1 |
< |
#include <stdlib.h> |
2 |
< |
#include <string.h> |
3 |
< |
#include <math.h> |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
> |
* notice, this list of conditions and the following disclaimer. |
11 |
> |
* |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
> |
* notice, this list of conditions and the following disclaimer in the |
14 |
> |
* documentation and/or other materials provided with the |
15 |
> |
* distribution. |
16 |
> |
* |
17 |
> |
* This software is provided "AS IS," without a warranty of any |
18 |
> |
* kind. All express or implied conditions, representations and |
19 |
> |
* warranties, including any implied warranty of merchantability, |
20 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
> |
* be liable for any damages suffered by licensee as a result of |
23 |
> |
* using, modifying or distributing the software or its |
24 |
> |
* derivatives. In no event will the University of Notre Dame or its |
25 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
> |
* direct, indirect, special, consequential, incidental or punitive |
27 |
> |
* damages, however caused and regardless of the theory of liability, |
28 |
> |
* arising out of the use of or inability to use software, even if the |
29 |
> |
* University of Notre Dame has been advised of the possibility of |
30 |
> |
* such damages. |
31 |
> |
* |
32 |
> |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
> |
* research, please cite the appropriate papers when you publish your |
34 |
> |
* work. Good starting points are: |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
> |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
> |
*/ |
41 |
> |
|
42 |
> |
/** |
43 |
> |
* @file SimInfo.cpp |
44 |
> |
* @author tlin |
45 |
> |
* @date 11/02/2004 |
46 |
> |
* @version 1.0 |
47 |
> |
*/ |
48 |
|
|
49 |
< |
#include <iostream> |
50 |
< |
using namespace std; |
49 |
> |
#include <algorithm> |
50 |
> |
#include <set> |
51 |
> |
#include <map> |
52 |
|
|
53 |
|
#include "brains/SimInfo.hpp" |
54 |
< |
#define __C |
55 |
< |
#include "brains/fSimulation.h" |
54 |
> |
#include "math/Vector3.hpp" |
55 |
> |
#include "primitives/Molecule.hpp" |
56 |
> |
#include "primitives/StuntDouble.hpp" |
57 |
> |
#include "utils/MemoryUtils.hpp" |
58 |
|
#include "utils/simError.h" |
59 |
< |
#include "UseTheForce/DarkSide/simulation_interface.h" |
60 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
61 |
< |
|
62 |
< |
//#include "UseTheForce/fortranWrappers.hpp" |
16 |
< |
|
17 |
< |
#include "math/MatVec3.h" |
18 |
< |
|
59 |
> |
#include "selection/SelectionManager.hpp" |
60 |
> |
#include "io/ForceFieldOptions.hpp" |
61 |
> |
#include "UseTheForce/ForceField.hpp" |
62 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
63 |
|
#ifdef IS_MPI |
64 |
< |
#include "brains/mpiSimulation.hpp" |
64 |
> |
#include <mpi.h> |
65 |
|
#endif |
66 |
|
|
67 |
< |
inline double roundMe( double x ){ |
68 |
< |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
69 |
< |
} |
70 |
< |
|
71 |
< |
inline double min( double a, double b ){ |
72 |
< |
return (a < b ) ? a : b; |
73 |
< |
} |
67 |
> |
using namespace std; |
68 |
> |
namespace OpenMD { |
69 |
> |
|
70 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
71 |
> |
forceField_(ff), simParams_(simParams), |
72 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
73 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
74 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
75 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
76 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
77 |
> |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
78 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
79 |
> |
|
80 |
> |
MoleculeStamp* molStamp; |
81 |
> |
int nMolWithSameStamp; |
82 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
83 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
84 |
> |
CutoffGroupStamp* cgStamp; |
85 |
> |
RigidBodyStamp* rbStamp; |
86 |
> |
int nRigidAtoms = 0; |
87 |
> |
|
88 |
> |
vector<Component*> components = simParams->getComponents(); |
89 |
> |
|
90 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
91 |
> |
molStamp = (*i)->getMoleculeStamp(); |
92 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
93 |
> |
|
94 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
95 |
> |
|
96 |
> |
//calculate atoms in molecules |
97 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
98 |
> |
|
99 |
> |
//calculate atoms in cutoff groups |
100 |
> |
int nAtomsInGroups = 0; |
101 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
102 |
> |
|
103 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
104 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
105 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
106 |
> |
} |
107 |
> |
|
108 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
109 |
> |
|
110 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
111 |
> |
|
112 |
> |
//calculate atoms in rigid bodies |
113 |
> |
int nAtomsInRigidBodies = 0; |
114 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
115 |
> |
|
116 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
117 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
118 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
119 |
> |
} |
120 |
> |
|
121 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
122 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
123 |
> |
|
124 |
> |
} |
125 |
> |
|
126 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
127 |
> |
//group therefore the total number of cutoff groups in the system is |
128 |
> |
//equal to the total number of atoms minus number of atoms belong to |
129 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
130 |
> |
//groups defined in meta-data file |
131 |
|
|
132 |
< |
SimInfo* currentInfo; |
132 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
> |
|
134 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
135 |
> |
//integrable object therefore the total number of integrable objects |
136 |
> |
//in the system is equal to the total number of atoms minus number of |
137 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
138 |
> |
//of rigid bodies defined in meta-data file |
139 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
140 |
> |
+ nGlobalRigidBodies_; |
141 |
> |
|
142 |
> |
nGlobalMols_ = molStampIds_.size(); |
143 |
> |
molToProcMap_.resize(nGlobalMols_); |
144 |
> |
} |
145 |
> |
|
146 |
> |
SimInfo::~SimInfo() { |
147 |
> |
map<int, Molecule*>::iterator i; |
148 |
> |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
149 |
> |
delete i->second; |
150 |
> |
} |
151 |
> |
molecules_.clear(); |
152 |
> |
|
153 |
> |
delete sman_; |
154 |
> |
delete simParams_; |
155 |
> |
delete forceField_; |
156 |
> |
} |
157 |
|
|
33 |
– |
SimInfo::SimInfo(){ |
158 |
|
|
159 |
< |
n_constraints = 0; |
160 |
< |
nZconstraints = 0; |
161 |
< |
n_oriented = 0; |
162 |
< |
n_dipoles = 0; |
163 |
< |
ndf = 0; |
164 |
< |
ndfRaw = 0; |
165 |
< |
nZconstraints = 0; |
166 |
< |
the_integrator = NULL; |
167 |
< |
setTemp = 0; |
168 |
< |
thermalTime = 0.0; |
169 |
< |
currentTime = 0.0; |
170 |
< |
rCut = 0.0; |
171 |
< |
rSw = 0.0; |
172 |
< |
|
173 |
< |
haveRcut = 0; |
174 |
< |
haveRsw = 0; |
175 |
< |
boxIsInit = 0; |
159 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
160 |
> |
MoleculeIterator i; |
161 |
> |
|
162 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
163 |
> |
if (i == molecules_.end() ) { |
164 |
> |
|
165 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
166 |
> |
|
167 |
> |
nAtoms_ += mol->getNAtoms(); |
168 |
> |
nBonds_ += mol->getNBonds(); |
169 |
> |
