
841 <        sprintf(painCave.errMsg,
842 <                "SimSetup Error: No Dielectric constant was set.\n"
843 <                "\tYou are trying to use Reaction Field without"
633 <                "\tsetting a dielectric constant!\n");
634 <        painCave.isFatal = 1;
635 <        simError();
636 <      }      
838 >      //local index of cutoff group is trivial, it only depends on the
839 >      //order of travesing
840 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
841 >           cg = mol->nextCutoffGroup(ci)) {
842 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
843 >      }        
844      }
845 +    return GlobalGroupIndices;
846    }
847  
640  void SimInfo::setupFortranSim() {
641    int isError;
642    int nExclude;
643    std::vector<int> fortranGlobalGroupMembership;
644    
645    nExclude = exclude_.getSize();
646    isError = 0;
848  
849 <    //globalGroupMembership_ is filled by SimCreator    
850 <    for (int i = 0; i < nGlobalAtoms_; i++) {
650 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
651 <    }
849 >  void SimInfo::prepareTopology() {
850 >    int nExclude, nOneTwo, nOneThree, nOneFour;
851  
852      //calculate mass ratio of cutoff group
654    std::vector<double> mfact;
853      SimInfo::MoleculeIterator mi;
854      Molecule* mol;
855      Molecule::CutoffGroupIterator ci;
856      CutoffGroup* cg;
857      Molecule::AtomIterator ai;
858      Atom* atom;
859 <    double totalMass;
859 >    RealType totalMass;
860  
861 <    //to avoid memory reallocation, reserve enough space for mfact
862 <    mfact.reserve(getNCutoffGroups());
861 >    /**
862 >     * The mass factor is the relative mass of an atom to the total
863 >     * mass of the cutoff group it belongs to.  By default, all atoms
864 >     * are their own cutoff groups, and therefore have mass factors of
865 >     * 1.  We need some special handling for massless atoms, which
866 >     * will be treated as carrying the entire mass of the cutoff
867 >     * group.
868 >     */
869 >    massFactors_.clear();
870 >    massFactors_.resize(getNAtoms(), 1.0);
871      
872      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
873 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
873 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
874 >           cg = mol->nextCutoffGroup(ci)) {
875  
876          totalMass = cg->getMass();
877          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
878            // Check for massless groups - set mfact to 1 if true
879 <          if (totalMass != 0)
880 <            mfact.push_back(atom->getMass()/totalMass);
879 >          if (totalMass != 0)
880 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
881            else
882 <            mfact.push_back( 1.0 );
882 >            massFactors_[atom->getLocalIndex()] = 1.0;
883          }
677
884        }      
885      }
886  
887 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
682 <    std::vector<int> identArray;
887 >    // Build the identArray_
888  
889 <    //to avoid memory reallocation, reserve enough space identArray
890 <    identArray.reserve(getNAtoms());
686 <    
889 >    identArray_.clear();
890 >    identArray_.reserve(getNAtoms());    
891      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
892        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 <        identArray.push_back(atom->getIdent());
893 >        identArray_.push_back(atom->getIdent());
894        }
895      }    
692
693    //fill molMembershipArray
694    //molMembershipArray is filled by SimCreator    
695    std::vector<int> molMembershipArray(nGlobalAtoms_);
696    for (int i = 0; i < nGlobalAtoms_; i++) {
697      molMembershipArray[i] = globalMolMembership_[i] + 1;
698    }
896      
897 <    //setup fortran simulation
701 <    int nGlobalExcludes = 0;
702 <    int* globalExcludes = NULL;
703 <    int* excludeList = exclude_.getExcludeList();
704 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
705 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
706 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
897 >    //scan topology
898  
899 <    if( isError ){
900 <
901 <      sprintf( painCave.errMsg,
902 <               "There was an error setting the simulation information in fortran.\n" );
712 <      painCave.isFatal = 1;
713 <      painCave.severity = OOPSE_ERROR;
714 <      simError();
