ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 598 by chrisfen, Thu Sep 15 00:14:35 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58 < #include "UseTheForce/fCoulombicCorrection.h"
58 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59   #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
62   #include "utils/MemoryUtils.hpp"
63   #include "utils/simError.h"
64   #include "selection/SelectionManager.hpp"
65 + #include "io/ForceFieldOptions.hpp"
66 + #include "UseTheForce/ForceField.hpp"
67  
68 +
69   #ifdef IS_MPI
70   #include "UseTheForce/mpiComponentPlan.h"
71   #include "UseTheForce/DarkSide/simParallel_interface.h"
72   #endif
73  
74 < namespace oopse {
74 > namespace OpenMD {
75 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76 >    std::map<int, std::set<int> >::iterator i = container.find(index);
77 >    std::set<int> result;
78 >    if (i != container.end()) {
79 >        result = i->second;
80 >    }
81  
82 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
83 <                   ForceField* ff, Globals* simParams) :
84 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
85 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
82 >    return result;
83 >  }
84 >  
85 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
86 >    forceField_(ff), simParams_(simParams),
87 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
88      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
89      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
90 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
91 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
92 <    sman_(NULL), fortranInitialized_(false) {
90 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
91 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
92 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
93 >    calcBoxDipole_(false), useAtomicVirial_(true) {
94  
95 <            
81 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95 >
96        MoleculeStamp* molStamp;
97        int nMolWithSameStamp;
98        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
99 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
99 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
100        CutoffGroupStamp* cgStamp;    
101        RigidBodyStamp* rbStamp;
102        int nRigidAtoms = 0;
103 <    
104 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
105 <        molStamp = i->first;
106 <        nMolWithSameStamp = i->second;
103 >
104 >      std::vector<Component*> components = simParams->getComponents();
105 >      
106 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 >        molStamp = (*i)->getMoleculeStamp();
108 >        nMolWithSameStamp = (*i)->getNMol();
109          
110          addMoleculeStamp(molStamp, nMolWithSameStamp);
111  
112          //calculate atoms in molecules
113          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114  
99
115          //calculate atoms in cutoff groups
116          int nAtomsInGroups = 0;
117          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118          
119          for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroup(j);
120 >          cgStamp = molStamp->getCutoffGroupStamp(j);
121            nAtomsInGroups += cgStamp->getNMembers();
122          }
123  
124          nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 +
126          nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127  
128          //calculate atoms in rigid bodies
# Line 114 | Line 130 | namespace oopse {
130          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131          
132          for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBody(j);
133 >          rbStamp = molStamp->getRigidBodyStamp(j);
134            nAtomsInRigidBodies += rbStamp->getNMembers();
135          }
136  
# Line 123 | Line 139 | namespace oopse {
139          
140        }
141  
142 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
143 <      //therefore the total number of cutoff groups in the system is equal to
144 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
145 <      //file plus the number of cutoff groups defined in meta-data file
142 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
143 >      //group therefore the total number of cutoff groups in the system is
144 >      //equal to the total number of atoms minus number of atoms belong to
145 >      //cutoff group defined in meta-data file plus the number of cutoff
146 >      //groups defined in meta-data file
147        nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148  
149 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
150 <      //therefore the total number of  integrable objects in the system is equal to
151 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
152 <      //file plus the number of  rigid bodies defined in meta-data file
153 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
154 <
149 >      //every free atom (atom does not belong to rigid bodies) is an
150 >      //integrable object therefore the total number of integrable objects
151 >      //in the system is equal to the total number of atoms minus number of
152 >      //atoms belong to rigid body defined in meta-data file plus the number
153 >      //of rigid bodies defined in meta-data file
154 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >                                                + nGlobalRigidBodies_;
156 >  
157        nGlobalMols_ = molStampIds_.size();
139
140 #ifdef IS_MPI    
158        molToProcMap_.resize(nGlobalMols_);
142 #endif
143
159      }
160  
161    SimInfo::~SimInfo() {
# Line 150 | Line 165 | namespace oopse {
165      }
166      molecules_.clear();
167        
153    delete stamps_;
168      delete sman_;
169      delete simParams_;
170      delete forceField_;
# Line 179 | Line 193 | namespace oopse {
193        nBonds_ += mol->getNBonds();
194        nBends_ += mol->getNBends();
195        nTorsions_ += mol->getNTorsions();
196 +      nInversions_ += mol->getNInversions();
197        nRigidBodies_ += mol->getNRigidBodies();
198        nIntegrableObjects_ += mol->getNIntegrableObjects();
199        nCutoffGroups_ += mol->getNCutoffGroups();
200        nConstraints_ += mol->getNConstraintPairs();
201  
202 <      addExcludePairs(mol);
203 <        
202 >      addInteractionPairs(mol);
203 >  
204        return true;
205      } else {
206        return false;
# Line 204 | Line 219 | namespace oopse {
219        nBonds_ -= mol->getNBonds();
220        nBends_ -= mol->getNBends();
221        nTorsions_ -= mol->getNTorsions();
222 +      nInversions_ -= mol->getNInversions();
223        nRigidBodies_ -= mol->getNRigidBodies();
224        nIntegrableObjects_ -= mol->getNIntegrableObjects();
225        nCutoffGroups_ -= mol->getNCutoffGroups();
226        nConstraints_ -= mol->getNConstraintPairs();
227  
228 <      removeExcludePairs(mol);
228 >      removeInteractionPairs(mol);
229        molecules_.erase(mol->getGlobalIndex());
230  
231        delete mol;
# Line 257 | Line 273 | namespace oopse {
273            }
274          }
275              
276 <      }//end for (integrableObject)
277 <    }// end for (mol)
276 >      }
277 >    }
278      
279      // n_constraints is local, so subtract them on each processor
280      ndf_local -= nConstraints_;
# Line 275 | Line 291 | namespace oopse {
291  
292    }
293  
294 +  int SimInfo::getFdf() {
295 + #ifdef IS_MPI
296 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 + #else
298 +    fdf_ = fdf_local;
299 + #endif
300 +    return fdf_;
301 +  }
302 +    
303    void SimInfo::calcNdfRaw() {
304      int ndfRaw_local;
305  
# Line 326 | Line 351 | namespace oopse {
351  
352    }
353  
354 <  void SimInfo::addExcludePairs(Molecule* mol) {
354 >  void SimInfo::addInteractionPairs(Molecule* mol) {
355 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
356      std::vector<Bond*>::iterator bondIter;
357      std::vector<Bend*>::iterator bendIter;
358      std::vector<Torsion*>::iterator torsionIter;
359 +    std::vector<Inversion*>::iterator inversionIter;
360      Bond* bond;
361      Bend* bend;
362      Torsion* torsion;
363 +    Inversion* inversion;
364      int a;
365      int b;
366      int c;
367      int d;
368 <    
369 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
370 <      a = bond->getAtomA()->getGlobalIndex();
371 <      b = bond->getAtomB()->getGlobalIndex();        
372 <      exclude_.addPair(a, b);
368 >
369 >    // atomGroups can be used to add special interaction maps between
370 >    // groups of atoms that are in two separate rigid bodies.
371 >    // However, most site-site interactions between two rigid bodies
372 >    // are probably not special, just the ones between the physically
373 >    // bonded atoms.  Interactions *within* a single rigid body should
374 >    // always be excluded.  These are done at the bottom of this
375 >    // function.
376 >
377 >    std::map<int, std::set<int> > atomGroups;
378 >    Molecule::RigidBodyIterator rbIter;
379 >    RigidBody* rb;
380 >    Molecule::IntegrableObjectIterator ii;
381 >    StuntDouble* integrableObject;
382 >    
383 >    for (integrableObject = mol->beginIntegrableObject(ii);
384 >         integrableObject != NULL;
385 >         integrableObject = mol->nextIntegrableObject(ii)) {
386 >      
387 >      if (integrableObject->isRigidBody()) {
388 >        rb = static_cast<RigidBody*>(integrableObject);
389 >        std::vector<Atom*> atoms = rb->getAtoms();
390 >        std::set<int> rigidAtoms;
391 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
392 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
393 >        }
394 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
395 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
396 >        }      
397 >      } else {
398 >        std::set<int> oneAtomSet;
399 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
400 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
401 >      }
402 >    }  
403 >          
404 >    for (bond= mol->beginBond(bondIter); bond != NULL;
405 >         bond = mol->nextBond(bondIter)) {
406 >
407 >      a = bond->getAtomA()->getGlobalIndex();
408 >      b = bond->getAtomB()->getGlobalIndex();  
409 >    
410 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
411 >        oneTwoInteractions_.addPair(a, b);
412 >      } else {
413 >        excludedInteractions_.addPair(a, b);
414 >      }
415      }
416  
417 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
417 >    for (bend= mol->beginBend(bendIter); bend != NULL;
418 >         bend = mol->nextBend(bendIter)) {
419 >
420        a = bend->getAtomA()->getGlobalIndex();
421        b = bend->getAtomB()->getGlobalIndex();        
422        c = bend->getAtomC()->getGlobalIndex();
423 +      
424 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
425 +        oneTwoInteractions_.addPair(a, b);      
426 +        oneTwoInteractions_.addPair(b, c);
427 +      } else {
428 +        excludedInteractions_.addPair(a, b);
429 +        excludedInteractions_.addPair(b, c);
430 +      }
431  
432 <      exclude_.addPair(a, b);
433 <      exclude_.addPair(a, c);
434 <      exclude_.addPair(b, c);        
432 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
433 >        oneThreeInteractions_.addPair(a, c);      
434 >      } else {
435 >        excludedInteractions_.addPair(a, c);
436 >      }
437      }
438  
439 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
439 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
440 >         torsion = mol->nextTorsion(torsionIter)) {
441 >
442        a = torsion->getAtomA()->getGlobalIndex();
443        b = torsion->getAtomB()->getGlobalIndex();        
444        c = torsion->getAtomC()->getGlobalIndex();        
445 <      d = torsion->getAtomD()->getGlobalIndex();        
445 >      d = torsion->getAtomD()->getGlobalIndex();      
446  
447 <      exclude_.addPair(a, b);
448 <      exclude_.addPair(a, c);
449 <      exclude_.addPair(a, d);
450 <      exclude_.addPair(b, c);
451 <      exclude_.addPair(b, d);
452 <      exclude_.addPair(c, d);        
447 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
448 >        oneTwoInteractions_.addPair(a, b);      
449 >        oneTwoInteractions_.addPair(b, c);
450 >        oneTwoInteractions_.addPair(c, d);
451 >      } else {
452 >        excludedInteractions_.addPair(a, b);
453 >        excludedInteractions_.addPair(b, c);
454 >        excludedInteractions_.addPair(c, d);
455 >      }
456 >
457 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
458 >        oneThreeInteractions_.addPair(a, c);      
459 >        oneThreeInteractions_.addPair(b, d);      
460 >      } else {
461 >        excludedInteractions_.addPair(a, c);
462 >        excludedInteractions_.addPair(b, d);
463 >      }
464 >
465 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
466 >        oneFourInteractions_.addPair(a, d);      
467 >      } else {
468 >        excludedInteractions_.addPair(a, d);
469 >      }
470      }
471  
472 <    Molecule::RigidBodyIterator rbIter;
473 <    RigidBody* rb;
474 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
472 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
473 >         inversion = mol->nextInversion(inversionIter)) {
474 >
475 >      a = inversion->getAtomA()->getGlobalIndex();
476 >      b = inversion->getAtomB()->getGlobalIndex();        
477 >      c = inversion->getAtomC()->getGlobalIndex();        
478 >      d = inversion->getAtomD()->getGlobalIndex();        
479 >
480 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
481 >        oneTwoInteractions_.addPair(a, b);      
482 >        oneTwoInteractions_.addPair(a, c);
483 >        oneTwoInteractions_.addPair(a, d);
484 >      } else {
485 >        excludedInteractions_.addPair(a, b);
486 >        excludedInteractions_.addPair(a, c);
487 >        excludedInteractions_.addPair(a, d);
488 >      }
489 >
490 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
491 >        oneThreeInteractions_.addPair(b, c);    
492 >        oneThreeInteractions_.addPair(b, d);    
493 >        oneThreeInteractions_.addPair(c, d);      
494 >      } else {
495 >        excludedInteractions_.addPair(b, c);
496 >        excludedInteractions_.addPair(b, d);
497 >        excludedInteractions_.addPair(c, d);
498 >      }
499 >    }
500 >
501 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
502 >         rb = mol->nextRigidBody(rbIter)) {
503        std::vector<Atom*> atoms = rb->getAtoms();
504 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
505 <        for (int j = i + 1; j < atoms.size(); ++j) {
504 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
505 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
506            a = atoms[i]->getGlobalIndex();
507            b = atoms[j]->getGlobalIndex();
508 <          exclude_.addPair(a, b);
508 >          excludedInteractions_.addPair(a, b);
509          }
510        }
511      }        
512  
513    }
514  
515 <  void SimInfo::removeExcludePairs(Molecule* mol) {
515 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
516 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
517      std::vector<Bond*>::iterator bondIter;
518      std::vector<Bend*>::iterator bendIter;
519      std::vector<Torsion*>::iterator torsionIter;
520 +    std::vector<Inversion*>::iterator inversionIter;
521      Bond* bond;
522      Bend* bend;
523      Torsion* torsion;
524 +    Inversion* inversion;
525      int a;
526      int b;
527      int c;
528      int d;
529 +
530 +    std::map<int, std::set<int> > atomGroups;
531 +    Molecule::RigidBodyIterator rbIter;
532 +    RigidBody* rb;
533 +    Molecule::IntegrableObjectIterator ii;
534 +    StuntDouble* integrableObject;
535      
536 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
536 >    for (integrableObject = mol->beginIntegrableObject(ii);
537 >         integrableObject != NULL;
538 >         integrableObject = mol->nextIntegrableObject(ii)) {
539 >      
540 >      if (integrableObject->isRigidBody()) {
541 >        rb = static_cast<RigidBody*>(integrableObject);
542 >        std::vector<Atom*> atoms = rb->getAtoms();
543 >        std::set<int> rigidAtoms;
544 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
545 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
546 >        }
547 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
548 >          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
549 >        }      
550 >      } else {
551 >        std::set<int> oneAtomSet;
552 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
553 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
554 >      }
555 >    }  
556 >
557 >    for (bond= mol->beginBond(bondIter); bond != NULL;
558 >         bond = mol->nextBond(bondIter)) {
559 >      
560        a = bond->getAtomA()->getGlobalIndex();
561 <      b = bond->getAtomB()->getGlobalIndex();        
562 <      exclude_.removePair(a, b);
561 >      b = bond->getAtomB()->getGlobalIndex();  
562 >    
563 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
564 >        oneTwoInteractions_.removePair(a, b);
565 >      } else {
566 >        excludedInteractions_.removePair(a, b);
567 >      }
568      }
569  
570 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
570 >    for (bend= mol->beginBend(bendIter); bend != NULL;
571 >         bend = mol->nextBend(bendIter)) {
572 >
573        a = bend->getAtomA()->getGlobalIndex();
574        b = bend->getAtomB()->getGlobalIndex();        
575        c = bend->getAtomC()->getGlobalIndex();
576 +      
577 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
578 +        oneTwoInteractions_.removePair(a, b);      
579 +        oneTwoInteractions_.removePair(b, c);
580 +      } else {
581 +        excludedInteractions_.removePair(a, b);
582 +        excludedInteractions_.removePair(b, c);
583 +      }
584  
585 <      exclude_.removePair(a, b);
586 <      exclude_.removePair(a, c);
587 <      exclude_.removePair(b, c);        
585 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
586 >        oneThreeInteractions_.removePair(a, c);      
587 >      } else {
588 >        excludedInteractions_.removePair(a, c);
589 >      }
590      }
591  
592 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
592 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
593 >         torsion = mol->nextTorsion(torsionIter)) {
594 >
595        a = torsion->getAtomA()->getGlobalIndex();
596        b = torsion->getAtomB()->getGlobalIndex();        
597        c = torsion->getAtomC()->getGlobalIndex();        
598 <      d = torsion->getAtomD()->getGlobalIndex();        
598 >      d = torsion->getAtomD()->getGlobalIndex();      
599 >  
600 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
601 >        oneTwoInteractions_.removePair(a, b);      
602 >        oneTwoInteractions_.removePair(b, c);
603 >        oneTwoInteractions_.removePair(c, d);
604 >      } else {
605 >        excludedInteractions_.removePair(a, b);
606 >        excludedInteractions_.removePair(b, c);
607 >        excludedInteractions_.removePair(c, d);
608 >      }
609  
610 <      exclude_.removePair(a, b);
611 <      exclude_.removePair(a, c);
612 <      exclude_.removePair(a, d);
613 <      exclude_.removePair(b, c);
614 <      exclude_.removePair(b, d);
615 <      exclude_.removePair(c, d);        
610 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
611 >        oneThreeInteractions_.removePair(a, c);      
612 >        oneThreeInteractions_.removePair(b, d);      
613 >      } else {
614 >        excludedInteractions_.removePair(a, c);
615 >        excludedInteractions_.removePair(b, d);
616 >      }
617 >
618 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
619 >        oneFourInteractions_.removePair(a, d);      
620 >      } else {
621 >        excludedInteractions_.removePair(a, d);
622 >      }
623      }
624  
625 <    Molecule::RigidBodyIterator rbIter;
626 <    RigidBody* rb;
627 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
625 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
626 >         inversion = mol->nextInversion(inversionIter)) {
627 >
628 >      a = inversion->getAtomA()->getGlobalIndex();
629 >      b = inversion->getAtomB()->getGlobalIndex();        
630 >      c = inversion->getAtomC()->getGlobalIndex();        
631 >      d = inversion->getAtomD()->getGlobalIndex();        
632 >
633 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
634 >        oneTwoInteractions_.removePair(a, b);      
635 >        oneTwoInteractions_.removePair(a, c);
636 >        oneTwoInteractions_.removePair(a, d);
637 >      } else {
638 >        excludedInteractions_.removePair(a, b);
639 >        excludedInteractions_.removePair(a, c);
640 >        excludedInteractions_.removePair(a, d);
641 >      }
642 >
643 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
644 >        oneThreeInteractions_.removePair(b, c);    
645 >        oneThreeInteractions_.removePair(b, d);    
646 >        oneThreeInteractions_.removePair(c, d);      
647 >      } else {
648 >        excludedInteractions_.removePair(b, c);
649 >        excludedInteractions_.removePair(b, d);
650 >        excludedInteractions_.removePair(c, d);
651 >      }
652 >    }
653 >
654 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
655 >         rb = mol->nextRigidBody(rbIter)) {
656        std::vector<Atom*> atoms = rb->getAtoms();
657 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
658 <        for (int j = i + 1; j < atoms.size(); ++j) {
657 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
658 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
659            a = atoms[i]->getGlobalIndex();
660            b = atoms[j]->getGlobalIndex();
661 <          exclude_.removePair(a, b);
661 >          excludedInteractions_.removePair(a, b);
662          }
663        }
664      }        
665 <
665 >    
666    }
667 <
668 <
667 >  
668 >  
669    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
670      int curStampId;
671 <
671 >    
672      //index from 0
673      curStampId = moleculeStamps_.size();
674  
# Line 465 | Line 690 | namespace oopse {
690      /** @deprecate */    
691      int isError = 0;
692      
693 <    setupCoulombicCorrection( isError );
693 >    setupCutoff();
694 >    
695 >    setupElectrostaticSummationMethod( isError );
696 >    setupSwitchingFunction();
697 >    setupAccumulateBoxDipole();
698  
699      if(isError){
700        sprintf( painCave.errMsg,
# Line 473 | Line 702 | namespace oopse {
702        painCave.isFatal = 1;
703        simError();
704      }
476  
477    
478    setupCutoff();
705  
706      calcNdf();
707      calcNdfRaw();
# Line 510 | Line 736 | namespace oopse {
736      int useLennardJones = 0;
737      int useElectrostatic = 0;
738      int useEAM = 0;
739 +    int useSC = 0;
740      int useCharge = 0;
741      int useDirectional = 0;
742      int useDipole = 0;
# Line 521 | Line 748 | namespace oopse {
748      int useDirectionalAtom = 0;    
749      int useElectrostatics = 0;
750      //usePBC and useRF are from simParams
751 <    int usePBC = simParams_->getPBC();
752 <    int useRF = simParams_->getUseRF();
751 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
752 >    int useRF;
753 >    int useSF;
754 >    int useSP;
755 >    int useBoxDipole;
756  
757 +    std::string myMethod;
758 +
759 +    // set the useRF logical
760 +    useRF = 0;
761 +    useSF = 0;
762 +    useSP = 0;
763 +    useBoxDipole = 0;
764 +
765 +
766 +    if (simParams_->haveElectrostaticSummationMethod()) {
767 +      std::string myMethod = simParams_->getElectrostaticSummationMethod();
768 +      toUpper(myMethod);
769 +      if (myMethod == "REACTION_FIELD"){
770 +        useRF = 1;
771 +      } else if (myMethod == "SHIFTED_FORCE"){
772 +        useSF = 1;
773 +      } else if (myMethod == "SHIFTED_POTENTIAL"){
774 +        useSP = 1;
775 +      }
776 +    }
777 +    
778 +    if (simParams_->haveAccumulateBoxDipole())
779 +      if (simParams_->getAccumulateBoxDipole())
780 +        useBoxDipole = 1;
781 +
782 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
783 +
784      //loop over all of the atom types
785      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
786        useLennardJones |= (*i)->isLennardJones();
787        useElectrostatic |= (*i)->isElectrostatic();
788        useEAM |= (*i)->isEAM();
789 +      useSC |= (*i)->isSC();
790        useCharge |= (*i)->isCharge();
791        useDirectional |= (*i)->isDirectional();
792        useDipole |= (*i)->isDipole();
# Line 579 | Line 837 | namespace oopse {
837      temp = useEAM;
838      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
839  
840 +    temp = useSC;
841 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
842 +    
843      temp = useShape;
844      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
845  
# Line 588 | Line 849 | namespace oopse {
849      temp = useRF;
850      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
851  
852 <    temp = useUW;
853 <    MPI_Allreduce(&temp, &useUW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
852 >    temp = useSF;
853 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
854 >
855 >    temp = useSP;
856 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
857  
858 <    temp = useDW;
859 <    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
860 <    
858 >    temp = useBoxDipole;
859 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
860 >
861 >    temp = useAtomicVirial_;
862 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
863 >
864   #endif
865  
866      fInfo_.SIM_uses_PBC = usePBC;    
# Line 606 | Line 873 | namespace oopse {
873      fInfo_.SIM_uses_StickyPower = useStickyPower;
874      fInfo_.SIM_uses_GayBerne = useGayBerne;
875      fInfo_.SIM_uses_EAM = useEAM;
876 +    fInfo_.SIM_uses_SC = useSC;
877      fInfo_.SIM_uses_Shapes = useShape;
878      fInfo_.SIM_uses_FLARB = useFLARB;
879      fInfo_.SIM_uses_RF = useRF;
880 <
881 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
882 <
883 <      if (simParams_->haveDielectric()) {
616 <        fInfo_.dielect = simParams_->getDielectric();
617 <      } else {
618 <        sprintf(painCave.errMsg,
619 <                "SimSetup Error: No Dielectric constant was set.\n"
620 <                "\tYou are trying to use Reaction Field without"
621 <                "\tsetting a dielectric constant!\n");
622 <        painCave.isFatal = 1;
623 <        simError();
624 <      }
625 <        
626 <    } else {
627 <      fInfo_.dielect = 0.0;
628 <    }
629 <
880 >    fInfo_.SIM_uses_SF = useSF;
881 >    fInfo_.SIM_uses_SP = useSP;
882 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
883 >    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
884    }
885  
886    void SimInfo::setupFortranSim() {
887      int isError;
888 <    int nExclude;
888 >    int nExclude, nOneTwo, nOneThree, nOneFour;
889      std::vector<int> fortranGlobalGroupMembership;
890      
637    nExclude = exclude_.getSize();
891      isError = 0;
892  
893      //globalGroupMembership_ is filled by SimCreator    
# Line 643 | Line 896 | namespace oopse {
896      }
897  
898      //calculate mass ratio of cutoff group
899 <    std::vector<double> mfact;
899 >    std::vector<RealType> mfact;
900      SimInfo::MoleculeIterator mi;
901      Molecule* mol;
902      Molecule::CutoffGroupIterator ci;
903      CutoffGroup* cg;
904      Molecule::AtomIterator ai;
905      Atom* atom;
906 <    double totalMass;
906 >    RealType totalMass;
907  
908      //to avoid memory reallocation, reserve enough space for mfact
909      mfact.reserve(getNCutoffGroups());
# Line 660 | Line 913 | namespace oopse {
913  
914          totalMass = cg->getMass();
915          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
916 <          mfact.push_back(atom->getMass()/totalMass);
916 >          // Check for massless groups - set mfact to 1 if true
917 >          if (totalMass != 0)
918 >            mfact.push_back(atom->getMass()/totalMass);
919 >          else
920 >            mfact.push_back( 1.0 );
921          }
665
922        }      
923      }
924  
# Line 686 | Line 942 | namespace oopse {
942      }
943      
944      //setup fortran simulation
689    int nGlobalExcludes = 0;
690    int* globalExcludes = NULL;
691    int* excludeList = exclude_.getExcludeList();
692    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
693                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
694                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
945  
946 <    if( isError ){
946 >    nExclude = excludedInteractions_.getSize();
947 >    nOneTwo = oneTwoInteractions_.getSize();
948 >    nOneThree = oneThreeInteractions_.getSize();
949 >    nOneFour = oneFourInteractions_.getSize();
950 >
951 >    int* excludeList = excludedInteractions_.getPairList();
952 >    int* oneTwoList = oneTwoInteractions_.getPairList();
953 >    int* oneThreeList = oneThreeInteractions_.getPairList();
954 >    int* oneFourList = oneFourInteractions_.getPairList();
955  
956 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
957 +                   &nExclude, excludeList,
958 +                   &nOneTwo, oneTwoList,
959 +                   &nOneThree, oneThreeList,
960 +                   &nOneFour, oneFourList,
961 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
962 +                   &fortranGlobalGroupMembership[0], &isError);
963 +    
964 +    if( isError ){
965 +      
966        sprintf( painCave.errMsg,
967                 "There was an error setting the simulation information in fortran.\n" );
968        painCave.isFatal = 1;
969 <      painCave.severity = OOPSE_ERROR;
969 >      painCave.severity = OPENMD_ERROR;
970        simError();
971      }
972 <
973 < #ifdef IS_MPI
972 >    
973 >    
974      sprintf( checkPointMsg,
975               "succesfully sent the simulation information to fortran.\n");
976 <    MPIcheckPoint();
977 < #endif // is_mpi
976 >    
977 >    errorCheckPoint();
978 >    
979 >    // Setup number of neighbors in neighbor list if present
980 >    if (simParams_->haveNeighborListNeighbors()) {
981 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
982 >      setNeighbors(&nlistNeighbors);
983 >    }
984 >  
985 >
986    }
987  
988  
713 #ifdef IS_MPI
989    void SimInfo::setupFortranParallel() {
990 <    
990 > #ifdef IS_MPI    
991      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
992      std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
993      std::vector<int> localToGlobalCutoffGroupIndex;
# Line 762 | Line 1037 | namespace oopse {
1037      }
1038  
1039      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1040 <    MPIcheckPoint();
1040 >    errorCheckPoint();
1041  
767
768  }
769
1042   #endif
771
772  double SimInfo::calcMaxCutoffRadius() {
773
774
775    std::set<AtomType*> atomTypes;
776    std::set<AtomType*>::iterator i;
777    std::vector<double> cutoffRadius;
778
779    //get the unique atom types
780    atomTypes = getUniqueAtomTypes();
781
782    //query the max cutoff radius among these atom types
783    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
784      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
785    }
786
787    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
788 #ifdef IS_MPI
789    //pick the max cutoff radius among the processors
790 #endif
791
792    return maxCutoffRadius;
1043    }
1044  
1045 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
1045 >  void SimInfo::setupCutoff() {          
1046      
1047 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
798 <        
799 <      if (!simParams_->haveRcut()){
800 <        sprintf(painCave.errMsg,
801 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
802 <                "\tOOPSE will use a default value of 15.0 angstroms"
803 <                "\tfor the cutoffRadius.\n");
804 <        painCave.isFatal = 0;
805 <        simError();
806 <        rcut = 15.0;
807 <      } else{
808 <        rcut = simParams_->getRcut();
809 <      }
1047 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1048  
1049 <      if (!simParams_->haveRsw()){
1050 <        sprintf(painCave.errMsg,
813 <                "SimCreator Warning: No value was set for switchingRadius.\n"
814 <                "\tOOPSE will use a default value of\n"
815 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
816 <        painCave.isFatal = 0;
817 <        simError();
818 <        rsw = 0.95 * rcut;
819 <      } else{
820 <        rsw = simParams_->getRsw();
821 <      }
1049 >    // Check the cutoff policy
1050 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1051  
1052 <    } else {
1053 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
1054 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
826 <        
827 <      if (simParams_->haveRcut()) {
828 <        rcut = simParams_->getRcut();
829 <      } else {
830 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
831 <        rcut = calcMaxCutoffRadius();
832 <      }
1052 >    // Set LJ shifting bools to false
1053 >    ljsp_ = 0;
1054 >    ljsf_ = 0;
1055  
1056 <      if (simParams_->haveRsw()) {
1057 <        rsw  = simParams_->getRsw();
1058 <      } else {
1059 <        rsw = rcut;
1060 <      }
839 <    
1056 >    std::string myPolicy;
1057 >    if (forceFieldOptions_.haveCutoffPolicy()){
1058 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
1059 >    }else if (simParams_->haveCutoffPolicy()) {
1060 >      myPolicy = simParams_->getCutoffPolicy();
1061      }
841  }
1062  
1063 <  void SimInfo::setupCutoff() {    
1064 <    getCutoff(rcut_, rsw_);    
845 <    double rnblist = rcut_ + 1; // skin of neighbor list
846 <
847 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
848 <    
849 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
850 <    if (simParams_->haveCutoffPolicy()) {
851 <      std::string myPolicy = simParams_->getCutoffPolicy();
1063 >    if (!myPolicy.empty()){
1064 >      toUpper(myPolicy);
1065        if (myPolicy == "MIX") {
1066          cp = MIX_CUTOFF_POLICY;
1067        } else {
# Line 866 | Line 1079 | namespace oopse {
1079            }    
1080          }          
1081        }
1082 +    }          
1083 +    notifyFortranCutoffPolicy(&cp);
1084 +
1085 +    // Check the Skin Thickness for neighborlists
1086 +    RealType skin;
1087 +    if (simParams_->haveSkinThickness()) {
1088 +      skin = simParams_->getSkinThickness();
1089 +      notifyFortranSkinThickness(&skin);
1090 +    }            
1091 +        
1092 +    // Check if the cutoff was set explicitly:
1093 +    if (simParams_->haveCutoffRadius()) {
1094 +      rcut_ = simParams_->getCutoffRadius();
1095 +      if (simParams_->haveSwitchingRadius()) {
1096 +        rsw_  = simParams_->getSwitchingRadius();
1097 +      } else {
1098 +        if (fInfo_.SIM_uses_Charges |
1099 +            fInfo_.SIM_uses_Dipoles |
1100 +            fInfo_.SIM_uses_RF) {
1101 +          
1102 +          rsw_ = 0.85 * rcut_;
1103 +          sprintf(painCave.errMsg,
1104 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1105 +                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1106 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1107 +        painCave.isFatal = 0;
1108 +        simError();
1109 +        } else {
1110 +          rsw_ = rcut_;
1111 +          sprintf(painCave.errMsg,
1112 +                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1113 +                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1114 +                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1115 +          painCave.isFatal = 0;
1116 +          simError();
1117 +        }
1118 +      }
1119 +
1120 +      if (simParams_->haveElectrostaticSummationMethod()) {
1121 +        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1122 +        toUpper(myMethod);
1123 +        
1124 +        if (myMethod == "SHIFTED_POTENTIAL") {
1125 +          ljsp_ = 1;
1126 +        } else if (myMethod == "SHIFTED_FORCE") {
1127 +          ljsf_ = 1;
1128 +        }
1129 +      }
1130 +
1131 +      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1132 +      
1133 +    } else {
1134 +      
1135 +      // For electrostatic atoms, we'll assume a large safe value:
1136 +      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1137 +        sprintf(painCave.errMsg,
1138 +                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1139 +                "\tOpenMD will use a default value of 15.0 angstroms"
1140 +                "\tfor the cutoffRadius.\n");
1141 +        painCave.isFatal = 0;
1142 +        simError();
1143 +        rcut_ = 15.0;
1144 +      
1145 +        if (simParams_->haveElectrostaticSummationMethod()) {
1146 +          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1147 +          toUpper(myMethod);
1148 +          
1149 +          // For the time being, we're tethering the LJ shifted behavior to the
1150 +          // electrostaticSummationMethod keyword options
1151 +          if (myMethod == "SHIFTED_POTENTIAL") {
1152 +            ljsp_ = 1;
1153 +          } else if (myMethod == "SHIFTED_FORCE") {
1154 +            ljsf_ = 1;
1155 +          }
1156 +          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1157 +            if (simParams_->haveSwitchingRadius()){
1158 +              sprintf(painCave.errMsg,
1159 +                      "SimInfo Warning: A value was set for the switchingRadius\n"
1160 +                      "\teven though the electrostaticSummationMethod was\n"
1161 +                      "\tset to %s\n", myMethod.c_str());
1162 +              painCave.isFatal = 1;
1163 +              simError();            
1164 +            }
1165 +          }
1166 +        }
1167 +      
1168 +        if (simParams_->haveSwitchingRadius()){
1169 +          rsw_ = simParams_->getSwitchingRadius();
1170 +        } else {        
1171 +          sprintf(painCave.errMsg,
1172 +                  "SimCreator Warning: No value was set for switchingRadius.\n"
1173 +                  "\tOpenMD will use a default value of\n"
1174 +                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1175 +          painCave.isFatal = 0;
1176 +          simError();
1177 +          rsw_ = 0.85 * rcut_;
1178 +        }
1179 +
1180 +        Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1181 +        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1182 +
1183 +      } else {
1184 +        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1185 +        // We'll punt and let fortran figure out the cutoffs later.
1186 +        
1187 +        notifyFortranYouAreOnYourOwn();
1188 +
1189 +      }
1190      }
870    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1191    }
1192  
1193 <  void SimInfo::setupCoulombicCorrection( int isError ) {    
1193 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1194      
1195      int errorOut;
1196 <    int cc =  NONE;
1197 <    double alphaVal;
1198 <
1196 >    ElectrostaticSummationMethod esm = NONE;
1197 >    ElectrostaticScreeningMethod sm = UNDAMPED;
1198 >    RealType alphaVal;
1199 >    RealType dielectric;
1200 >    
1201      errorOut = isError;
1202  
1203 <    if (simParams_->haveCoulombicCorrection()) {
1204 <      std::string myCorrection = simParams_->getCoulombicCorrection();
1205 <      if (myCorrection == "NONE") {
1206 <        cc = NONE;
1203 >    if (simParams_->haveElectrostaticSummationMethod()) {
1204 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1205 >      toUpper(myMethod);
1206 >      if (myMethod == "NONE") {
1207 >        esm = NONE;
1208        } else {
1209 <        if (myCorrection == "UNDAMPED_WOLF") {
1210 <          cc = UNDAMPED_WOLF;
1209 >        if (myMethod == "SWITCHING_FUNCTION") {
1210 >          esm = SWITCHING_FUNCTION;
1211          } else {
1212 <          if (myCorrection == "WOLF") {            
1213 <            cc = WOLF;
1214 <            if (!simParams_->haveDampingAlpha()) {
1215 <              //throw error
1216 <              sprintf( painCave.errMsg,
894 <                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Wolf Coulombic Correction.", simParams_->getDampingAlpha());
895 <              painCave.isFatal = 0;
896 <              simError();
897 <            }
898 <            alphaVal = simParams_->getDampingAlpha();
899 <          } else {
900 <            if (myCorrection == "REACTION_FIELD") {
901 <              cc = REACTION_FIELD;
1212 >          if (myMethod == "SHIFTED_POTENTIAL") {
1213 >            esm = SHIFTED_POTENTIAL;
1214 >          } else {
1215 >            if (myMethod == "SHIFTED_FORCE") {            
1216 >              esm = SHIFTED_FORCE;
1217              } else {
1218 <              // throw error        
1219 <              sprintf( painCave.errMsg,
1220 <                       "SimInfo error: Unknown coulombicCorrection. (Input file specified %s .)\n\tcoulombicCorrection must be one of: \"none\", \"undamped_wolf\", \"wolf\", or \"reaction_field\".", myCorrection.c_str() );
1221 <              painCave.isFatal = 1;
1222 <              simError();
1223 <            }    
1224 <          }          
1218 >              if (myMethod == "REACTION_FIELD") {
1219 >                esm = REACTION_FIELD;
1220 >                dielectric = simParams_->getDielectric();
1221 >                if (!simParams_->haveDielectric()) {
1222 >                  // throw warning
1223 >                  sprintf( painCave.errMsg,
1224 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1225 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1226 >                  painCave.isFatal = 0;
1227 >                  simError();
1228 >                }
1229 >              } else {
1230 >                // throw error        
1231 >                sprintf( painCave.errMsg,
1232 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1233 >                         "\t(Input file specified %s .)\n"
1234 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1235 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1236 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1237 >                painCave.isFatal = 1;
1238 >                simError();
1239 >              }    
1240 >            }          
1241 >          }
1242          }
1243        }
1244      }
1245 <    initFortranFF( &fInfo_.SIM_uses_RF, &cc, &alphaVal, &errorOut );
1245 >    
1246 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1247 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1248 >      toUpper(myScreen);
1249 >      if (myScreen == "UNDAMPED") {
1250 >        sm = UNDAMPED;
1251 >      } else {
1252 >        if (myScreen == "DAMPED") {
1253 >          sm = DAMPED;
1254 >          if (!simParams_->haveDampingAlpha()) {
1255 >            // first set a cutoff dependent alpha value
1256 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1257 >            alphaVal = 0.5125 - rcut_* 0.025;
1258 >            // for values rcut > 20.5, alpha is zero
1259 >            if (alphaVal < 0) alphaVal = 0;
1260 >
1261 >            // throw warning
1262 >            sprintf( painCave.errMsg,
1263 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1264 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1265 >            painCave.isFatal = 0;
1266 >            simError();
1267 >          } else {
1268 >            alphaVal = simParams_->getDampingAlpha();
1269 >          }
1270 >          
1271 >        } else {
1272 >          // throw error        
1273 >          sprintf( painCave.errMsg,
1274 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1275 >                   "\t(Input file specified %s .)\n"
1276 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1277 >                   "or \"damped\".\n", myScreen.c_str() );
1278 >          painCave.isFatal = 1;
1279 >          simError();
1280 >        }
1281 >      }
1282 >    }
1283 >    
1284 >
1285 >    Electrostatic::setElectrostaticSummationMethod( esm );
1286 >    Electrostatic::setElectrostaticScreeningMethod( sm );
1287 >    Electrostatic::setDampingAlpha( alphaVal );
1288 >    Electrostatic::setReactionFieldDielectric( dielectric );
1289 >    initFortranFF( &errorOut );
1290    }
1291  
1292 +  void SimInfo::setupSwitchingFunction() {    
1293 +    int ft = CUBIC;
1294 +
1295 +    if (simParams_->haveSwitchingFunctionType()) {
1296 +      std::string funcType = simParams_->getSwitchingFunctionType();
1297 +      toUpper(funcType);
1298 +      if (funcType == "CUBIC") {
1299 +        ft = CUBIC;
1300 +      } else {
1301 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1302 +          ft = FIFTH_ORDER_POLY;
1303 +        } else {
1304 +          // throw error        
1305 +          sprintf( painCave.errMsg,
1306 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1307 +          painCave.isFatal = 1;
1308 +          simError();
1309 +        }          
1310 +      }
1311 +    }
1312 +
1313 +    // send switching function notification to switcheroo
1314 +    setFunctionType(&ft);
1315 +
1316 +  }
1317 +
1318 +  void SimInfo::setupAccumulateBoxDipole() {    
1319 +
1320 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1321 +    if ( simParams_->haveAccumulateBoxDipole() )
1322 +      if ( simParams_->getAccumulateBoxDipole() ) {
1323 +        setAccumulateBoxDipole();
1324 +        calcBoxDipole_ = true;
1325 +      }
1326 +
1327 +  }
1328 +
1329    void SimInfo::addProperty(GenericData* genData) {
1330      properties_.addProperty(genData);  
1331    }
# Line 969 | Line 1382 | namespace oopse {
1382      Molecule* mol;
1383  
1384      Vector3d comVel(0.0);
1385 <    double totalMass = 0.0;
1385 >    RealType totalMass = 0.0;
1386      
1387  
1388      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1389 <      double mass = mol->getMass();
1389 >      RealType mass = mol->getMass();
1390        totalMass += mass;
1391        comVel += mass * mol->getComVel();
1392      }  
1393  
1394   #ifdef IS_MPI
1395 <    double tmpMass = totalMass;
1395 >    RealType tmpMass = totalMass;
1396      Vector3d tmpComVel(comVel);    
1397 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1398 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1397 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1398 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1399   #endif
1400  
1401      comVel /= totalMass;
# Line 995 | Line 1408 | namespace oopse {
1408      Molecule* mol;
1409  
1410      Vector3d com(0.0);
1411 <    double totalMass = 0.0;
1411 >    RealType totalMass = 0.0;
1412      
1413      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1414 <      double mass = mol->getMass();
1414 >      RealType mass = mol->getMass();
1415        totalMass += mass;
1416        com += mass * mol->getCom();
1417      }  
1418  
1419   #ifdef IS_MPI
1420 <    double tmpMass = totalMass;
1420 >    RealType tmpMass = totalMass;
1421      Vector3d tmpCom(com);    
1422 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1423 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1422 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1423 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1424   #endif
1425  
1426      com /= totalMass;
# Line 1031 | Line 1444 | namespace oopse {
1444        Molecule* mol;
1445        
1446      
1447 <      double totalMass = 0.0;
1447 >      RealType totalMass = 0.0;
1448      
1449  
1450        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1451 <         double mass = mol->getMass();
1451 >         RealType mass = mol->getMass();
1452           totalMass += mass;
1453           com += mass * mol->getCom();
1454           comVel += mass * mol->getComVel();          
1455        }  
1456        
1457   #ifdef IS_MPI
1458 <      double tmpMass = totalMass;
1458 >      RealType tmpMass = totalMass;
1459        Vector3d tmpCom(com);  
1460        Vector3d tmpComVel(comVel);
1461 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1462 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1463 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1461 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1462 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1463 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1464   #endif
1465        
1466        com /= totalMass;
# Line 1066 | Line 1479 | namespace oopse {
1479     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1480        
1481  
1482 <      double xx = 0.0;
1483 <      double yy = 0.0;
1484 <      double zz = 0.0;
1485 <      double xy = 0.0;
1486 <      double xz = 0.0;
1487 <      double yz = 0.0;
1482 >      RealType xx = 0.0;
1483 >      RealType yy = 0.0;
1484 >      RealType zz = 0.0;
1485 >      RealType xy = 0.0;
1486 >      RealType xz = 0.0;
1487 >      RealType yz = 0.0;
1488        Vector3d com(0.0);
1489        Vector3d comVel(0.0);
1490        
# Line 1083 | Line 1496 | namespace oopse {
1496        Vector3d thisq(0.0);
1497        Vector3d thisv(0.0);
1498  
1499 <      double thisMass = 0.0;
1499 >      RealType thisMass = 0.0;
1500      
1501        
1502        
# Line 1121 | Line 1534 | namespace oopse {
1534   #ifdef IS_MPI
1535        Mat3x3d tmpI(inertiaTensor);
1536        Vector3d tmpAngMom;
1537 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1538 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1537 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1538 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1539   #endif
1540                
1541        return;
# Line 1143 | Line 1556 | namespace oopse {
1556        Vector3d thisr(0.0);
1557        Vector3d thisp(0.0);
1558        
1559 <      double thisMass;
1559 >      RealType thisMass;
1560        
1561        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1562          thisMass = mol->getMass();
# Line 1156 | Line 1569 | namespace oopse {
1569        
1570   #ifdef IS_MPI
1571        Vector3d tmpAngMom;
1572 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1572 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1573   #endif
1574        
1575        return angularMomentum;
1576     }
1577    
1578 <  
1579 < }//end namespace oopse
1578 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1579 >    return IOIndexToIntegrableObject.at(index);
1580 >  }
1581 >  
1582 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1583 >    IOIndexToIntegrableObject= v;
1584 >  }
1585  
1586 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1587 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1588 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1589 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1590 +  */
1591 +  void SimInfo::getGyrationalVolume(RealType &volume){
1592 +    Mat3x3d intTensor;
1593 +    RealType det;
1594 +    Vector3d dummyAngMom;
1595 +    RealType sysconstants;
1596 +    RealType geomCnst;
1597 +
1598 +    geomCnst = 3.0/2.0;
1599 +    /* Get the inertial tensor and angular momentum for free*/
1600 +    getInertiaTensor(intTensor,dummyAngMom);
1601 +    
1602 +    det = intTensor.determinant();
1603 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1604 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1605 +    return;
1606 +  }
1607 +
1608 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1609 +    Mat3x3d intTensor;
1610 +    Vector3d dummyAngMom;
1611 +    RealType sysconstants;
1612 +    RealType geomCnst;
1613 +
1614 +    geomCnst = 3.0/2.0;
1615 +    /* Get the inertial tensor and angular momentum for free*/
1616 +    getInertiaTensor(intTensor,dummyAngMom);
1617 +    
1618 +    detI = intTensor.determinant();
1619 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1620 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1621 +    return;
1622 +  }
1623 + /*
1624 +   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1625 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1626 +      sdByGlobalIndex_ = v;
1627 +    }
1628 +
1629 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1630 +      //assert(index < nAtoms_ + nRigidBodies_);
1631 +      return sdByGlobalIndex_.at(index);
1632 +    }  
1633 + */  
1634 + }//end namespace OpenMD
1635 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 598 by chrisfen, Thu Sep 15 00:14:35 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1503 by gezelter, Sat Oct 2 19:54:41 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines