1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
/** |
43 |
* @file SimInfo.cpp |
44 |
* @author tlin |
45 |
* @date 11/02/2004 |
46 |
* @version 1.0 |
47 |
*/ |
48 |
|
49 |
#include <algorithm> |
50 |
#include <set> |
51 |
#include <map> |
52 |
|
53 |
#include "brains/SimInfo.hpp" |
54 |
#include "math/Vector3.hpp" |
55 |
#include "primitives/Molecule.hpp" |
56 |
#include "primitives/StuntDouble.hpp" |
57 |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
59 |
#include "UseTheForce/doForces_interface.h" |
60 |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
61 |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
62 |
#include "utils/MemoryUtils.hpp" |
63 |
#include "utils/simError.h" |
64 |
#include "selection/SelectionManager.hpp" |
65 |
#include "io/ForceFieldOptions.hpp" |
66 |
#include "UseTheForce/ForceField.hpp" |
67 |
#include "nonbonded/InteractionManager.hpp" |
68 |
|
69 |
|
70 |
#ifdef IS_MPI |
71 |
#include "UseTheForce/mpiComponentPlan.h" |
72 |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
73 |
#endif |
74 |
|
75 |
using namespace std; |
76 |
namespace OpenMD { |
77 |
|
78 |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
79 |
forceField_(ff), simParams_(simParams), |
80 |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
81 |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
82 |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
83 |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
84 |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
85 |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
86 |
calcBoxDipole_(false), useAtomicVirial_(true) { |
87 |
|
88 |
MoleculeStamp* molStamp; |
89 |
int nMolWithSameStamp; |
90 |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
91 |
int nGroups = 0; //total cutoff groups defined in meta-data file |
92 |
CutoffGroupStamp* cgStamp; |
93 |
RigidBodyStamp* rbStamp; |
94 |
int nRigidAtoms = 0; |
95 |
|
96 |
vector<Component*> components = simParams->getComponents(); |
97 |
|
98 |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
99 |
molStamp = (*i)->getMoleculeStamp(); |
100 |
nMolWithSameStamp = (*i)->getNMol(); |
101 |
|
102 |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
103 |
|
104 |
//calculate atoms in molecules |
105 |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
106 |
|
107 |
//calculate atoms in cutoff groups |
108 |
int nAtomsInGroups = 0; |
109 |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
110 |
|
111 |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
112 |
cgStamp = molStamp->getCutoffGroupStamp(j); |
113 |
nAtomsInGroups += cgStamp->getNMembers(); |
114 |
} |
115 |
|
116 |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
117 |
|
118 |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
119 |
|
120 |
//calculate atoms in rigid bodies |
121 |
int nAtomsInRigidBodies = 0; |
122 |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
123 |
|
124 |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
125 |
rbStamp = molStamp->getRigidBodyStamp(j); |
126 |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
127 |
} |
128 |
|
129 |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
130 |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
131 |
|
132 |
} |
133 |
|
134 |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
135 |
//group therefore the total number of cutoff groups in the system is |
136 |
//equal to the total number of atoms minus number of atoms belong to |
137 |
//cutoff group defined in meta-data file plus the number of cutoff |
138 |
//groups defined in meta-data file |
139 |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
140 |
|
141 |
//every free atom (atom does not belong to rigid bodies) is an |
142 |
//integrable object therefore the total number of integrable objects |
143 |
//in the system is equal to the total number of atoms minus number of |
144 |
//atoms belong to rigid body defined in meta-data file plus the number |
145 |
//of rigid bodies defined in meta-data file |
146 |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
147 |
+ nGlobalRigidBodies_; |
148 |
|
149 |
nGlobalMols_ = molStampIds_.size(); |
150 |
molToProcMap_.resize(nGlobalMols_); |
151 |
} |
152 |
|
153 |
SimInfo::~SimInfo() { |
154 |
map<int, Molecule*>::iterator i; |
155 |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
156 |
delete i->second; |
157 |
} |
158 |
molecules_.clear(); |
159 |
|
160 |
delete sman_; |
161 |
delete simParams_; |
162 |
delete forceField_; |
163 |
} |
164 |
|
165 |
|
166 |
bool SimInfo::addMolecule(Molecule* mol) { |
167 |
MoleculeIterator i; |
168 |
|
169 |
i = molecules_.find(mol->getGlobalIndex()); |
170 |
if (i == molecules_.end() ) { |
171 |
|
172 |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
173 |
|
174 |
nAtoms_ += mol->getNAtoms(); |
175 |
nBonds_ += mol->getNBonds(); |
176 |
nBends_ += mol->getNBends(); |
177 |
nTorsions_ += mol->getNTorsions(); |
178 |
nInversions_ += mol->getNInversions(); |
179 |
nRigidBodies_ += mol->getNRigidBodies(); |
180 |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
181 |
nCutoffGroups_ += mol->getNCutoffGroups(); |
182 |
nConstraints_ += mol->getNConstraintPairs(); |
183 |
|
184 |
addInteractionPairs(mol); |
185 |