715 <    }
716 <
717 < #ifdef IS_MPI
718 <    sprintf( checkPointMsg,
719 <             "succesfully sent the simulation information to fortran.\n");
720 <    MPIcheckPoint();
721 < #endif // is_mpi
722 <  }
723 <
724 <
725 < #ifdef IS_MPI
726 <  void SimInfo::setupFortranParallel() {
727 <    
728 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
729 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
730 <    std::vector<int> localToGlobalCutoffGroupIndex;
731 <    SimInfo::MoleculeIterator mi;
732 <    Molecule::AtomIterator ai;
733 <    Molecule::CutoffGroupIterator ci;
734 <    Molecule* mol;
735 <    Atom* atom;
736 <    CutoffGroup* cg;
737 <    mpiSimData parallelData;
738 <    int isError;
739 <
740 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
741 <
742 <      //local index(index in DataStorge) of atom is important
743 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
744 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
745 <      }
746 <
747 <      //local index of cutoff group is trivial, it only depends on the order of travesing
748 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
749 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
750 <      }        
751 <        
752 <    }
753 <
754 <    //fill up mpiSimData struct
755 <    parallelData.nMolGlobal = getNGlobalMolecules();
756 <    parallelData.nMolLocal = getNMolecules();
757 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
758 <    parallelData.nAtomsLocal = getNAtoms();
759 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
760 <    parallelData.nGroupsLocal = getNCutoffGroups();
761 <    parallelData.myNode = worldRank;
762 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
763 <
764 <    //pass mpiSimData struct and index arrays to fortran
765 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
766 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
767 <                    &localToGlobalCutoffGroupIndex[0], &isError);
768 <
769 <    if (isError) {
770 <      sprintf(painCave.errMsg,
771 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
772 <      painCave.isFatal = 1;
773 <      simError();
774 <    }
775 <
776 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
777 <    MPIcheckPoint();
899 >    nExclude = excludedInteractions_.getSize();
900 >    nOneTwo = oneTwoInteractions_.getSize();
901 >    nOneThree = oneThreeInteractions_.getSize();
902 >    nOneFour = oneFourInteractions_.getSize();
903  
904 +    int* excludeList = excludedInteractions_.getPairList();
905 +    int* oneTwoList = oneTwoInteractions_.getPairList();
906 +    int* oneThreeList = oneThreeInteractions_.getPairList();
907 +    int* oneFourList = oneFourInteractions_.getPairList();
908  
909 <  }
781 <
782 < #endif
783 <
784 <  double SimInfo::calcMaxCutoffRadius() {
785 <
786 <
787 <    std::set<AtomType*> atomTypes;
788 <    std::set<AtomType*>::iterator i;
789 <    std::vector<double> cutoffRadius;
790 <
791 <    //get the unique atom types
792 <    atomTypes = getUniqueAtomTypes();
793 <
794 <    //query the max cutoff radius among these atom types
795 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
796 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
797 <    }
798 <
799 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
800 < #ifdef IS_MPI
801 <    //pick the max cutoff radius among the processors
802 < #endif
803 <
804 <    return maxCutoffRadius;
805 <  }
806 <
807 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
808 <    
809 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
810 <        
811 <      if (!simParams_->haveCutoffRadius()){
812 <        sprintf(painCave.errMsg,
813 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
814 <                "\tOOPSE will use a default value of 15.0 angstroms"
815 <                "\tfor the cutoffRadius.\n");
816 <        painCave.isFatal = 0;
817 <        simError();
818 <        rcut = 15.0;
819 <      } else{
820 <        rcut = simParams_->getCutoffRadius();
821 <      }
822 <
823 <      if (!simParams_->haveSwitchingRadius()){
824 <        sprintf(painCave.errMsg,
825 <                "SimCreator Warning: No value was set for switchingRadius.\n"
826 <                "\tOOPSE will use a default value of\n"
827 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
828 <        painCave.isFatal = 0;
829 <        simError();