nBends_ += mol->getNBends(); |
170 |
> |
nTorsions_ += mol->getNTorsions(); |
171 |
> |
nInversions_ += mol->getNInversions(); |
172 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
173 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
174 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
175 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
176 |
> |
|
177 |
> |
addInteractionPairs(mol); |
178 |
> |
|
179 |
> |
return true; |
180 |
> |
} else { |
181 |
> |
return false; |
182 |
> |
} |
183 |
> |
} |
184 |
|
|
185 |
< |
resetTime = 1e99; |
185 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
186 |
> |
MoleculeIterator i; |
187 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
188 |
|
|
189 |
< |
orthoRhombic = 0; |
56 |
< |
orthoTolerance = 1E-6; |
57 |
< |
useInitXSstate = true; |
189 |
> |
if (i != molecules_.end() ) { |
190 |
|
|
191 |
< |
usePBC = 0; |
192 |
< |
useDirectionalAtoms = 0; |
193 |
< |
useLennardJones = 0; |
194 |
< |
useElectrostatics = 0; |
195 |
< |
useCharges = 0; |
196 |
< |
useDipoles = 0; |
197 |
< |
useSticky = 0; |
198 |
< |
useGayBerne = 0; |
199 |
< |
useEAM = 0; |
200 |
< |
useShapes = 0; |
201 |
< |
useFLARB = 0; |
191 |
> |
assert(mol == i->second); |
192 |
> |
|
193 |
> |
nAtoms_ -= mol->getNAtoms(); |
194 |
> |
nBonds_ -= mol->getNBonds(); |
195 |
> |
nBends_ -= mol->getNBends(); |
196 |
> |
nTorsions_ -= mol->getNTorsions(); |
197 |
> |
nInversions_ -= mol->getNInversions(); |
198 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
199 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
200 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
201 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
202 |
|
|
203 |
< |
useSolidThermInt = 0; |
204 |
< |
useLiquidThermInt = 0; |
203 |
> |
removeInteractionPairs(mol); |
204 |
> |
molecules_.erase(mol->getGlobalIndex()); |
205 |
|
|
206 |
< |
haveCutoffGroups = false; |
206 |
> |
delete mol; |
207 |
> |
|
208 |
> |
return true; |
209 |
> |
} else { |
210 |
> |
return false; |
211 |
> |
} |
212 |
> |
} |
213 |
|
|
214 |
< |
excludes = Exclude::Instance(); |
214 |
> |
|
215 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
216 |
> |
i = molecules_.begin(); |
217 |
> |
return i == molecules_.end() ? NULL : i->second; |
218 |
> |
} |
219 |
|
|
220 |
< |
myConfiguration = new SimState(); |
220 |
> |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
221 |
> |
++i; |
222 |
> |
return i == molecules_.end() ? NULL : i->second; |
223 |
> |
} |
224 |
|
|
80 |
– |
has_minimizer = false; |
81 |
– |
the_minimizer =NULL; |
225 |
|
|
226 |
< |
ngroup = 0; |
226 |
> |
void SimInfo::calcNdf() { |
227 |
> |
int ndf_local; |
228 |
> |
MoleculeIterator i; |
229 |
> |
vector<StuntDouble*>::iterator j; |
230 |
> |
Molecule* mol; |
231 |
> |
StuntDouble* integrableObject; |
232 |
|
|
233 |
< |
} |
233 |
> |
ndf_local = 0; |
234 |
> |
|
235 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
236 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
237 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
238 |
|
|
239 |
+ |
ndf_local += 3; |
240 |
|
|
241 |
< |
SimInfo::~SimInfo(){ |
241 |
> |
if (integrableObject->isDirectional()) { |
242 |
> |
if (integrableObject->isLinear()) { |
243 |
> |
ndf_local += 2; |
244 |
> |
} else { |
245 |
> |
ndf_local += 3; |
246 |
> |
} |
247 |
> |
} |
248 |
> |
|
249 |
> |
} |
250 |
> |
} |
251 |
> |
|
252 |
> |
// n_constraints is local, so subtract them on each processor |
253 |
> |
ndf_local -= nConstraints_; |
254 |
|
|
255 |
< |
delete myConfiguration; |
255 |
> |
#ifdef IS_MPI |
256 |
> |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
257 |
> |
#else |
258 |
> |
ndf_ = ndf_local; |
259 |
> |
#endif |
260 |
|
|
261 |
< |
map<string, GenericData*>::iterator i; |
262 |
< |
|
263 |
< |
for(i = properties.begin(); i != properties.end(); i++) |
95 |
< |
delete (*i).second; |
261 |
> |
// nZconstraints_ is global, as are the 3 COM translations for the |
262 |
> |
// entire system: |
263 |
> |
ndf_ = ndf_ - 3 - nZconstraint_; |
264 |
|
|
265 |
< |
} |
265 |
> |
} |
266 |
|
|
267 |
< |
void SimInfo::setBox(double newBox[3]) { |
267 |
> |
int SimInfo::getFdf() { |
268 |
> |
#ifdef IS_MPI |
269 |
> |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
270 |
> |
#else |
271 |
> |
fdf_ = fdf_local; |
272 |
> |
#endif |
273 |
> |
return fdf_; |
274 |
> |
} |
275 |
|
|
276 |
< |
int i, j; |
277 |
< |
double tempMat[3][3]; |
276 |
> |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
277 |
> |
int nLocalCutoffAtoms = 0; |
278 |
> |
Molecule* mol; |
279 |
> |
MoleculeIterator mi; |
280 |
> |
CutoffGroup* cg; |
281 |
> |
Molecule::CutoffGroupIterator ci; |
282 |
> |
|
283 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
284 |
> |
|
285 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
286 |
> |
cg = mol->nextCutoffGroup(ci)) { |
287 |
> |
nLocalCutoffAtoms += cg->getNumAtom(); |
288 |
> |
|
289 |
> |
} |
290 |
> |
} |
291 |
> |
|
292 |
> |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
293 |
> |
} |
294 |
> |
|
295 |
> |
void SimInfo::calcNdfRaw() { |
296 |
> |
int ndfRaw_local; |
297 |
|
|
298 |
< |
for(i=0; i<3; i++) |
299 |
< |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
298 |
> |
MoleculeIterator i; |
299 |
> |
vector<StuntDouble*>::iterator j; |
300 |
> |
Molecule* mol; |
301 |
> |
StuntDouble* integrableObject; |
302 |
|
|
303 |
< |
tempMat[0][0] = newBox[0]; |
304 |
< |
tempMat[1][1] = newBox[1]; |
305 |
< |
tempMat[2][2] = newBox[2]; |
303 |
> |
// Raw degrees of freedom that we have to set |
304 |
> |
ndfRaw_local = 0; |
305 |
> |
|
306 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
307 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
308 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
309 |
|
|
310 |
< |
setBoxM( tempMat ); |
310 |
> |
ndfRaw_local += 3; |
311 |
|
|
312 |
< |
} |
313 |
< |
|
314 |
< |
void SimInfo::setBoxM( double theBox[3][3] ){ |
315 |
< |
|
316 |
< |
int i, j; |
317 |
< |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
318 |
< |
// ordering in the array is as follows: |
319 |
< |
// [ 0 3 6 ] |
320 |
< |
// [ 1 4 7 ] |
122 |
< |
// [ 2 5 8 ] |
123 |
< |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
124 |
< |
|
125 |
< |
if( !boxIsInit ) boxIsInit = 1; |
126 |
< |
|
127 |
< |
for(i=0; i < 3; i++) |
128 |
< |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
129 |
< |
|
130 |
< |
calcBoxL(); |
131 |
< |
calcHmatInv(); |
132 |
< |
|
133 |
< |
for(i=0; i < 3; i++) { |
134 |
< |
for (j=0; j < 3; j++) { |
135 |
< |
FortranHmat[3*j + i] = Hmat[i][j]; |
136 |
< |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
312 |
> |
if (integrableObject->isDirectional()) { |
313 |
> |
if (integrableObject->isLinear()) { |
314 |
> |
ndfRaw_local += 2; |
315 |
> |
} else { |
316 |
> |
ndfRaw_local += 3; |
317 |
> |
} |
318 |
> |
} |
319 |
> |
|
320 |
> |
} |
321 |
|
} |
322 |
+ |
|
323 |
+ |
#ifdef IS_MPI |
324 |
+ |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
325 |
+ |
#else |
326 |
+ |
ndfRaw_ = ndfRaw_local; |
327 |
+ |
#endif |
328 |
|
} |
329 |
|
|
330 |
< |
setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic); |
331 |
< |
|
142 |
< |
} |
143 |
< |
|
330 |
> |
void SimInfo::calcNdfTrans() { |
331 |
> |
int ndfTrans_local; |
332 |
|
|
333 |
< |
void SimInfo::getBoxM (double theBox[3][3]) { |
333 |
> |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
334 |
|
|
147 |
– |
int i, j; |
148 |
– |
for(i=0; i<3; i++) |
149 |
– |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
150 |
– |
} |
335 |
|
|
336 |
+ |
#ifdef IS_MPI |
337 |
+ |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
338 |
+ |
#else |
339 |
+ |
ndfTrans_ = ndfTrans_local; |
340 |
+ |
#endif |
341 |
|
|
342 |
< |
void SimInfo::scaleBox(double scale) { |
343 |
< |
double theBox[3][3]; |
344 |
< |
int i, j; |
342 |
> |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
343 |
> |
|
344 |
> |
} |
345 |
|
|
346 |
< |
// cerr << "Scaling box by " << scale << "\n"; |
346 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
347 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
348 |
> |
vector<Bond*>::iterator bondIter; |
349 |
> |
vector<Bend*>::iterator bendIter; |
350 |
> |
vector<Torsion*>::iterator torsionIter; |
351 |
> |
vector<Inversion*>::iterator inversionIter; |
352 |
> |
Bond* bond; |
353 |
> |
Bend* bend; |
354 |
> |
Torsion* torsion; |
355 |
> |
Inversion* inversion; |
356 |
> |
int a; |
357 |
> |
int b; |
358 |
> |
int c; |
359 |
> |
int d; |
360 |
|
|
361 |
< |
for(i=0; i<3; i++) |
362 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
361 |
> |
// atomGroups can be used to add special interaction maps between |
362 |
> |
// groups of atoms that are in two separate rigid bodies. |
363 |
> |
// However, most site-site interactions between two rigid bodies |
364 |
> |
// are probably not special, just the ones between the physically |
365 |
> |
// bonded atoms. Interactions *within* a single rigid body should |
366 |
> |
// always be excluded. These are done at the bottom of this |
367 |
> |
// function. |
368 |
|
|
369 |
< |
setBoxM(theBox); |
370 |
< |
|
371 |
< |
} |
372 |
< |
|
373 |
< |
void SimInfo::calcHmatInv( void ) { |
374 |
< |
|
375 |
< |
int oldOrtho; |
376 |
< |
int i,j; |
377 |
< |
double smallDiag; |
378 |
< |
double tol; |
379 |
< |
double sanity[3][3]; |
380 |
< |
|
381 |
< |
invertMat3( Hmat, HmatInv ); |
382 |
< |
|
383 |
< |
// check to see if Hmat is orthorhombic |
384 |
< |
|
385 |
< |
oldOrtho = orthoRhombic; |
386 |
< |
|
387 |
< |
smallDiag = fabs(Hmat[0][0]); |
388 |
< |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
389 |
< |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
390 |
< |
tol = smallDiag * orthoTolerance; |
391 |
< |
|
392 |
< |
orthoRhombic = 1; |
186 |
< |
|
187 |
< |
for (i = 0; i < 3; i++ ) { |
188 |
< |
for (j = 0 ; j < 3; j++) { |
189 |
< |
if (i != j) { |
190 |
< |
if (orthoRhombic) { |
191 |
< |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
192 |
< |
} |
369 |
> |
map<int, set<int> > atomGroups; |
370 |
> |
Molecule::RigidBodyIterator rbIter; |
371 |
> |
RigidBody* rb; |
372 |
> |
Molecule::IntegrableObjectIterator ii; |
373 |
> |
StuntDouble* integrableObject; |
374 |
> |
|
375 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
376 |
> |
integrableObject != NULL; |
377 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
378 |
> |
|
379 |
> |
if (integrableObject->isRigidBody()) { |
380 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
381 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
382 |
> |
set<int> rigidAtoms; |
383 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
384 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
385 |
> |
} |
386 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
387 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
388 |
> |
} |
389 |
> |
} else { |
390 |
> |
set<int> oneAtomSet; |
391 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
392 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
393 |
|
} |
394 |
< |
} |
395 |
< |
} |
394 |
> |
} |
395 |
> |
|
396 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
397 |
> |
bond = mol->nextBond(bondIter)) { |
398 |
|
|
399 |
< |
if( oldOrtho != orthoRhombic ){ |
399 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
400 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
401 |
|
|
402 |
< |
if( orthoRhombic ) { |
403 |
< |
sprintf( painCave.errMsg, |
404 |
< |
"OOPSE is switching from the default Non-Orthorhombic\n" |
405 |
< |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
406 |
< |
"\tThis is usually a good thing, but if you wan't the\n" |
204 |
< |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
205 |
< |
"\tvariable ( currently set to %G ) smaller.\n", |
206 |
< |
orthoTolerance); |
207 |
< |
painCave.severity = OOPSE_INFO; |
208 |
< |
simError(); |
402 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
403 |
> |
oneTwoInteractions_.addPair(a, b); |
404 |
> |
} else { |
405 |
> |
excludedInteractions_.addPair(a, b); |
406 |
> |
} |
407 |
|
} |
210 |
– |
else { |
211 |
– |
sprintf( painCave.errMsg, |
212 |
– |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
213 |
– |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
214 |
– |
"\tThis is usually because the box has deformed under\n" |
215 |
– |
"\tNPTf integration. If you wan't to live on the edge with\n" |
216 |
– |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
217 |
– |
"\tvariable ( currently set to %G ) larger.\n", |
218 |
– |
orthoTolerance); |
219 |
– |
painCave.severity = OOPSE_WARNING; |
220 |
– |
simError(); |
221 |
– |
} |
222 |
– |
} |
223 |
– |
} |
408 |
|
|
409 |
< |
void SimInfo::calcBoxL( void ){ |
409 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
410 |
> |
bend = mol->nextBend(bendIter)) { |
411 |
|
|
412 |
< |
double dx, dy, dz, dsq; |
412 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
413 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
414 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
415 |
> |
|
416 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
417 |
> |
oneTwoInteractions_.addPair(a, b); |
418 |
> |
oneTwoInteractions_.addPair(b, c); |
419 |
> |
} else { |
420 |
> |
excludedInteractions_.addPair(a, b); |
421 |
> |
excludedInteractions_.addPair(b, c); |
422 |
> |
} |
423 |
|
|
424 |
< |
// boxVol = Determinant of Hmat |
424 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
425 |
> |
oneThreeInteractions_.addPair(a, c); |
426 |
> |
} else { |
427 |
> |
excludedInteractions_.addPair(a, c); |
428 |
> |
} |
429 |
> |
} |
430 |
|
|
431 |
< |
boxVol = matDet3( Hmat ); |
431 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
432 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
433 |
|
|
434 |
< |
// boxLx |
435 |
< |
|
436 |
< |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
437 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
237 |
< |
boxL[0] = sqrt( dsq ); |
238 |
< |
//maxCutoff = 0.5 * boxL[0]; |
434 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
435 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
436 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
437 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
438 |
|
|
439 |
< |
// boxLy |
440 |
< |
|
441 |
< |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
442 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
443 |
< |
boxL[1] = sqrt( dsq ); |
444 |
< |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
439 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
440 |
> |
oneTwoInteractions_.addPair(a, b); |
441 |
> |
oneTwoInteractions_.addPair(b, c); |
442 |
> |
oneTwoInteractions_.addPair(c, d); |
443 |
> |
} else { |
444 |
> |
excludedInteractions_.addPair(a, b); |
445 |
> |
excludedInteractions_.addPair(b, c); |
446 |
> |
excludedInteractions_.addPair(c, d); |
447 |
> |
} |
448 |
|
|
449 |
+ |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
450 |
+ |
oneThreeInteractions_.addPair(a, c); |
451 |
+ |
oneThreeInteractions_.addPair(b, d); |
452 |
+ |
} else { |
453 |
+ |
excludedInteractions_.addPair(a, c); |
454 |
+ |
excludedInteractions_.addPair(b, d); |
455 |
+ |
} |
456 |
|
|
457 |
< |
// boxLz |
458 |
< |
|
459 |
< |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
460 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
461 |
< |
boxL[2] = sqrt( dsq ); |
462 |
< |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
457 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
458 |
> |
oneFourInteractions_.addPair(a, d); |
459 |
> |
} else { |
460 |
> |
excludedInteractions_.addPair(a, d); |
461 |
> |
} |
462 |
> |
} |
463 |
|
|
464 |
< |
//calculate the max cutoff |
465 |
< |
maxCutoff = calcMaxCutOff(); |
257 |
< |
|
258 |
< |
checkCutOffs(); |
464 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
465 |
> |
inversion = mol->nextInversion(inversionIter)) { |
466 |
|
|
467 |
< |
} |
467 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
468 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
469 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
470 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
471 |
|
|
472 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
473 |
+ |
oneTwoInteractions_.addPair(a, b); |
474 |
+ |
oneTwoInteractions_.addPair(a, c); |
475 |
+ |
oneTwoInteractions_.addPair(a, d); |
476 |
+ |
} else { |
477 |
+ |
excludedInteractions_.addPair(a, b); |
478 |
+ |
excludedInteractions_.addPair(a, c); |
479 |
+ |
excludedInteractions_.addPair(a, d); |
480 |
+ |
} |
481 |
|
|
482 |
< |
double SimInfo::calcMaxCutOff(){ |
482 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
483 |
> |
oneThreeInteractions_.addPair(b, c); |
484 |
> |
oneThreeInteractions_.addPair(b, d); |
485 |
> |
oneThreeInteractions_.addPair(c, d); |
486 |
> |
} else { |
487 |
> |
excludedInteractions_.addPair(b, c); |
488 |
> |
excludedInteractions_.addPair(b, d); |
489 |
> |
excludedInteractions_.addPair(c, d); |
490 |
> |
} |
491 |
> |
} |
492 |
|
|
493 |
< |
double ri[3], rj[3], rk[3]; |
494 |
< |
double rij[3], rjk[3], rki[3]; |
495 |
< |
double minDist; |
493 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
494 |
> |
rb = mol->nextRigidBody(rbIter)) { |
495 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
496 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
497 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
498 |
> |
a = atoms[i]->getGlobalIndex(); |
499 |
> |
b = atoms[j]->getGlobalIndex(); |
500 |
> |
excludedInteractions_.addPair(a, b); |
501 |
> |
} |
502 |
> |
} |
503 |
> |
} |
504 |
|
|
505 |
< |
ri[0] = Hmat[0][0]; |
270 |
< |
ri[1] = Hmat[1][0]; |
271 |
< |
ri[2] = Hmat[2][0]; |
505 |
> |
} |
506 |
|
|
507 |
< |
rj[0] = Hmat[0][1]; |
508 |
< |
rj[1] = Hmat[1][1]; |
509 |
< |
rj[2] = Hmat[2][1]; |
507 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
508 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
509 |
> |
vector<Bond*>::iterator bondIter; |
510 |
> |
vector<Bend*>::iterator bendIter; |
511 |
> |
vector<Torsion*>::iterator torsionIter; |
512 |
> |
vector<Inversion*>::iterator inversionIter; |
513 |
> |
Bond* bond; |
514 |
> |
Bend* bend; |
515 |
> |
Torsion* torsion; |
516 |
> |
Inversion* inversion; |
517 |
> |
int a; |
518 |
> |
int b; |
519 |
> |
int c; |
520 |
> |
int d; |
521 |
|
|
522 |
< |
rk[0] = Hmat[0][2]; |
523 |
< |
rk[1] = Hmat[1][2]; |
524 |
< |
rk[2] = Hmat[2][2]; |
522 |
> |
map<int, set<int> > atomGroups; |
523 |
> |
Molecule::RigidBodyIterator rbIter; |
524 |
> |
RigidBody* rb; |
525 |
> |
Molecule::IntegrableObjectIterator ii; |
526 |
> |
StuntDouble* integrableObject; |
527 |
|
|
528 |
< |
crossProduct3(ri, rj, rij); |
529 |
< |
distXY = dotProduct3(rk,rij) / norm3(rij); |
528 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
529 |
> |
integrableObject != NULL; |
530 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
531 |
> |
|
532 |
> |
if (integrableObject->isRigidBody()) { |
533 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
534 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
535 |
> |
set<int> rigidAtoms; |
536 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
537 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
538 |
> |
} |
539 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
540 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
541 |
> |
} |
542 |
> |
} else { |
543 |
> |
set<int> oneAtomSet; |
544 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
545 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
546 |
> |
} |
547 |
> |
} |
548 |
|
|
549 |
< |
crossProduct3(rj,rk, rjk); |
550 |
< |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
549 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
550 |
> |
bond = mol->nextBond(bondIter)) { |
551 |
> |
|
552 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
553 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
554 |
> |
|
555 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
556 |
> |
oneTwoInteractions_.removePair(a, b); |
557 |
> |
} else { |
558 |
> |
excludedInteractions_.removePair(a, b); |
559 |
> |
} |
560 |
> |
} |
561 |
|
|
562 |
< |
crossProduct3(rk,ri, rki); |
563 |
< |
distZX = dotProduct3(rj,rki) / norm3(rki); |
562 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
563 |
> |
bend = mol->nextBend(bendIter)) { |
564 |
|
|
565 |
< |
minDist = min(min(distXY, distYZ), distZX); |
566 |
< |
return minDist/2; |
567 |
< |
|
568 |
< |
} |
565 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
566 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
567 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
568 |
> |
|
569 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
570 |
> |
oneTwoInteractions_.removePair(a, b); |
571 |
> |
oneTwoInteractions_.removePair(b, c); |
572 |
> |
} else { |
573 |
> |
excludedInteractions_.removePair(a, b); |
574 |
> |
excludedInteractions_.removePair(b, c); |
575 |
> |
} |
576 |
|
|
577 |
< |
void SimInfo::wrapVector( double thePos[3] ){ |
577 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
578 |
> |
oneThreeInteractions_.removePair(a, c); |
579 |
> |
} else { |
580 |
> |
excludedInteractions_.removePair(a, c); |
581 |
> |
} |
582 |
> |
} |
583 |
|
|
584 |
< |
int i; |
585 |
< |
double scaled[3]; |
584 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
585 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
586 |
|
|
587 |
< |
if( !orthoRhombic ){ |
588 |
< |
// calc the scaled coordinates. |
587 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
588 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
589 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
590 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
591 |
|
|
592 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
593 |
+ |
oneTwoInteractions_.removePair(a, b); |
594 |
+ |
oneTwoInteractions_.removePair(b, c); |
595 |
+ |
oneTwoInteractions_.removePair(c, d); |
596 |
+ |
} else { |
597 |
+ |
excludedInteractions_.removePair(a, b); |
598 |
+ |
excludedInteractions_.removePair(b, c); |
599 |
+ |
excludedInteractions_.removePair(c, d); |
600 |
+ |
} |
601 |
|
|
602 |
< |
matVecMul3(HmatInv, thePos, scaled); |
603 |
< |
|
604 |
< |
for(i=0; i<3; i++) |
605 |
< |
scaled[i] -= roundMe(scaled[i]); |
606 |
< |
|
607 |
< |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
608 |
< |
|
311 |
< |
matVecMul3(Hmat, scaled, thePos); |
602 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
603 |
> |
oneThreeInteractions_.removePair(a, c); |
604 |
> |
oneThreeInteractions_.removePair(b, d); |
605 |
> |
} else { |
606 |
> |
excludedInteractions_.removePair(a, c); |
607 |
> |
excludedInteractions_.removePair(b, d); |
608 |
> |
} |
609 |
|
|
610 |
< |
} |
611 |
< |
else{ |
612 |
< |
// calc the scaled coordinates. |
613 |
< |
|
614 |
< |
for(i=0; i<3; i++) |
615 |
< |
scaled[i] = thePos[i]*HmatInv[i][i]; |
319 |
< |
|
320 |
< |
// wrap the scaled coordinates |
321 |
< |
|
322 |
< |
for(i=0; i<3; i++) |
323 |
< |
scaled[i] -= roundMe(scaled[i]); |
324 |
< |
|
325 |
< |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
326 |
< |
|
327 |
< |
for(i=0; i<3; i++) |
328 |
< |
thePos[i] = scaled[i]*Hmat[i][i]; |
329 |
< |
} |
330 |
< |
|
331 |
< |
} |
610 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
611 |
> |
oneFourInteractions_.removePair(a, d); |
612 |
> |
} else { |
613 |
> |
excludedInteractions_.removePair(a, d); |
614 |
> |
} |
615 |
> |
} |
616 |
|
|
617 |
+ |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
618 |
+ |
inversion = mol->nextInversion(inversionIter)) { |
619 |
|
|
620 |
< |
int SimInfo::getNDF(){ |
621 |
< |
int ndf_local; |
620 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
621 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
622 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
623 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
624 |
|
|
625 |
< |
ndf_local = 0; |
626 |
< |
|
627 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
628 |
< |
ndf_local += 3; |
629 |
< |
if (integrableObjects[i]->isDirectional()) { |
630 |
< |
if (integrableObjects[i]->isLinear()) |
631 |
< |
ndf_local += 2; |
632 |
< |
else |
633 |
< |
ndf_local += 3; |
625 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
626 |
> |
oneTwoInteractions_.removePair(a, b); |
627 |
> |
oneTwoInteractions_.removePair(a, c); |
628 |
> |
oneTwoInteractions_.removePair(a, d); |
629 |
> |
} else { |
630 |
> |
excludedInteractions_.removePair(a, b); |
631 |
> |
excludedInteractions_.removePair(a, c); |
632 |
> |
excludedInteractions_.removePair(a, d); |
633 |
> |
} |
634 |
> |
|
635 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
636 |
> |
oneThreeInteractions_.removePair(b, c); |
637 |
> |
oneThreeInteractions_.removePair(b, d); |
638 |
> |
oneThreeInteractions_.removePair(c, d); |
639 |
> |
} else { |
640 |
> |
excludedInteractions_.removePair(b, c); |
641 |
> |
excludedInteractions_.removePair(b, d); |
642 |
> |
excludedInteractions_.removePair(c, d); |
643 |
> |
} |
644 |
|
} |
347 |
– |
} |
645 |
|
|
646 |
< |
// n_constraints is local, so subtract them on each processor: |
647 |
< |
|
648 |
< |
ndf_local -= n_constraints; |
646 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
647 |
> |
rb = mol->nextRigidBody(rbIter)) { |
648 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
649 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
650 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
651 |
> |
a = atoms[i]->getGlobalIndex(); |
652 |
> |
b = atoms[j]->getGlobalIndex(); |
653 |
> |
excludedInteractions_.removePair(a, b); |
654 |
> |
} |
655 |
> |
} |
656 |
> |
} |
657 |
> |
|
658 |
> |
} |
659 |
> |
|
660 |
> |
|
661 |
> |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
662 |
> |
int curStampId; |
663 |
> |
|
664 |
> |
//index from 0 |
665 |
> |
curStampId = moleculeStamps_.size(); |
666 |
|
|
667 |
< |
#ifdef IS_MPI |
668 |
< |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
669 |
< |
#else |
356 |
< |
ndf = ndf_local; |
357 |
< |
#endif |
667 |
> |
moleculeStamps_.push_back(molStamp); |
668 |
> |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
669 |
> |
} |
670 |
|
|
359 |
– |
// nZconstraints is global, as are the 3 COM translations for the |
360 |
– |
// entire system: |
671 |
|
|
672 |
< |
ndf = ndf - 3 - nZconstraints; |
672 |
> |
/** |
673 |
> |
* update |
674 |
> |
* |
675 |
> |
* Performs the global checks and variable settings after the |
676 |
> |
* objects have been created. |
677 |
> |
* |
678 |
> |
*/ |
679 |
> |
void SimInfo::update() { |
680 |
> |
setupSimVariables(); |
681 |
> |
calcNdf(); |
682 |
> |
calcNdfRaw(); |
683 |
> |
calcNdfTrans(); |
684 |
> |
} |
685 |
> |
|
686 |
> |
/** |
687 |
> |
* getSimulatedAtomTypes |
688 |
> |
* |
689 |
> |
* Returns an STL set of AtomType* that are actually present in this |
690 |
> |
* simulation. Must query all processors to assemble this information. |
691 |
> |
* |
692 |
> |
*/ |
693 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
694 |
> |
SimInfo::MoleculeIterator mi; |
695 |
> |
Molecule* mol; |
696 |
> |
Molecule::AtomIterator ai; |
697 |
> |
Atom* atom; |
698 |
> |
set<AtomType*> atomTypes; |
699 |
> |
|
700 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
701 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; |
702 |
> |
atom = mol->nextAtom(ai)) { |
703 |
> |
atomTypes.insert(atom->getAtomType()); |
704 |
> |
} |
705 |
> |
} |
706 |
> |
|
707 |
> |
#ifdef IS_MPI |
708 |
|
|
709 |
< |
return ndf; |
710 |
< |
} |
709 |
> |
// loop over the found atom types on this processor, and add their |
710 |
> |
// numerical idents to a vector: |
711 |
> |
|
712 |
> |
vector<int> foundTypes; |
713 |
> |
set<AtomType*>::iterator i; |
714 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
715 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
716 |
|
|
717 |
< |
int SimInfo::getNDFraw() { |
718 |
< |
int ndfRaw_local; |
717 |
> |
// count_local holds the number of found types on this processor |
718 |
> |
int count_local = foundTypes.size(); |
719 |
|
|
720 |
< |
// Raw degrees of freedom that we have to set |
371 |
< |
ndfRaw_local = 0; |
720 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
721 |
|
|
722 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
723 |
< |
ndfRaw_local += 3; |
724 |
< |
if (integrableObjects[i]->isDirectional()) { |
725 |
< |
if (integrableObjects[i]->isLinear()) |
726 |
< |
ndfRaw_local += 2; |
727 |
< |
else |
728 |
< |
ndfRaw_local += 3; |
722 |
> |
// we need arrays to hold the counts and displacement vectors for |
723 |
> |
// all processors |
724 |
> |
vector<int> counts(nproc, 0); |
725 |
> |
vector<int> disps(nproc, 0); |
726 |
> |
|
727 |
> |
// fill the counts array |
728 |
> |
MPI::COMM_WORLD.Allgather(&count_local, 1, MPI::INT, &counts[0], |
729 |
> |
1, MPI::INT); |
730 |
> |
|
731 |
> |
// use the processor counts to compute the displacement array |
732 |
> |
disps[0] = 0; |
733 |
> |
int totalCount = counts[0]; |
734 |
> |
for (int iproc = 1; iproc < nproc; iproc++) { |
735 |
> |
disps[iproc] = disps[iproc-1] + counts[iproc-1]; |
736 |
> |
totalCount += counts[iproc]; |
737 |
|
} |
738 |
+ |
|
739 |
+ |
// we need a (possibly redundant) set of all found types: |
740 |
+ |
vector<int> ftGlobal(totalCount); |
741 |
+ |
|
742 |
+ |
// now spray out the foundTypes to all the other processors: |
743 |
+ |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
744 |
+ |
&ftGlobal[0], &counts[0], &disps[0], |
745 |
+ |
MPI::INT); |
746 |
+ |
|
747 |
+ |
vector<int>::iterator j; |
748 |
+ |
|
749 |
+ |
// foundIdents is a stl set, so inserting an already found ident |
750 |
+ |
// will have no effect. |
751 |
+ |
set<int> foundIdents; |
752 |
+ |
|
753 |
+ |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
754 |
+ |
foundIdents.insert((*j)); |
755 |
+ |
|
756 |
+ |
// now iterate over the foundIdents and get the actual atom types |
757 |
+ |
// that correspond to these: |
758 |
+ |
set<int>::iterator it; |
759 |
+ |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
760 |
+ |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
761 |
+ |
|
762 |
+ |
#endif |
763 |
+ |
|
764 |
+ |
return atomTypes; |
765 |
|
} |
766 |
+ |
|
767 |
+ |
void SimInfo::setupSimVariables() { |
768 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
769 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
770 |
+ |
calcBoxDipole_ = false; |
771 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
772 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
773 |
+ |
calcBoxDipole_ = true; |
774 |
+ |
} |
775 |
|
|
776 |
< |
#ifdef IS_MPI |
777 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
776 |
> |
set<AtomType*>::iterator i; |
777 |
> |
set<AtomType*> atomTypes; |
778 |
> |
atomTypes = getSimulatedAtomTypes(); |
779 |
> |
int usesElectrostatic = 0; |
780 |
> |
int usesMetallic = 0; |
781 |
> |
int usesDirectional = 0; |
782 |
> |
//loop over all of the atom types |
783 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
784 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
785 |
> |
usesMetallic |= (*i)->isMetal(); |
786 |
> |
usesDirectional |= (*i)->isDirectional(); |
787 |
> |
} |
788 |
> |
|
789 |
> |
#ifdef IS_MPI |
790 |
> |
int temp; |
791 |
> |
temp = usesDirectional; |
792 |
> |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
793 |
> |
|
794 |
> |
temp = usesMetallic; |
795 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
796 |
> |
|
797 |
> |
temp = usesElectrostatic; |
798 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
799 |
|
#else |
800 |
< |
ndfRaw = ndfRaw_local; |
800 |
> |
|
801 |
> |
usesDirectionalAtoms_ = usesDirectional; |
802 |
> |
usesMetallicAtoms_ = usesMetallic; |
803 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
804 |
> |
|
805 |
|
#endif |
806 |
+ |
|
807 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
808 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
809 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
810 |
+ |
} |
811 |
|
|
389 |
– |
return ndfRaw; |
390 |
– |
} |
812 |
|
|
813 |
< |
int SimInfo::getNDFtranslational() { |
814 |
< |
int ndfTrans_local; |
813 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
814 |
> |
SimInfo::MoleculeIterator mi; |
815 |
> |
Molecule* mol; |
816 |
> |
Molecule::AtomIterator ai; |
817 |
> |
Atom* atom; |
818 |
|
|
819 |
< |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
819 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
820 |
> |
|
821 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
822 |
> |
|
823 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
824 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
825 |
> |
} |
826 |
> |
} |
827 |
> |
return GlobalAtomIndices; |
828 |
> |
} |
829 |
|
|
830 |
|
|
831 |
< |
#ifdef IS_MPI |
832 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
833 |
< |
#else |
834 |
< |
ndfTrans = ndfTrans_local; |
835 |
< |
#endif |
831 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
832 |
> |
SimInfo::MoleculeIterator mi; |
833 |
> |
Molecule* mol; |
834 |
> |
Molecule::CutoffGroupIterator ci; |
835 |
> |
CutoffGroup* cg; |
836 |
|
|
837 |
< |
ndfTrans = ndfTrans - 3 - nZconstraints; |
837 |
> |
vector<int> GlobalGroupIndices; |
838 |
> |
|
839 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
840 |
> |
|
841 |
> |
//local index of cutoff group is trivial, it only depends on the |
842 |
> |
//order of travesing |
843 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
844 |
> |
cg = mol->nextCutoffGroup(ci)) { |
845 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
846 |
> |
} |
847 |
> |
} |
848 |
> |
return GlobalGroupIndices; |
849 |
> |
} |
850 |
|
|
406 |
– |
return ndfTrans; |
407 |
– |
} |
851 |
|
|
852 |
< |
int SimInfo::getTotIntegrableObjects() { |
853 |
< |
int nObjs_local; |
411 |
< |
int nObjs; |
852 |
> |
void SimInfo::prepareTopology() { |
853 |
> |
int nExclude, nOneTwo, nOneThree, nOneFour; |
854 |
|
|
855 |
< |
nObjs_local = integrableObjects.size(); |
855 |
> |
//calculate mass ratio of cutoff group |
856 |
> |
SimInfo::MoleculeIterator mi; |
857 |
> |
Molecule* mol; |
858 |
> |
Molecule::CutoffGroupIterator ci; |
859 |
> |
CutoffGroup* cg; |
860 |
> |
Molecule::AtomIterator ai; |
861 |
> |
Atom* atom; |
862 |
> |
RealType totalMass; |
863 |
|
|
864 |
+ |
/** |
865 |
+ |
* The mass factor is the relative mass of an atom to the total |
866 |
+ |
* mass of the cutoff group it belongs to. By default, all atoms |
867 |
+ |
* are their own cutoff groups, and therefore have mass factors of |
868 |
+ |
* 1. We need some special handling for massless atoms, which |
869 |
+ |
* will be treated as carrying the entire mass of the cutoff |
870 |
+ |
* group. |
871 |
+ |
*/ |
872 |
+ |
massFactors_.clear(); |
873 |
+ |
massFactors_.resize(getNAtoms(), 1.0); |
874 |
+ |
|
875 |
+ |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
876 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
877 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
878 |
|
|
879 |
< |
#ifdef IS_MPI |
880 |
< |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
881 |
< |
#else |
882 |
< |
nObjs = nObjs_local; |
883 |
< |
#endif |
879 |
> |
totalMass = cg->getMass(); |
880 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
881 |
> |
// Check for massless groups - set mfact to 1 if true |
882 |
> |
if (totalMass != 0) |
883 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
884 |
> |
else |
885 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
886 |
> |
} |
887 |
> |
} |
888 |
> |
} |
889 |
|
|
890 |
+ |
// Build the identArray_ |
891 |
|
|
892 |
< |
return nObjs; |
893 |
< |
} |
892 |
> |
identArray_.clear(); |
893 |
> |
identArray_.reserve(getNAtoms()); |
894 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
895 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
896 |
> |
identArray_.push_back(atom->getIdent()); |
897 |
> |
} |
898 |
> |
} |
899 |
> |
|
900 |
> |
//scan topology |
901 |
|
|
902 |
< |
void SimInfo::refreshSim(){ |
902 |
> |
nExclude = excludedInteractions_.getSize(); |
903 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
904 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
905 |
> |
nOneFour = oneFourInteractions_.getSize(); |
906 |
|
|
907 |
< |
simtype fInfo; |
908 |
< |
int isError; |
909 |
< |
int n_global; |
910 |
< |
int* excl; |
907 |
> |
int* excludeList = excludedInteractions_.getPairList(); |
908 |
> |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
909 |
> |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
910 |
> |
int* oneFourList = oneFourInteractions_.getPairList(); |
911 |
|
|
912 |
< |
fInfo.dielect = 0.0; |
912 |
> |
topologyDone_ = true; |
913 |
> |
} |
914 |
|
|
915 |
< |
if( useDipoles ){ |
916 |
< |
if( useReactionField )fInfo.dielect = dielectric; |
915 |
> |
void SimInfo::addProperty(GenericData* genData) { |
916 |
> |
properties_.addProperty(genData); |
917 |
|
} |
918 |
|
|
919 |
< |
fInfo.SIM_uses_PBC = usePBC; |
919 |
> |
void SimInfo::removeProperty(const string& propName) { |
920 |
> |
properties_.removeProperty(propName); |
921 |
> |
} |
922 |
|
|
923 |
< |
if (useSticky || useDipoles || useGayBerne || useShapes) { |
924 |
< |
useDirectionalAtoms = 1; |
443 |
< |
fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms; |
923 |
> |
void SimInfo::clearProperties() { |
924 |
> |
properties_.clearProperties(); |
925 |
|
} |
926 |
|
|
927 |
< |
fInfo.SIM_uses_LennardJones = useLennardJones; |
927 |
> |
vector<string> SimInfo::getPropertyNames() { |
928 |
> |
return properties_.getPropertyNames(); |
929 |
> |
} |
930 |
> |
|
931 |
> |
vector<GenericData*> SimInfo::getProperties() { |
932 |
> |
return properties_.getProperties(); |
933 |
> |
} |
934 |
|
|
935 |
< |
if (useCharges || useDipoles) { |
936 |
< |
useElectrostatics = 1; |
450 |
< |
fInfo.SIM_uses_Electrostatics = useElectrostatics; |
935 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
936 |
> |
return properties_.getPropertyByName(propName); |
937 |
|
} |
938 |
|
|
939 |
< |
fInfo.SIM_uses_Charges = useCharges; |
940 |
< |
fInfo.SIM_uses_Dipoles = useDipoles; |
941 |
< |
fInfo.SIM_uses_Sticky = useSticky; |
942 |
< |
fInfo.SIM_uses_GayBerne = useGayBerne; |
943 |
< |
fInfo.SIM_uses_EAM = useEAM; |
944 |
< |
fInfo.SIM_uses_Shapes = useShapes; |
459 |
< |
fInfo.SIM_uses_FLARB = useFLARB; |
460 |
< |
fInfo.SIM_uses_RF = useReactionField; |
939 |
> |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
940 |
> |
if (sman_ == sman) { |
941 |
> |
return; |
942 |
> |
} |
943 |
> |
delete sman_; |
944 |
> |
sman_ = sman; |
945 |
|
|
946 |
< |
n_exclude = excludes->getSize(); |
947 |
< |
excl = excludes->getFortranArray(); |
948 |
< |
|
946 |
> |
Molecule* mol; |
947 |
> |
RigidBody* rb; |
948 |
> |
Atom* atom; |
949 |
> |
CutoffGroup* cg; |
950 |
> |
SimInfo::MoleculeIterator mi; |
951 |
> |
Molecule::RigidBodyIterator rbIter; |
952 |
> |
Molecule::AtomIterator atomIter; |
953 |
> |
Molecule::CutoffGroupIterator cgIter; |
954 |
> |
|
955 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
956 |
> |
|
957 |
> |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
958 |
> |
atom->setSnapshotManager(sman_); |
959 |
> |
} |
960 |
> |
|
961 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
962 |
> |
rb->setSnapshotManager(sman_); |
963 |
> |
} |
964 |
> |
|
965 |
> |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
966 |
> |
cg->setSnapshotManager(sman_); |
967 |
> |
} |
968 |
> |
} |
969 |
> |
|
970 |
> |
} |
971 |
> |
|
972 |
> |
Vector3d SimInfo::getComVel(){ |
973 |
> |
SimInfo::MoleculeIterator i; |
974 |
> |
Molecule* mol; |
975 |
> |
|
976 |
> |
Vector3d comVel(0.0); |
977 |
> |
RealType totalMass = 0.0; |
978 |
> |
|
979 |
> |
|
980 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
981 |
> |
RealType mass = mol->getMass(); |
982 |
> |
totalMass += mass; |
983 |
> |
comVel += mass * mol->getComVel(); |
984 |
> |
} |
985 |
> |
|
986 |
|
#ifdef IS_MPI |
987 |
< |
n_global = mpiSim->getNAtomsGlobal(); |
988 |
< |
#else |
989 |
< |
n_global = n_atoms; |
987 |
> |
RealType tmpMass = totalMass; |
988 |
> |
Vector3d tmpComVel(comVel); |
989 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
990 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
991 |
|
#endif |
470 |
– |
|
471 |
– |
isError = 0; |
472 |
– |
|
473 |
– |
getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
474 |
– |
//it may not be a good idea to pass the address of first element in vector |
475 |
– |
//since c++ standard does not require vector to be stored continuously in meomory |
476 |
– |
//Most of the compilers will organize the memory of vector continuously |
477 |
– |
setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
478 |
– |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
479 |
– |
&mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
992 |
|
|
993 |
< |
if( isError ){ |
994 |
< |
|
995 |
< |
sprintf( painCave.errMsg, |
484 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
485 |
< |
painCave.isFatal = 1; |
486 |
< |
painCave.severity = OOPSE_ERROR; |
487 |
< |
simError(); |
993 |
> |
comVel /= totalMass; |
994 |
> |
|
995 |
> |
return comVel; |
996 |
|
} |
997 |
< |
|
997 |
> |
|
998 |
> |
Vector3d SimInfo::getCom(){ |
999 |
> |
SimInfo::MoleculeIterator i; |
1000 |
> |
Molecule* mol; |
1001 |
> |
|
1002 |
> |
Vector3d com(0.0); |
1003 |
> |
RealType totalMass = 0.0; |
1004 |
> |
|
1005 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1006 |
> |
RealType mass = mol->getMass(); |
1007 |
> |
totalMass += mass; |
1008 |
> |
com += mass * mol->getCom(); |
1009 |
> |
} |
1010 |
> |
|
1011 |
|
#ifdef IS_MPI |
1012 |
< |
sprintf( checkPointMsg, |
1013 |
< |
"succesfully sent the simulation information to fortran.\n"); |
1014 |
< |
MPIcheckPoint(); |
1015 |
< |
#endif // is_mpi |
1016 |
< |
|
496 |
< |
this->ndf = this->getNDF(); |
497 |
< |
this->ndfRaw = this->getNDFraw(); |
498 |
< |
this->ndfTrans = this->getNDFtranslational(); |
499 |
< |
} |
1012 |
> |
RealType tmpMass = totalMass; |
1013 |
> |
Vector3d tmpCom(com); |
1014 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1015 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1016 |
> |
#endif |
1017 |
|
|
1018 |
< |
void SimInfo::setDefaultRcut( double theRcut ){ |
502 |
< |
|
503 |
< |
haveRcut = 1; |
504 |
< |
rCut = theRcut; |
505 |
< |
rList = rCut + 1.0; |
506 |
< |
|
507 |
< |
notifyFortranCutoffs( &rCut, &rSw, &rList ); |
508 |
< |
} |
1018 |
> |
com /= totalMass; |
1019 |
|
|
1020 |
< |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
1020 |
> |
return com; |
1021 |
|
|
1022 |
< |
rSw = theRsw; |
513 |
< |
setDefaultRcut( theRcut ); |
514 |
< |
} |
1022 |
> |
} |
1023 |
|
|
1024 |
+ |
ostream& operator <<(ostream& o, SimInfo& info) { |
1025 |
|
|
1026 |
< |
void SimInfo::checkCutOffs( void ){ |
1027 |
< |
|
1028 |
< |
if( boxIsInit ){ |
1026 |
> |
return o; |
1027 |
> |
} |
1028 |
> |
|
1029 |
> |
|
1030 |
> |
/* |
1031 |
> |
Returns center of mass and center of mass velocity in one function call. |
1032 |
> |
*/ |
1033 |
> |
|
1034 |
> |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1035 |
> |
SimInfo::MoleculeIterator i; |
1036 |
> |
Molecule* mol; |
1037 |
> |
|
1038 |
|
|
1039 |
< |
//we need to check cutOffs against the box |
1039 |
> |
RealType totalMass = 0.0; |
1040 |
|
|
523 |
– |
if( rCut > maxCutoff ){ |
524 |
– |
sprintf( painCave.errMsg, |
525 |
– |
"cutoffRadius is too large for the current periodic box.\n" |
526 |
– |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
527 |
– |
"\tThis is larger than half of at least one of the\n" |
528 |
– |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
529 |
– |
"\n" |
530 |
– |
"\t[ %G %G %G ]\n" |
531 |
– |
"\t[ %G %G %G ]\n" |
532 |
– |
"\t[ %G %G %G ]\n", |
533 |
– |
rCut, currentTime, |
534 |
– |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
535 |
– |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
536 |
– |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
537 |
– |
painCave.severity = OOPSE_ERROR; |
538 |
– |
painCave.isFatal = 1; |
539 |
– |
simError(); |
540 |
– |
} |
541 |
– |
} else { |
542 |
– |
// initialize this stuff before using it, OK? |
543 |
– |
sprintf( painCave.errMsg, |
544 |
– |
"Trying to check cutoffs without a box.\n" |
545 |
– |
"\tOOPSE should have better programmers than that.\n" ); |
546 |
– |
painCave.severity = OOPSE_ERROR; |
547 |
– |
painCave.isFatal = 1; |
548 |
– |
simError(); |
549 |
– |
} |
550 |
– |
|
551 |
– |
} |
1041 |
|
|
1042 |
< |
void SimInfo::addProperty(GenericData* prop){ |
1043 |
< |
|
1044 |
< |
map<string, GenericData*>::iterator result; |
1045 |
< |
result = properties.find(prop->getID()); |
1046 |
< |
|
1047 |
< |
//we can't simply use properties[prop->getID()] = prop, |
559 |
< |
//it will cause memory leak if we already contain a propery which has the same name of prop |
560 |
< |
|
561 |
< |
if(result != properties.end()){ |
562 |
< |
|
563 |
< |
delete (*result).second; |
564 |
< |
(*result).second = prop; |
1042 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1043 |
> |
RealType mass = mol->getMass(); |
1044 |
> |
totalMass += mass; |
1045 |
> |
com += mass * mol->getCom(); |
1046 |
> |
comVel += mass * mol->getComVel(); |
1047 |
> |
} |
1048 |
|
|
1049 |
< |
} |
1050 |
< |
else{ |
1049 |
> |
#ifdef IS_MPI |
1050 |
> |
RealType tmpMass = totalMass; |
1051 |
> |
Vector3d tmpCom(com); |
1052 |
> |
Vector3d tmpComVel(comVel); |
1053 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1054 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1055 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1056 |
> |
#endif |
1057 |
> |
|
1058 |
> |
com /= totalMass; |
1059 |
> |
comVel /= totalMass; |
1060 |
> |
} |
1061 |
> |
|
1062 |
> |
/* |
1063 |
> |
Return intertia tensor for entire system and angular momentum Vector. |
1064 |
|
|
569 |
– |
properties[prop->getID()] = prop; |
1065 |
|
|
1066 |
< |
} |
1067 |
< |
|
1068 |
< |
} |
1066 |
> |
[ Ixx -Ixy -Ixz ] |
1067 |
> |
J =| -Iyx Iyy -Iyz | |
1068 |
> |
[ -Izx -Iyz Izz ] |
1069 |
> |
*/ |
1070 |
|
|
1071 |
< |
GenericData* SimInfo::getProperty(const string& propName){ |
1071 |
> |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1072 |
> |
|
1073 |
|
|
1074 |
< |
map<string, GenericData*>::iterator result; |
1075 |
< |
|
1076 |
< |
//string lowerCaseName = (); |
1077 |
< |
|
1078 |
< |
result = properties.find(propName); |
1079 |
< |
|
1080 |
< |
if(result != properties.end()) |
1081 |
< |
return (*result).second; |
1082 |
< |
else |
1083 |
< |
return NULL; |
1084 |
< |
} |
1074 |
> |
RealType xx = 0.0; |
1075 |
> |
RealType yy = 0.0; |
1076 |
> |
RealType zz = 0.0; |
1077 |
> |
RealType xy = 0.0; |
1078 |
> |
RealType xz = 0.0; |
1079 |
> |
RealType yz = 0.0; |
1080 |
> |
Vector3d com(0.0); |
1081 |
> |
Vector3d comVel(0.0); |
1082 |
> |
|
1083 |
> |
getComAll(com, comVel); |
1084 |
> |
|
1085 |
> |
SimInfo::MoleculeIterator i; |
1086 |
> |
Molecule* mol; |
1087 |
> |
|
1088 |
> |
Vector3d thisq(0.0); |
1089 |
> |
Vector3d thisv(0.0); |
1090 |
|
|
1091 |
+ |
RealType thisMass = 0.0; |
1092 |
+ |
|
1093 |
+ |
|
1094 |
+ |
|
1095 |
+ |
|
1096 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1097 |
+ |
|
1098 |
+ |
thisq = mol->getCom()-com; |
1099 |
+ |
thisv = mol->getComVel()-comVel; |
1100 |
+ |
thisMass = mol->getMass(); |
1101 |
+ |
// Compute moment of intertia coefficients. |
1102 |
+ |
xx += thisq[0]*thisq[0]*thisMass; |
1103 |
+ |
yy += thisq[1]*thisq[1]*thisMass; |
1104 |
+ |
zz += thisq[2]*thisq[2]*thisMass; |
1105 |
+ |
|
1106 |
+ |
// compute products of intertia |
1107 |
+ |
xy += thisq[0]*thisq[1]*thisMass; |
1108 |
+ |
xz += thisq[0]*thisq[2]*thisMass; |
1109 |
+ |
yz += thisq[1]*thisq[2]*thisMass; |
1110 |
+ |
|
1111 |
+ |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1112 |
+ |
|
1113 |
+ |
} |
1114 |
+ |
|
1115 |
+ |
|
1116 |
+ |
inertiaTensor(0,0) = yy + zz; |
1117 |
+ |
inertiaTensor(0,1) = -xy; |
1118 |
+ |
inertiaTensor(0,2) = -xz; |
1119 |
+ |
inertiaTensor(1,0) = -xy; |
1120 |
+ |
inertiaTensor(1,1) = xx + zz; |
1121 |
+ |
inertiaTensor(1,2) = -yz; |
1122 |
+ |
inertiaTensor(2,0) = -xz; |
1123 |
+ |
inertiaTensor(2,1) = -yz; |
1124 |
+ |
inertiaTensor(2,2) = xx + yy; |
1125 |
+ |
|
1126 |
+ |
#ifdef IS_MPI |
1127 |
+ |
Mat3x3d tmpI(inertiaTensor); |
1128 |
+ |
Vector3d tmpAngMom; |
1129 |
+ |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1130 |
+ |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1131 |
+ |
#endif |
1132 |
+ |
|
1133 |
+ |
return; |
1134 |
+ |
} |
1135 |
|
|
1136 |
< |
void SimInfo::getFortranGroupArrays(SimInfo* info, |
1137 |
< |
vector<int>& FglobalGroupMembership, |
1138 |
< |
vector<double>& mfact){ |
1139 |
< |
|
1140 |
< |
Molecule* myMols; |
1141 |
< |
Atom** myAtoms; |
1142 |
< |
int numAtom; |
1143 |
< |
double mtot; |
1144 |
< |
int numMol; |
1145 |
< |
int numCutoffGroups; |
1146 |
< |
CutoffGroup* myCutoffGroup; |
1147 |
< |
vector<CutoffGroup*>::iterator iterCutoff; |
1148 |
< |
Atom* cutoffAtom; |
1149 |
< |
vector<Atom*>::iterator iterAtom; |
1150 |
< |
int atomIndex; |
1151 |
< |
double totalMass; |
1152 |
< |
|
1153 |
< |
mfact.clear(); |
1154 |
< |
FglobalGroupMembership.clear(); |
1155 |
< |
|
1156 |
< |
|
1157 |
< |
// Fix the silly fortran indexing problem |
1136 |
> |
//Returns the angular momentum of the system |
1137 |
> |
Vector3d SimInfo::getAngularMomentum(){ |
1138 |
> |
|
1139 |
> |
Vector3d com(0.0); |
1140 |
> |
Vector3d comVel(0.0); |
1141 |
> |
Vector3d angularMomentum(0.0); |
1142 |
> |
|
1143 |
> |
getComAll(com,comVel); |
1144 |
> |
|
1145 |
> |
SimInfo::MoleculeIterator i; |
1146 |
> |
Molecule* mol; |
1147 |
> |
|
1148 |
> |
Vector3d thisr(0.0); |
1149 |
> |
Vector3d thisp(0.0); |
1150 |
> |
|
1151 |
> |
RealType thisMass; |
1152 |
> |
|
1153 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1154 |
> |
thisMass = mol->getMass(); |
1155 |
> |
thisr = mol->getCom()-com; |
1156 |
> |
thisp = (mol->getComVel()-comVel)*thisMass; |
1157 |
> |
|
1158 |
> |
angularMomentum += cross( thisr, thisp ); |
1159 |
> |
|
1160 |
> |
} |
1161 |
> |
|
1162 |
|
#ifdef IS_MPI |
1163 |
< |
numAtom = mpiSim->getNAtomsGlobal(); |
1164 |
< |
#else |
615 |
< |
numAtom = n_atoms; |
1163 |
> |
Vector3d tmpAngMom; |
1164 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1165 |
|
#endif |
1166 |
< |
for (int i = 0; i < numAtom; i++) |
1167 |
< |
FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
1166 |
> |
|
1167 |
> |
return angularMomentum; |
1168 |
> |
} |
1169 |
> |
|
1170 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1171 |
> |
return IOIndexToIntegrableObject.at(index); |
1172 |
> |
} |
1173 |
|
|
1174 |
+ |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1175 |
+ |
IOIndexToIntegrableObject= v; |
1176 |
+ |
} |
1177 |
|
|
1178 |
< |
myMols = info->molecules; |
1179 |
< |
numMol = info->n_mol; |
1180 |
< |
for(int i = 0; i < numMol; i++){ |
1181 |
< |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
1182 |
< |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
1183 |
< |
myCutoffGroup != NULL; |
1184 |
< |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
1178 |
> |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1179 |
> |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1180 |
> |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1181 |
> |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1182 |
> |
*/ |
1183 |
> |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1184 |
> |
Mat3x3d intTensor; |
1185 |
> |
RealType det; |
1186 |
> |
Vector3d dummyAngMom; |
1187 |
> |
RealType sysconstants; |
1188 |
> |
RealType geomCnst; |
1189 |
|
|
1190 |
< |
totalMass = myCutoffGroup->getMass(); |
1191 |
< |
|
1192 |
< |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
1193 |
< |
cutoffAtom != NULL; |
1194 |
< |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
1195 |
< |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
1196 |
< |
} |
1190 |
> |
geomCnst = 3.0/2.0; |
1191 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1192 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1193 |
> |
|
1194 |
> |
det = intTensor.determinant(); |
1195 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1196 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1197 |
> |
return; |
1198 |
> |
} |
1199 |
> |
|
1200 |
> |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1201 |
> |
Mat3x3d intTensor; |
1202 |
> |
Vector3d dummyAngMom; |
1203 |
> |
RealType sysconstants; |
1204 |
> |
RealType geomCnst; |
1205 |
> |
|
1206 |
> |
geomCnst = 3.0/2.0; |
1207 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1208 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1209 |
> |
|
1210 |
> |
detI = intTensor.determinant(); |
1211 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1212 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1213 |
> |
return; |
1214 |
> |
} |
1215 |
> |
/* |
1216 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1217 |
> |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1218 |
> |
sdByGlobalIndex_ = v; |
1219 |
|
} |
1220 |
+ |
|
1221 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1222 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1223 |
+ |
return sdByGlobalIndex_.at(index); |
1224 |
+ |
} |
1225 |
+ |
*/ |
1226 |
+ |
int SimInfo::getNGlobalConstraints() { |
1227 |
+ |
int nGlobalConstraints; |
1228 |
+ |
#ifdef IS_MPI |
1229 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1230 |
+ |
MPI_COMM_WORLD); |
1231 |
+ |
#else |
1232 |
+ |
nGlobalConstraints = nConstraints_; |
1233 |
+ |
#endif |
1234 |
+ |
return nGlobalConstraints; |
1235 |
|
} |
1236 |
|
|
1237 |
< |
} |
1237 |
> |
}//end namespace OpenMD |
1238 |
> |
|