|
186 |
return true; |
187 |
} else { |
188 |
return false; |
189 |
} |
190 |
} |
191 |
|
192 |
bool SimInfo::removeMolecule(Molecule* mol) { |
193 |
MoleculeIterator i; |
194 |
i = molecules_.find(mol->getGlobalIndex()); |
195 |
|
196 |
if (i != molecules_.end() ) { |
197 |
|
198 |
assert(mol == i->second); |
199 |
|
200 |
nAtoms_ -= mol->getNAtoms(); |
201 |
nBonds_ -= mol->getNBonds(); |
202 |
nBends_ -= mol->getNBends(); |
203 |
nTorsions_ -= mol->getNTorsions(); |
204 |
nInversions_ -= mol->getNInversions(); |
205 |
nRigidBodies_ -= mol->getNRigidBodies(); |
206 |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
207 |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
208 |
nConstraints_ -= mol->getNConstraintPairs(); |
209 |
|
210 |
removeInteractionPairs(mol); |
211 |
molecules_.erase(mol->getGlobalIndex()); |
212 |
|
213 |
delete mol; |
214 |
|
215 |
return true; |
216 |
} else { |
217 |
return false; |
218 |
} |
219 |
} |
220 |
|
221 |
|
222 |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
223 |
i = molecules_.begin(); |
224 |
return i == molecules_.end() ? NULL : i->second; |
225 |
} |
226 |
|
227 |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
228 |
++i; |
229 |
return i == molecules_.end() ? NULL : i->second; |
230 |
} |
231 |
|
232 |
|
233 |
void SimInfo::calcNdf() { |
234 |
int ndf_local; |
235 |
MoleculeIterator i; |
236 |
vector<StuntDouble*>::iterator j; |
237 |
Molecule* mol; |
238 |
StuntDouble* integrableObject; |
239 |
|
240 |
ndf_local = 0; |
241 |
|
242 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
243 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
244 |
integrableObject = mol->nextIntegrableObject(j)) { |
245 |
|
246 |
ndf_local += 3; |
247 |
|
248 |
if (integrableObject->isDirectional()) { |
249 |
if (integrableObject->isLinear()) { |
250 |
ndf_local += 2; |
251 |
} else { |
252 |
ndf_local += 3; |
253 |
} |
254 |
} |
255 |
|
256 |
} |
257 |
} |
258 |
|
259 |
// n_constraints is local, so subtract them on each processor |
260 |
ndf_local -= nConstraints_; |
261 |
|
262 |
#ifdef IS_MPI |
263 |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
264 |
#else |
265 |
ndf_ = ndf_local; |
266 |
#endif |
267 |
|
268 |
// nZconstraints_ is global, as are the 3 COM translations for the |
269 |
// entire system: |
270 |
ndf_ = ndf_ - 3 - nZconstraint_; |
271 |
|
272 |
} |
273 |
|
274 |
int SimInfo::getFdf() { |
275 |
#ifdef IS_MPI |
276 |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
277 |
#else |
278 |
fdf_ = fdf_local; |
279 |
#endif |
280 |
return fdf_; |
281 |
} |
282 |
|
283 |
void SimInfo::calcNdfRaw() { |
284 |
int ndfRaw_local; |
285 |
|
286 |
MoleculeIterator i; |
287 |
vector<StuntDouble*>::iterator j; |
288 |
Molecule* mol; |
289 |
StuntDouble* integrableObject; |
290 |
|
291 |
// Raw degrees of freedom that we have to set |
292 |
ndfRaw_local = 0; |
293 |
|
294 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
295 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
296 |
integrableObject = mol->nextIntegrableObject(j)) { |
297 |
|
298 |
ndfRaw_local += 3; |
299 |
|
300 |
if (integrableObject->isDirectional()) { |
301 |
if (integrableObject->isLinear()) { |
302 |
ndfRaw_local += 2; |
303 |
} else { |
304 |
ndfRaw_local += 3; |
305 |
} |
306 |
} |
307 |
|
308 |
} |
309 |
} |
310 |
|
311 |
#ifdef IS_MPI |
312 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
313 |
#else |
314 |
ndfRaw_ = ndfRaw_local; |
315 |
#endif |
316 |
} |
317 |
|
318 |
void SimInfo::calcNdfTrans() { |
319 |
int ndfTrans_local; |
320 |
|
321 |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
322 |
|
323 |
|
324 |
#ifdef IS_MPI |
325 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
326 |
#else |
327 |
ndfTrans_ = ndfTrans_local; |
328 |
#endif |
329 |
|
330 |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
331 |
|
332 |
} |
333 |
|
334 |
void SimInfo::addInteractionPairs(Molecule* mol) { |
335 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
336 |
vector<Bond*>::iterator bondIter; |
337 |
vector<Bend*>::iterator bendIter; |
338 |
vector<Torsion*>::iterator torsionIter; |
339 |
vector<Inversion*>::iterator inversionIter; |
340 |
Bond* bond; |
341 |
Bend* bend; |
342 |
Torsion* torsion; |
343 |
Inversion* inversion; |
344 |
int a; |
345 |
int b; |
346 |
int c; |
347 |
int d; |
348 |
|
349 |
// atomGroups can be used to add special interaction maps between |
350 |
// groups of atoms that are in two separate rigid bodies. |
351 |
// However, most site-site interactions between two rigid bodies |
352 |
// are probably not special, just the ones between the physically |
353 |
// bonded atoms. Interactions *within* a single rigid body should |
354 |
// always be excluded. These are done at the bottom of this |
355 |
// function. |
356 |
|
357 |
map<int, set<int> > atomGroups; |
358 |
Molecule::RigidBodyIterator rbIter; |
359 |
RigidBody* rb; |
360 |
Molecule::IntegrableObjectIterator ii; |
361 |
StuntDouble* integrableObject; |
362 |
|
363 |
for (integrableObject = mol->beginIntegrableObject(ii); |
364 |
integrableObject != NULL; |
365 |
integrableObject = mol->nextIntegrableObject(ii)) { |
366 |
|
367 |
if (integrableObject->isRigidBody()) { |
368 |
rb = static_cast<RigidBody*>(integrableObject); |
369 |
vector<Atom*> atoms = rb->getAtoms(); |
370 |
set<int> rigidAtoms; |
371 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
372 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
373 |
} |
374 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
375 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
376 |
} |
377 |
} else { |
378 |
set<int> oneAtomSet; |
379 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
380 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
381 |
} |
382 |
} |
383 |
|
384 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
385 |
bond = mol->nextBond(bondIter)) { |
386 |
|
387 |
a = bond->getAtomA()->getGlobalIndex(); |
388 |
b = bond->getAtomB()->getGlobalIndex(); |
389 |
|
390 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
391 |
oneTwoInteractions_.addPair(a, b); |
392 |
} else { |
393 |
excludedInteractions_.addPair(a, b); |
394 |
} |
395 |
} |
396 |
|
397 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
398 |
bend = mol->nextBend(bendIter)) { |
399 |
|
400 |
a = bend->getAtomA()->getGlobalIndex(); |
401 |
b = bend->getAtomB()->getGlobalIndex(); |
402 |
c = bend->getAtomC()->getGlobalIndex(); |
403 |
|
404 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
405 |
oneTwoInteractions_.addPair(a, b); |
406 |
oneTwoInteractions_.addPair(b, c); |
407 |
} else { |
408 |
excludedInteractions_.addPair(a, b); |
409 |
excludedInteractions_.addPair(b, c); |
410 |
} |
411 |
|
412 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
413 |
oneThreeInteractions_.addPair(a, c); |
414 |
} else { |
415 |
excludedInteractions_.addPair(a, c); |
416 |
} |
417 |
} |
418 |
|
419 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
420 |
torsion = mol->nextTorsion(torsionIter)) { |
421 |
|
422 |
a = torsion->getAtomA()->getGlobalIndex(); |
423 |
b = torsion->getAtomB()->getGlobalIndex(); |
424 |
c = torsion->getAtomC()->getGlobalIndex(); |
425 |
d = torsion->getAtomD()->getGlobalIndex(); |
426 |
|
427 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
428 |
oneTwoInteractions_.addPair(a, b); |
429 |
oneTwoInteractions_.addPair(b, c); |
430 |
oneTwoInteractions_.addPair(c, d); |
431 |
} else { |
432 |
excludedInteractions_.addPair(a, b); |
433 |
excludedInteractions_.addPair(b, c); |
434 |
excludedInteractions_.addPair(c, d); |
435 |
} |
436 |
|
437 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
438 |
oneThreeInteractions_.addPair(a, c); |
439 |
oneThreeInteractions_.addPair(b, d); |
440 |
} else { |
441 |
excludedInteractions_.addPair(a, c); |
442 |
excludedInteractions_.addPair(b, d); |
443 |
} |
444 |
|
445 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
446 |
oneFourInteractions_.addPair(a, d); |
447 |
} else { |
448 |
excludedInteractions_.addPair(a, d); |
449 |
} |
450 |
} |
451 |
|
452 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
453 |
inversion = mol->nextInversion(inversionIter)) { |
454 |
|
455 |
a = inversion->getAtomA()->getGlobalIndex(); |
456 |
b = inversion->getAtomB()->getGlobalIndex(); |
457 |
c = inversion->getAtomC()->getGlobalIndex(); |
458 |
d = inversion->getAtomD()->getGlobalIndex(); |
459 |
|
460 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
461 |
oneTwoInteractions_.addPair(a, b); |
462 |
oneTwoInteractions_.addPair(a, c); |
463 |
oneTwoInteractions_.addPair(a, d); |
464 |
} else { |
465 |
excludedInteractions_.addPair(a, b); |
466 |
excludedInteractions_.addPair(a, c); |
467 |
excludedInteractions_.addPair(a, d); |
468 |
} |
469 |
|
470 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
471 |
oneThreeInteractions_.addPair(b, c); |
472 |
oneThreeInteractions_.addPair(b, d); |
473 |
oneThreeInteractions_.addPair(c, d); |
474 |
} else { |
475 |
excludedInteractions_.addPair(b, c); |
476 |
excludedInteractions_.addPair(b, d); |
477 |
excludedInteractions_.addPair(c, d); |
478 |
} |
479 |
} |
480 |
|
481 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
482 |
rb = mol->nextRigidBody(rbIter)) { |
483 |
vector<Atom*> atoms = rb->getAtoms(); |
484 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
485 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
486 |
a = atoms[i]->getGlobalIndex(); |
487 |
b = atoms[j]->getGlobalIndex(); |
488 |
excludedInteractions_.addPair(a, b); |
489 |
} |
490 |
} |
491 |
} |
492 |
|
493 |
} |
494 |
|
495 |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
496 |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
497 |
vector<Bond*>::iterator bondIter; |
498 |
vector<Bend*>::iterator bendIter; |
499 |
vector<Torsion*>::iterator torsionIter; |
500 |
vector<Inversion*>::iterator inversionIter; |
501 |
Bond* bond; |
502 |
Bend* bend; |
503 |
Torsion* torsion; |
504 |
Inversion* inversion; |
505 |
int a; |
506 |
int b; |
507 |
int c; |
508 |
int d; |
509 |
|
510 |
map<int, set<int> > atomGroups; |
511 |
Molecule::RigidBodyIterator rbIter; |
512 |
RigidBody* rb; |
513 |
Molecule::IntegrableObjectIterator ii; |
514 |
StuntDouble* integrableObject; |
515 |
|
516 |
for (integrableObject = mol->beginIntegrableObject(ii); |
517 |
integrableObject != NULL; |
518 |
integrableObject = mol->nextIntegrableObject(ii)) { |
519 |
|
520 |
if (integrableObject->isRigidBody()) { |
521 |
rb = static_cast<RigidBody*>(integrableObject); |
522 |
vector<Atom*> atoms = rb->getAtoms(); |
523 |
set<int> rigidAtoms; |
524 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
525 |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
526 |
} |
527 |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
528 |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
529 |
} |
530 |
} else { |
531 |
set<int> oneAtomSet; |
532 |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
533 |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
534 |
} |
535 |
} |
536 |
|
537 |
for (bond= mol->beginBond(bondIter); bond != NULL; |
538 |
bond = mol->nextBond(bondIter)) { |
539 |
|
540 |
a = bond->getAtomA()->getGlobalIndex(); |
541 |
b = bond->getAtomB()->getGlobalIndex(); |
542 |
|
543 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
544 |
oneTwoInteractions_.removePair(a, b); |
545 |
} else { |
546 |
excludedInteractions_.removePair(a, b); |
547 |
} |
548 |
} |
549 |
|
550 |
for (bend= mol->beginBend(bendIter); bend != NULL; |
551 |
bend = mol->nextBend(bendIter)) { |
552 |
|
553 |
a = bend->getAtomA()->getGlobalIndex(); |
554 |
b = bend->getAtomB()->getGlobalIndex(); |
555 |
c = bend->getAtomC()->getGlobalIndex(); |
556 |
|
557 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
558 |
oneTwoInteractions_.removePair(a, b); |
559 |
oneTwoInteractions_.removePair(b, c); |
560 |
} else { |
561 |
excludedInteractions_.removePair(a, b); |
562 |
excludedInteractions_.removePair(b, c); |
563 |
} |
564 |
|
565 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
566 |
oneThreeInteractions_.removePair(a, c); |
567 |
} else { |
568 |
excludedInteractions_.removePair(a, c); |
569 |
} |
570 |
} |
571 |
|
572 |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
573 |
torsion = mol->nextTorsion(torsionIter)) { |
574 |
|
575 |
a = torsion->getAtomA()->getGlobalIndex(); |
576 |
b = torsion->getAtomB()->getGlobalIndex(); |
577 |
c = torsion->getAtomC()->getGlobalIndex(); |
578 |
d = torsion->getAtomD()->getGlobalIndex(); |
579 |
|
580 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
581 |
oneTwoInteractions_.removePair(a, b); |
582 |
oneTwoInteractions_.removePair(b, c); |
583 |
oneTwoInteractions_.removePair(c, d); |
584 |
} else { |
585 |
excludedInteractions_.removePair(a, b); |
586 |
excludedInteractions_.removePair(b, c); |
587 |
excludedInteractions_.removePair(c, d); |
588 |
} |
589 |
|
590 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
591 |
oneThreeInteractions_.removePair(a, c); |
592 |
oneThreeInteractions_.removePair(b, d); |
593 |
} else { |
594 |
excludedInteractions_.removePair(a, c); |
595 |
excludedInteractions_.removePair(b, d); |
596 |
} |
597 |
|
598 |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
599 |
oneFourInteractions_.removePair(a, d); |
600 |
} else { |
601 |
excludedInteractions_.removePair(a, d); |
602 |
} |
603 |
} |
604 |
|
605 |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
606 |
inversion = mol->nextInversion(inversionIter)) { |
607 |
|
608 |
a = inversion->getAtomA()->getGlobalIndex(); |
609 |
b = inversion->getAtomB()->getGlobalIndex(); |
610 |
c = inversion->getAtomC()->getGlobalIndex(); |
611 |
d = inversion->getAtomD()->getGlobalIndex(); |
612 |
|
613 |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
614 |
oneTwoInteractions_.removePair(a, b); |
615 |
oneTwoInteractions_.removePair(a, c); |
616 |
oneTwoInteractions_.removePair(a, d); |
617 |
} else { |
618 |
excludedInteractions_.removePair(a, b); |
619 |
excludedInteractions_.removePair(a, c); |
620 |
excludedInteractions_.removePair(a, d); |
621 |
} |
622 |
|
623 |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
624 |
oneThreeInteractions_.removePair(b, c); |
625 |
oneThreeInteractions_.removePair(b, d); |
626 |
oneThreeInteractions_.removePair(c, d); |
627 |
} else { |
628 |
excludedInteractions_.removePair(b, c); |
629 |
excludedInteractions_.removePair(b, d); |
630 |
excludedInteractions_.removePair(c, d); |
631 |
} |
632 |
} |
633 |
|
634 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
635 |
rb = mol->nextRigidBody(rbIter)) { |
636 |
vector<Atom*> atoms = rb->getAtoms(); |
637 |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
638 |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
639 |
a = atoms[i]->getGlobalIndex(); |
640 |
b = atoms[j]->getGlobalIndex(); |
641 |
excludedInteractions_.removePair(a, b); |
642 |
} |
643 |
} |
644 |
} |
645 |
|
646 |
} |
647 |
|
648 |
|
649 |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
650 |
int curStampId; |
651 |
|
652 |
//index from 0 |
653 |
curStampId = moleculeStamps_.size(); |
654 |
|
655 |
moleculeStamps_.push_back(molStamp); |
656 |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
657 |
} |
658 |
|
659 |
void SimInfo::update() { |
660 |
|
661 |
setupSimType(); |
662 |
setupCutoffRadius(); |
663 |
setupSwitchingRadius(); |
664 |
setupCutoffMethod(); |
665 |
setupSkinThickness(); |
666 |
setupSwitchingFunction(); |
667 |
setupAccumulateBoxDipole(); |
668 |
|
669 |
#ifdef IS_MPI |
670 |
setupFortranParallel(); |
671 |
#endif |
672 |
setupFortranSim(); |
673 |
fortranInitialized_ = true; |
674 |
|
675 |
calcNdf(); |
676 |
calcNdfRaw(); |
677 |
calcNdfTrans(); |
678 |
} |
679 |
|
680 |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
681 |
SimInfo::MoleculeIterator mi; |
682 |
Molecule* mol; |
683 |
Molecule::AtomIterator ai; |
684 |
Atom* atom; |
685 |
set<AtomType*> atomTypes; |
686 |
|
687 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
688 |
|
689 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
690 |
atomTypes.insert(atom->getAtomType()); |
691 |
} |
692 |
|
693 |
} |
694 |
|
695 |
return atomTypes; |
696 |
} |
697 |
|
698 |
/** |
699 |
* setupCutoffRadius |
700 |
* |
701 |
* If the cutoffRadius was explicitly set, use that value. |
702 |
* If the cutoffRadius was not explicitly set: |
703 |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
704 |
* No electrostatic atoms? Poll the atom types present in the |
705 |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
706 |
* Use the maximum suggested value that was found. |
707 |
*/ |
708 |
void SimInfo::setupCutoffRadius() { |
709 |
|
710 |
if (simParams_->haveCutoffRadius()) { |
711 |
cutoffRadius_ = simParams_->getCutoffRadius(); |
712 |
} else { |
713 |
if (usesElectrostaticAtoms_) { |
714 |
sprintf(painCave.errMsg, |
715 |
"SimInfo Warning: No value was set for the cutoffRadius.\n" |
716 |
"\tOpenMD will use a default value of 12.0 angstroms" |
717 |
"\tfor the cutoffRadius.\n"); |
718 |
painCave.isFatal = 0; |
719 |
simError(); |
720 |
cutoffRadius_ = 12.0; |
721 |
} else { |
722 |
RealType thisCut; |
723 |
set<AtomType*>::iterator i; |
724 |
set<AtomType*> atomTypes; |
725 |
atomTypes = getSimulatedAtomTypes(); |
726 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
727 |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
728 |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
729 |
} |
730 |
sprintf(painCave.errMsg, |
731 |
"SimInfo Warning: No value was set for the cutoffRadius.\n" |
732 |
"\tOpenMD will use %lf angstroms.\n", |
733 |
cutoffRadius_); |
734 |
painCave.isFatal = 0; |
735 |
simError(); |
736 |
} |
737 |
} |
738 |
|
739 |
InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
740 |
} |
741 |
|
742 |
/** |
743 |
* setupSwitchingRadius |
744 |
* |
745 |
* If the switchingRadius was explicitly set, use that value (but check it) |
746 |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
747 |
*/ |
748 |
void SimInfo::setupSwitchingRadius() { |
749 |
|
750 |
if (simParams_->haveSwitchingRadius()) { |
751 |
switchingRadius_ = simParams_->getSwitchingRadius(); |
752 |
if (switchingRadius_ > cutoffRadius_) { |
753 |
sprintf(painCave.errMsg, |
754 |
"SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
755 |
switchingRadius_, cutoffRadius_); |
756 |
painCave.isFatal = 1; |
757 |
simError(); |
758 |
|
759 |
} |
760 |
} else { |
761 |
switchingRadius_ = 0.85 * cutoffRadius_; |
762 |
sprintf(painCave.errMsg, |
763 |
"SimInfo Warning: No value was set for the switchingRadius.\n" |
764 |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
765 |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
766 |
painCave.isFatal = 0; |
767 |
simError(); |
768 |
} |
769 |
InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
770 |
} |
771 |
|
772 |
/** |
773 |
* setupSkinThickness |
774 |
* |
775 |
* If the skinThickness was explicitly set, use that value (but check it) |
776 |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
777 |
*/ |
778 |
void SimInfo::setupSkinThickness() { |
779 |
if (simParams_->haveSkinThickness()) { |
780 |
skinThickness_ = simParams_->getSkinThickness(); |
781 |
} else { |
782 |
skinThickness_ = 1.0; |
783 |
sprintf(painCave.errMsg, |
784 |
"SimInfo Warning: No value was set for the skinThickness.\n" |
785 |
"\tOpenMD will use a default value of %f Angstroms\n" |
786 |
"\tfor this simulation\n", skinThickness_); |
787 |
painCave.isFatal = 0; |
788 |
simError(); |
789 |
} |
790 |
} |
791 |
|
792 |
void SimInfo::setupSimType() { |
793 |
set<AtomType*>::iterator i; |
794 |
set<AtomType*> atomTypes; |
795 |
atomTypes = getSimulatedAtomTypes(); |
796 |
|
797 |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
798 |
|
799 |
int usesElectrostatic = 0; |
800 |
int usesMetallic = 0; |
801 |
int usesDirectional = 0; |
802 |
//loop over all of the atom types |
803 |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
804 |
usesElectrostatic |= (*i)->isElectrostatic(); |
805 |
usesMetallic |= (*i)->isMetal(); |
806 |
usesDirectional |= (*i)->isDirectional(); |
807 |
} |
808 |
|
809 |
#ifdef IS_MPI |
810 |
int temp; |
811 |
temp = usesDirectional; |
812 |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
|
814 |
temp = usesMetallic; |
815 |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
|
817 |
temp = usesElectrostatic; |
818 |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
819 |
#endif |
820 |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
821 |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
822 |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
823 |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
824 |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
825 |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
826 |
} |
827 |
|
828 |
void SimInfo::setupFortranSim() { |
829 |
int isError; |
830 |
int nExclude, nOneTwo, nOneThree, nOneFour; |
831 |
vector<int> fortranGlobalGroupMembership; |
832 |
|
833 |
notifyFortranSkinThickness(&skinThickness_); |
834 |
|
835 |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
836 |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
837 |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
838 |
|
839 |
isError = 0; |
840 |
|
841 |
//globalGroupMembership_ is filled by SimCreator |
842 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
843 |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
844 |
} |
845 |
|
846 |
//calculate mass ratio of cutoff group |
847 |
vector<RealType> mfact; |
848 |
SimInfo::MoleculeIterator mi; |
849 |
Molecule* mol; |
850 |
Molecule::CutoffGroupIterator ci; |
851 |
CutoffGroup* cg; |
852 |
Molecule::AtomIterator ai; |
853 |
Atom* atom; |
854 |
RealType totalMass; |
855 |
|
856 |
//to avoid memory reallocation, reserve enough space for mfact |
857 |
mfact.reserve(getNCutoffGroups()); |
858 |
|
859 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
860 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
861 |
|
862 |
totalMass = cg->getMass(); |
863 |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
864 |
// Check for massless groups - set mfact to 1 if true |
865 |
if (totalMass != 0) |
866 |
mfact.push_back(atom->getMass()/totalMass); |
867 |
else |
868 |
mfact.push_back( 1.0 ); |
869 |
} |
870 |
} |
871 |
} |
872 |
|
873 |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
874 |
vector<int> identArray; |
875 |
|
876 |
//to avoid memory reallocation, reserve enough space identArray |
877 |
identArray.reserve(getNAtoms()); |
878 |
|
879 |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
880 |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
881 |
identArray.push_back(atom->getIdent()); |
882 |
} |
883 |
} |
884 |
|
885 |
//fill molMembershipArray |
886 |
//molMembershipArray is filled by SimCreator |
887 |
vector<int> molMembershipArray(nGlobalAtoms_); |
888 |
for (int i = 0; i < nGlobalAtoms_; i++) { |
889 |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
890 |
} |
891 |
|
892 |
//setup fortran simulation |
893 |
|
894 |
nExclude = excludedInteractions_.getSize(); |
895 |
nOneTwo = oneTwoInteractions_.getSize(); |
896 |
nOneThree = oneThreeInteractions_.getSize(); |
897 |
nOneFour = oneFourInteractions_.getSize(); |
898 |
|
899 |
int* excludeList = excludedInteractions_.getPairList(); |
900 |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
901 |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
902 |
int* oneFourList = oneFourInteractions_.getPairList(); |
903 |
|
904 |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
905 |
&nExclude, excludeList, |
906 |
&nOneTwo, oneTwoList, |
907 |
&nOneThree, oneThreeList, |
908 |
&nOneFour, oneFourList, |
909 |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
910 |
&fortranGlobalGroupMembership[0], &isError); |
911 |
|
912 |
if( isError ){ |
913 |
|
914 |
sprintf( painCave.errMsg, |
915 |
"There was an error setting the simulation information in fortran.\n" ); |
916 |
painCave.isFatal = 1; |
917 |
painCave.severity = OPENMD_ERROR; |
918 |
simError(); |
919 |
} |
920 |
|
921 |
|
922 |
sprintf( checkPointMsg, |
923 |
"succesfully sent the simulation information to fortran.\n"); |
924 |
|
925 |
errorCheckPoint(); |
926 |
|
927 |
// Setup number of neighbors in neighbor list if present |
928 |
if (simParams_->haveNeighborListNeighbors()) { |
929 |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
930 |
setNeighbors(&nlistNeighbors); |
931 |
} |
932 |
|
933 |
|
934 |
} |
935 |
|
936 |
|
937 |
void SimInfo::setupFortranParallel() { |
938 |
#ifdef IS_MPI |
939 |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
940 |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
941 |
vector<int> localToGlobalCutoffGroupIndex; |
942 |
SimInfo::MoleculeIterator mi; |
943 |
Molecule::AtomIterator ai; |
944 |
Molecule::CutoffGroupIterator ci; |
945 |
Molecule* mol; |
946 |
Atom* atom; |
947 |
CutoffGroup* cg; |
948 |
mpiSimData parallelData; |
949 |
int isError; |
950 |
|
951 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
952 |
|
953 |
//local index(index in DataStorge) of atom is important |
954 |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
955 |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
956 |
} |
957 |
|
958 |
//local index of cutoff group is trivial, it only depends on the order of travesing |
959 |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
960 |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
961 |
} |
962 |
|
963 |
} |
964 |
|
965 |
//fill up mpiSimData struct |
966 |
parallelData.nMolGlobal = getNGlobalMolecules(); |
967 |
parallelData.nMolLocal = getNMolecules(); |
968 |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
969 |
parallelData.nAtomsLocal = getNAtoms(); |
970 |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
971 |
parallelData.nGroupsLocal = getNCutoffGroups(); |
972 |
parallelData.myNode = worldRank; |
973 |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
974 |
|
975 |
//pass mpiSimData struct and index arrays to fortran |
976 |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
977 |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
978 |
&localToGlobalCutoffGroupIndex[0], &isError); |
979 |
|
980 |
if (isError) { |
981 |
sprintf(painCave.errMsg, |
982 |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
983 |
painCave.isFatal = 1; |
984 |
simError(); |
985 |
} |
986 |
|
987 |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
988 |
errorCheckPoint(); |
989 |
|
990 |
#endif |
991 |
} |
992 |
|
993 |
|
994 |
void SimInfo::setupSwitchingFunction() { |
995 |
int ft = CUBIC; |
996 |
|
997 |
if (simParams_->haveSwitchingFunctionType()) { |
998 |
string funcType = simParams_->getSwitchingFunctionType(); |
999 |
toUpper(funcType); |
1000 |
if (funcType == "CUBIC") { |
1001 |
ft = CUBIC; |
1002 |
} else { |
1003 |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1004 |
ft = FIFTH_ORDER_POLY; |
1005 |
} else { |
1006 |
// throw error |
1007 |
sprintf( painCave.errMsg, |
1008 |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1009 |
painCave.isFatal = 1; |
1010 |
simError(); |
1011 |
} |
1012 |
} |
1013 |
} |
1014 |
|
1015 |
// send switching function notification to switcheroo |
1016 |
setFunctionType(&ft); |
1017 |
|
1018 |
} |
1019 |
|
1020 |
void SimInfo::setupAccumulateBoxDipole() { |
1021 |
|
1022 |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1023 |
if ( simParams_->haveAccumulateBoxDipole() ) |
1024 |
if ( simParams_->getAccumulateBoxDipole() ) { |
1025 |
calcBoxDipole_ = true; |
1026 |
} |
1027 |
|
1028 |
} |
1029 |
|
1030 |
void SimInfo::addProperty(GenericData* genData) { |
1031 |
properties_.addProperty(genData); |
1032 |
} |
1033 |
|
1034 |
void SimInfo::removeProperty(const string& propName) { |
1035 |
properties_.removeProperty(propName); |
1036 |
} |
1037 |
|
1038 |
void SimInfo::clearProperties() { |
1039 |
properties_.clearProperties(); |
1040 |
} |
1041 |
|
1042 |
vector<string> SimInfo::getPropertyNames() { |
1043 |
return properties_.getPropertyNames(); |
1044 |
} |
1045 |
|
1046 |
vector<GenericData*> SimInfo::getProperties() { |
1047 |
return properties_.getProperties(); |
1048 |
} |
1049 |
|
1050 |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1051 |
return properties_.getPropertyByName(propName); |
1052 |
} |
1053 |
|
1054 |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1055 |
if (sman_ == sman) { |
1056 |
return; |
1057 |
} |
1058 |
delete sman_; |
1059 |
sman_ = sman; |
1060 |
|
1061 |
Molecule* mol; |
1062 |
RigidBody* rb; |
1063 |
Atom* atom; |
1064 |
SimInfo::MoleculeIterator mi; |
1065 |
Molecule::RigidBodyIterator rbIter; |
1066 |
Molecule::AtomIterator atomIter;; |
1067 |
|
1068 |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1069 |
|
1070 |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1071 |
atom->setSnapshotManager(sman_); |
1072 |
} |
1073 |
|
1074 |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1075 |
rb->setSnapshotManager(sman_); |
1076 |
} |
1077 |
} |
1078 |
|
1079 |
} |
1080 |
|
1081 |
Vector3d SimInfo::getComVel(){ |
1082 |
SimInfo::MoleculeIterator i; |
1083 |
Molecule* mol; |
1084 |
|
1085 |
Vector3d comVel(0.0); |
1086 |
RealType totalMass = 0.0; |
1087 |
|
1088 |
|
1089 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1090 |
RealType mass = mol->getMass(); |
1091 |
totalMass += mass; |
1092 |
comVel += mass * mol->getComVel(); |
1093 |
} |
1094 |
|
1095 |
#ifdef IS_MPI |
1096 |
RealType tmpMass = totalMass; |
1097 |
Vector3d tmpComVel(comVel); |
1098 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1099 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1100 |
#endif |
1101 |
|
1102 |
comVel /= totalMass; |
1103 |
|
1104 |
return comVel; |
1105 |
} |
1106 |
|
1107 |
Vector3d SimInfo::getCom(){ |
1108 |
SimInfo::MoleculeIterator i; |
1109 |
Molecule* mol; |
1110 |
|
1111 |
Vector3d com(0.0); |
1112 |
RealType totalMass = 0.0; |
1113 |
|
1114 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1115 |
RealType mass = mol->getMass(); |
1116 |
totalMass += mass; |
1117 |
com += mass * mol->getCom(); |
1118 |
} |
1119 |
|
1120 |
#ifdef IS_MPI |
1121 |
RealType tmpMass = totalMass; |
1122 |
Vector3d tmpCom(com); |
1123 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1124 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1125 |
#endif |
1126 |
|
1127 |
com /= totalMass; |
1128 |
|
1129 |
return com; |
1130 |
|
1131 |
} |
1132 |
|
1133 |
ostream& operator <<(ostream& o, SimInfo& info) { |
1134 |
|
1135 |
return o; |
1136 |
} |
1137 |
|
1138 |
|
1139 |
/* |
1140 |
Returns center of mass and center of mass velocity in one function call. |
1141 |
*/ |
1142 |
|
1143 |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1144 |
SimInfo::MoleculeIterator i; |
1145 |
Molecule* mol; |
1146 |
|
1147 |
|
1148 |
RealType totalMass = 0.0; |
1149 |
|
1150 |
|
1151 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1152 |
RealType mass = mol->getMass(); |
1153 |
totalMass += mass; |
1154 |
com += mass * mol->getCom(); |
1155 |
comVel += mass * mol->getComVel(); |
1156 |
} |
1157 |
|
1158 |
#ifdef IS_MPI |
1159 |
RealType tmpMass = totalMass; |
1160 |
Vector3d tmpCom(com); |
1161 |
Vector3d tmpComVel(comVel); |
1162 |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1163 |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1164 |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1165 |
#endif |
1166 |
|
1167 |
com /= totalMass; |
1168 |
comVel /= totalMass; |
1169 |
} |
1170 |
|
1171 |
/* |
1172 |
Return intertia tensor for entire system and angular momentum Vector. |
1173 |
|
1174 |
|
1175 |
[ Ixx -Ixy -Ixz ] |
1176 |
J =| -Iyx Iyy -Iyz | |
1177 |
[ -Izx -Iyz Izz ] |
1178 |
*/ |
1179 |
|
1180 |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1181 |
|
1182 |
|
1183 |
RealType xx = 0.0; |
1184 |
RealType yy = 0.0; |
1185 |
RealType zz = 0.0; |
1186 |
RealType xy = 0.0; |
1187 |
RealType xz = 0.0; |
1188 |
RealType yz = 0.0; |
1189 |
Vector3d com(0.0); |
1190 |
Vector3d comVel(0.0); |
1191 |
|
1192 |
getComAll(com, comVel); |
1193 |
|
1194 |
SimInfo::MoleculeIterator i; |
1195 |
Molecule* mol; |
1196 |
|
1197 |
Vector3d thisq(0.0); |
1198 |
Vector3d thisv(0.0); |
1199 |
|
1200 |
RealType thisMass = 0.0; |
1201 |
|
1202 |
|
1203 |
|
1204 |
|
1205 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1206 |
|
1207 |
thisq = mol->getCom()-com; |
1208 |
thisv = mol->getComVel()-comVel; |
1209 |
thisMass = mol->getMass(); |
1210 |
// Compute moment of intertia coefficients. |
1211 |
xx += thisq[0]*thisq[0]*thisMass; |
1212 |
yy += thisq[1]*thisq[1]*thisMass; |
1213 |
zz += thisq[2]*thisq[2]*thisMass; |
1214 |
|
1215 |
// compute products of intertia |
1216 |
xy += thisq[0]*thisq[1]*thisMass; |
1217 |
xz += thisq[0]*thisq[2]*thisMass; |
1218 |
yz += thisq[1]*thisq[2]*thisMass; |
1219 |
|
1220 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1221 |
|
1222 |
} |
1223 |
|
1224 |
|
1225 |
inertiaTensor(0,0) = yy + zz; |
1226 |
inertiaTensor(0,1) = -xy; |
1227 |
inertiaTensor(0,2) = -xz; |
1228 |
inertiaTensor(1,0) = -xy; |
1229 |
inertiaTensor(1,1) = xx + zz; |
1230 |
inertiaTensor(1,2) = -yz; |
1231 |
inertiaTensor(2,0) = -xz; |
1232 |
inertiaTensor(2,1) = -yz; |
1233 |
inertiaTensor(2,2) = xx + yy; |
1234 |
|
1235 |
#ifdef IS_MPI |
1236 |
Mat3x3d tmpI(inertiaTensor); |
1237 |
Vector3d tmpAngMom; |
1238 |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1239 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1240 |
#endif |
1241 |
|
1242 |
return; |
1243 |
} |
1244 |
|
1245 |
//Returns the angular momentum of the system |
1246 |
Vector3d SimInfo::getAngularMomentum(){ |
1247 |
|
1248 |
Vector3d com(0.0); |
1249 |
Vector3d comVel(0.0); |
1250 |
Vector3d angularMomentum(0.0); |
1251 |
|
1252 |
getComAll(com,comVel); |
1253 |
|
1254 |
SimInfo::MoleculeIterator i; |
1255 |
Molecule* mol; |
1256 |
|
1257 |
Vector3d thisr(0.0); |
1258 |
Vector3d thisp(0.0); |
1259 |
|
1260 |
RealType thisMass; |
1261 |
|
1262 |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1263 |
thisMass = mol->getMass(); |
1264 |
thisr = mol->getCom()-com; |
1265 |
thisp = (mol->getComVel()-comVel)*thisMass; |
1266 |
|
1267 |
angularMomentum += cross( thisr, thisp ); |
1268 |
|
1269 |
} |
1270 |
|
1271 |
#ifdef IS_MPI |
1272 |
Vector3d tmpAngMom; |
1273 |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1274 |
#endif |
1275 |
|
1276 |
return angularMomentum; |
1277 |
} |
1278 |
|
1279 |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1280 |
return IOIndexToIntegrableObject.at(index); |
1281 |
} |
1282 |
|
1283 |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1284 |
IOIndexToIntegrableObject= v; |
1285 |
} |
1286 |
|
1287 |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1288 |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1289 |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1290 |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1291 |
*/ |
1292 |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1293 |
Mat3x3d intTensor; |
1294 |
RealType det; |
1295 |
Vector3d dummyAngMom; |
1296 |
RealType sysconstants; |
1297 |
RealType geomCnst; |
1298 |
|
1299 |
geomCnst = 3.0/2.0; |
1300 |
/* Get the inertial tensor and angular momentum for free*/ |
1301 |
getInertiaTensor(intTensor,dummyAngMom); |
1302 |
|
1303 |
det = intTensor.determinant(); |
1304 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1305 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1306 |
return; |
1307 |
} |
1308 |
|
1309 |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1310 |
Mat3x3d intTensor; |
1311 |
Vector3d dummyAngMom; |
1312 |
RealType sysconstants; |
1313 |
RealType geomCnst; |
1314 |
|
1315 |
geomCnst = 3.0/2.0; |
1316 |
/* Get the inertial tensor and angular momentum for free*/ |
1317 |
getInertiaTensor(intTensor,dummyAngMom); |
1318 |
|
1319 |
detI = intTensor.determinant(); |
1320 |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1321 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1322 |
return; |
1323 |
} |
1324 |
/* |
1325 |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1326 |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1327 |
sdByGlobalIndex_ = v; |
1328 |
} |
1329 |
|
1330 |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1331 |
//assert(index < nAtoms_ + nRigidBodies_); |
1332 |
return sdByGlobalIndex_.at(index); |
1333 |
} |
1334 |
*/ |
1335 |
int SimInfo::getNGlobalConstraints() { |
1336 |
int nGlobalConstraints; |
1337 |
#ifdef IS_MPI |
1338 |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1339 |
MPI_COMM_WORLD); |
1340 |
#else |
1341 |
nGlobalConstraints = nConstraints_; |
1342 |
#endif |
1343 |
return nGlobalConstraints; |
1344 |
} |
1345 |
|
1346 |
}//end namespace OpenMD |
1347 |
|