830 <        rsw = 0.85 * rcut;
831 <      } else{
832 <        rsw = simParams_->getSwitchingRadius();
833 <      }
834 <
835 <    } else {
836 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
837 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
838 <        
839 <      if (simParams_->haveCutoffRadius()) {
840 <        rcut = simParams_->getCutoffRadius();
841 <      } else {
842 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
843 <        rcut = calcMaxCutoffRadius();
844 <      }
845 <
846 <      if (simParams_->haveSwitchingRadius()) {
847 <        rsw  = simParams_->getSwitchingRadius();
848 <      } else {
849 <        rsw = rcut;
850 <      }
851 <    
852 <    }
853 <  }
854 <
855 <  void SimInfo::setupCutoff() {    
856 <    getCutoff(rcut_, rsw_);    
857 <    double rnblist = rcut_ + 1; // skin of neighbor list
858 <
859 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
860 <    
861 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
862 <    if (simParams_->haveCutoffPolicy()) {
863 <      std::string myPolicy = simParams_->getCutoffPolicy();
864 <      toUpper(myPolicy);
865 <      if (myPolicy == "MIX") {
866 <        cp = MIX_CUTOFF_POLICY;
867 <      } else {
868 <        if (myPolicy == "MAX") {
869 <          cp = MAX_CUTOFF_POLICY;
870 <        } else {
871 <          if (myPolicy == "TRADITIONAL") {            
872 <            cp = TRADITIONAL_CUTOFF_POLICY;
873 <          } else {
874 <            // throw error        
875 <            sprintf( painCave.errMsg,
876 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
877 <            painCave.isFatal = 1;
878 <            simError();
879 <          }    
880 <        }          
881 <      }
882 <    }
883 <
884 <
885 <    if (simParams_->haveSkinThickness()) {
886 <      double skinThickness = simParams_->getSkinThickness();
887 <    }
888 <
889 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
890 <    // also send cutoff notification to electrostatics
891 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
892 <  }
893 <
894 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
895 <    
896 <    int errorOut;
897 <    int esm =  NONE;
898 <    double alphaVal;
899 <    double dielectric;
900 <
901 <    errorOut = isError;
902 <    alphaVal = simParams_->getDampingAlpha();
903 <    dielectric = simParams_->getDielectric();
904 <
905 <    if (simParams_->haveElectrostaticSummationMethod()) {
906 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
907 <      toUpper(myMethod);
908 <      if (myMethod == "NONE") {
909 <        esm = NONE;
910 <      } else {
911 <        if (myMethod == "UNDAMPED_WOLF") {
912 <          esm = UNDAMPED_WOLF;
913 <        } else {
914 <          if (myMethod == "DAMPED_WOLF") {            
915 <            esm = DAMPED_WOLF;
916 <            if (!simParams_->haveDampingAlpha()) {
917 <              //throw error
918 <              sprintf( painCave.errMsg,
919 <                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
920 <              painCave.isFatal = 0;
921 <              simError();
922 <            }
923 <          } else {
924 <            if (myMethod == "REACTION_FIELD") {      
925 <              esm = REACTION_FIELD;
926 <            } else {
927 <              // throw error        
928 <              sprintf( painCave.errMsg,
929 <                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
930 <              painCave.isFatal = 1;
931 <              simError();
932 <            }    
933 <          }          
934 <        }
935 <      }
936 <    }
937 <    // let's pass some summation method variables to fortran
938 <    setElectrostaticSummationMethod( &esm );
939 <    setDampedWolfAlpha( &alphaVal );
940 <    setReactionFieldDielectric( &dielectric );
941 <    initFortranFF( &esm, &errorOut );
909 >    topologyDone_ = true;
910    }
911  
912    void SimInfo::addProperty(GenericData* genData) {
913      properties_.addProperty(genData);  
914    }
915  
916 <  void SimInfo::removeProperty(const std::string& propName) {
916 >  void SimInfo::removeProperty(const string& propName) {
917      properties_.removeProperty(propName);  
918    }
919  
# Line 953 | Line 921 | namespace oopse {
921      properties_.clearProperties();
922    }
923  
924 <  std::vector<std::string> SimInfo::getPropertyNames() {
924 >  vector<string> SimInfo::getPropertyNames() {
925      return properties_.getPropertyNames();  
926    }
927        
928 <  std::vector<GenericData*> SimInfo::getProperties() {
928 >  vector<GenericData*> SimInfo::getProperties() {
929      return properties_.getProperties();
930    }
931  
932 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
932 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
933      return properties_.getPropertyByName(propName);
934    }
935  
# Line 975 | Line 943 | namespace oopse {
943      Molecule* mol;
944      RigidBody* rb;
945      Atom* atom;
946 +    CutoffGroup* cg;
947      SimInfo::MoleculeIterator mi;
948      Molecule::RigidBodyIterator rbIter;
949 <    Molecule::AtomIterator atomIter;;
949 >    Molecule::AtomIterator atomIter;
950 >    Molecule::CutoffGroupIterator cgIter;
951  
952      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
953          
# Line 988 | Line 958 | namespace oopse {
958        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
959          rb->setSnapshotManager(sman_);
960        }
961 +
962 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
963 +        cg->setSnapshotManager(sman_);
964 +      }
965      }    
966      
967    }
# Line 997 | Line 971 | namespace oopse {
971      Molecule* mol;
972  
973      Vector3d comVel(0.0);
974 <    double totalMass = 0.0;
974 >    RealType totalMass = 0.0;
975      
976  
977      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
978 <      double mass = mol->getMass();
978 >      RealType mass = mol->getMass();
979        totalMass += mass;
980        comVel += mass * mol->getComVel();
981      }  
982  
983   #ifdef IS_MPI
984 <    double tmpMass = totalMass;
984 >    RealType tmpMass = totalMass;
985      Vector3d tmpComVel(comVel);    
986 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
987 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
986 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
987 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
988   #endif
989  
990      comVel /= totalMass;
# Line 1023 | Line 997 | namespace oopse {
997      Molecule* mol;
998  
999      Vector3d com(0.0);
1000 <    double totalMass = 0.0;
1000 >    RealType totalMass = 0.0;
1001      
1002      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1003 <      double mass = mol->getMass();
1003 >      RealType mass = mol->getMass();
1004        totalMass += mass;
1005        com += mass * mol->getCom();
1006      }  
1007  
1008   #ifdef IS_MPI
1009 <    double tmpMass = totalMass;
1009 >    RealType tmpMass = totalMass;
1010      Vector3d tmpCom(com);    
1011 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1012 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1011 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1012 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1013   #endif
1014  
1015      com /= totalMass;
# Line 1044 | Line 1018 | namespace oopse {
1018  
1019    }        
1020  
1021 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1021 >  ostream& operator <<(ostream& o, SimInfo& info) {
1022  
1023      return o;
1024    }
# Line 1059 | Line 1033 | namespace oopse {
1033        Molecule* mol;
1034        
1035      
1036 <      double totalMass = 0.0;
1036 >      RealType totalMass = 0.0;
1037      
1038  
1039        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1040 <         double mass = mol->getMass();
1040 >         RealType mass = mol->getMass();
1041           totalMass += mass;
1042           com += mass * mol->getCom();
1043           comVel += mass * mol->getComVel();          
1044        }  
1045        
1046   #ifdef IS_MPI
1047 <      double tmpMass = totalMass;
1047 >      RealType tmpMass = totalMass;
1048        Vector3d tmpCom(com);  
1049        Vector3d tmpComVel(comVel);
1050 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1051 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1052 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1050 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1051 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1052 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1053   #endif
1054        
1055        com /= totalMass;
# Line 1087 | Line 1061 | namespace oopse {
1061  
1062  
1063         [  Ixx -Ixy  -Ixz ]
1064 <  J =| -Iyx  Iyy  -Iyz |
1064 >    J =| -Iyx  Iyy  -Iyz |
1065         [ -Izx -Iyz   Izz ]
1066      */
1067  
1068     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1069        
1070  
1071 <      double xx = 0.0;
1072 <      double yy = 0.0;
1073 <      double zz = 0.0;
1074 <      double xy = 0.0;
1075 <      double xz = 0.0;
1076 <      double yz = 0.0;
1071 >      RealType xx = 0.0;
1072 >      RealType yy = 0.0;
1073 >      RealType zz = 0.0;
1074 >      RealType xy = 0.0;
1075 >      RealType xz = 0.0;
1076 >      RealType yz = 0.0;
1077        Vector3d com(0.0);
1078        Vector3d comVel(0.0);
1079        
# Line 1111 | Line 1085 | namespace oopse {
1085        Vector3d thisq(0.0);
1086        Vector3d thisv(0.0);
1087  
1088 <      double thisMass = 0.0;
1088 >      RealType thisMass = 0.0;
1089      
1090        
1091        
# Line 1149 | Line 1123 | namespace oopse {
1123   #ifdef IS_MPI
1124        Mat3x3d tmpI(inertiaTensor);
1125        Vector3d tmpAngMom;
1126 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1127 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1126 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1127 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1128   #endif
1129                
1130        return;
# Line 1171 | Line 1145 | namespace oopse {
1145        Vector3d thisr(0.0);
1146        Vector3d thisp(0.0);
1147        
1148 <      double thisMass;
1148 >      RealType thisMass;
1149        
1150        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1151          thisMass = mol->getMass();
# Line 1184 | Line 1158 | namespace oopse {
1158        
1159   #ifdef IS_MPI
1160        Vector3d tmpAngMom;
1161 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1161 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162   #endif
1163        
1164        return angularMomentum;
1165     }
1166    
1167 <  
1168 < }//end namespace oopse
1167 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1168 >    return IOIndexToIntegrableObject.at(index);
1169 >  }
1170 >  
1171 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1172 >    IOIndexToIntegrableObject= v;
1173 >  }
1174  
1175 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1176 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1177 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1178 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1179 +  */
1180 +  void SimInfo::getGyrationalVolume(RealType &volume){
1181 +    Mat3x3d intTensor;
1182 +    RealType det;
1183 +    Vector3d dummyAngMom;
1184 +    RealType sysconstants;
1185 +    RealType geomCnst;
1186 +
1187 +    geomCnst = 3.0/2.0;
1188 +    /* Get the inertial tensor and angular momentum for free*/
1189 +    getInertiaTensor(intTensor,dummyAngMom);
1190 +    
1191 +    det = intTensor.determinant();
1192 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1193 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1194 +    return;
1195 +  }
1196 +
1197 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1198 +    Mat3x3d intTensor;
1199 +    Vector3d dummyAngMom;
1200 +    RealType sysconstants;
1201 +    RealType geomCnst;
1202 +
1203 +    geomCnst = 3.0/2.0;
1204 +    /* Get the inertial tensor and angular momentum for free*/
1205 +    getInertiaTensor(intTensor,dummyAngMom);
1206 +    
1207 +    detI = intTensor.determinant();
1208 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1209 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1210 +    return;
1211 +  }
1212 + /*
1213 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1214 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1215 +      sdByGlobalIndex_ = v;
1216 +    }
1217 +
1218 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1219 +      //assert(index < nAtoms_ + nRigidBodies_);
1220 +      return sdByGlobalIndex_.at(index);
1221 +    }  
1222 + */  
1223 +  int SimInfo::getNGlobalConstraints() {
1224 +    int nGlobalConstraints;
1225 + #ifdef IS_MPI
1226 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1227 +                  MPI_COMM_WORLD);    
1228 + #else
1229 +    nGlobalConstraints =  nConstraints_;
1230 + #endif
1231 +    return nGlobalConstraints;
1232 +  }
1233 +
1234 + }//end namespace OpenMD
1235 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 701 by chrisfen, Wed Oct 26 23:32:25 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1601 by gezelter, Thu Aug 4 20:04:35 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines