ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1121 by chuckv, Mon Feb 26 04:45:42 2007 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 > #include "UseTheForce/doForces_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 > #include "utils/MemoryUtils.hpp"
66 > #include "utils/simError.h"
67 > #include "selection/SelectionManager.hpp"
68 > #include "io/ForceFieldOptions.hpp"
69 > #include "UseTheForce/ForceField.hpp"
70  
13 #include "fortranWrappers.hpp"
71  
15 #include "MatVec3.h"
16
72   #ifdef IS_MPI
73 < #include "mpiSimulation.hpp"
74 < #endif
73 > #include "UseTheForce/mpiComponentPlan.h"
74 > #include "UseTheForce/DarkSide/simParallel_interface.h"
75 > #endif
76  
77 < inline double roundMe( double x ){
78 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
79 < }
80 <          
81 < inline double min( double a, double b ){
82 <  return (a < b ) ? a : b;
83 < }
77 > namespace oopse {
78 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 >    std::map<int, std::set<int> >::iterator i = container.find(index);
80 >    std::set<int> result;
81 >    if (i != container.end()) {
82 >        result = i->second;
83 >    }
84  
85 < SimInfo* currentInfo;
86 <
31 < SimInfo::SimInfo(){
32 <
33 <  n_constraints = 0;
34 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
46 <
47 <  haveRcut = 0;
48 <  haveRsw = 0;
49 <  boxIsInit = 0;
85 >    return result;
86 >  }
87    
88 <  resetTime = 1e99;
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
96  
97 <  orthoRhombic = 0;
98 <  orthoTolerance = 1E-6;
99 <  useInitXSstate = true;
97 >      MoleculeStamp* molStamp;
98 >      int nMolWithSameStamp;
99 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
100 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
101 >      CutoffGroupStamp* cgStamp;    
102 >      RigidBodyStamp* rbStamp;
103 >      int nRigidAtoms = 0;
104 >      std::vector<Component*> components = simParams->getComponents();
105 >      
106 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
107 >        molStamp = (*i)->getMoleculeStamp();
108 >        nMolWithSameStamp = (*i)->getNMol();
109 >        
110 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
111  
112 <  usePBC = 0;
113 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
112 >        //calculate atoms in molecules
113 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
114  
115 <  haveCutoffGroups = false;
115 >        //calculate atoms in cutoff groups
116 >        int nAtomsInGroups = 0;
117 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 >        
119 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 >          cgStamp = molStamp->getCutoffGroupStamp(j);
121 >          nAtomsInGroups += cgStamp->getNMembers();
122 >        }
123  
124 <  excludes = Exclude::Instance();
124 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125  
126 <  myConfiguration = new SimState();
126 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127  
128 <  has_minimizer = false;
129 <  the_minimizer =NULL;
128 >        //calculate atoms in rigid bodies
129 >        int nAtomsInRigidBodies = 0;
130 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 >        
132 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
133 >          rbStamp = molStamp->getRigidBodyStamp(j);
134 >          nAtomsInRigidBodies += rbStamp->getNMembers();
135 >        }
136  
137 <  ngroup = 0;
137 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 >        
140 >      }
141  
142 <  wrapMeSimInfo( this );
143 < }
142 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
143 >      //group therefore the total number of cutoff groups in the system is
144 >      //equal to the total number of atoms minus number of atoms belong to
145 >      //cutoff group defined in meta-data file plus the number of cutoff
146 >      //groups defined in meta-data file
147 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
148  
149 <
150 < SimInfo::~SimInfo(){
151 <
152 <  delete myConfiguration;
153 <
154 <  map<string, GenericData*>::iterator i;
149 >      //every free atom (atom does not belong to rigid bodies) is an
150 >      //integrable object therefore the total number of integrable objects
151 >      //in the system is equal to the total number of atoms minus number of
152 >      //atoms belong to rigid body defined in meta-data file plus the number
153 >      //of rigid bodies defined in meta-data file
154 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
155 >                                                + nGlobalRigidBodies_;
156    
157 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
157 >      nGlobalMols_ = molStampIds_.size();
158  
159 < }
159 > #ifdef IS_MPI    
160 >      molToProcMap_.resize(nGlobalMols_);
161 > #endif
162  
163 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
163 >    }
164  
165 <  for(i=0; i<3; i++)
166 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
165 >  SimInfo::~SimInfo() {
166 >    std::map<int, Molecule*>::iterator i;
167 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
168 >      delete i->second;
169 >    }
170 >    molecules_.clear();
171 >      
172 >    delete sman_;
173 >    delete simParams_;
174 >    delete forceField_;
175 >  }
176  
177 <  tempMat[0][0] = newBox[0];
178 <  tempMat[1][1] = newBox[1];
179 <  tempMat[2][2] = newBox[2];
177 >  int SimInfo::getNGlobalConstraints() {
178 >    int nGlobalConstraints;
179 > #ifdef IS_MPI
180 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
181 >                  MPI_COMM_WORLD);    
182 > #else
183 >    nGlobalConstraints =  nConstraints_;
184 > #endif
185 >    return nGlobalConstraints;
186 >  }
187  
188 <  setBoxM( tempMat );
188 >  bool SimInfo::addMolecule(Molecule* mol) {
189 >    MoleculeIterator i;
190  
191 < }
191 >    i = molecules_.find(mol->getGlobalIndex());
192 >    if (i == molecules_.end() ) {
193  
194 < void SimInfo::setBoxM( double theBox[3][3] ){
195 <  
196 <  int i, j;
197 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
198 <                         // ordering in the array is as follows:
199 <                         // [ 0 3 6 ]
200 <                         // [ 1 4 7 ]
201 <                         // [ 2 5 8 ]
202 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
203 <
204 <  if( !boxIsInit ) boxIsInit = 1;
205 <
206 <  for(i=0; i < 3; i++)
207 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
208 <  
209 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
194 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
195 >        
196 >      nAtoms_ += mol->getNAtoms();
197 >      nBonds_ += mol->getNBonds();
198 >      nBends_ += mol->getNBends();
199 >      nTorsions_ += mol->getNTorsions();
200 >      nRigidBodies_ += mol->getNRigidBodies();
201 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
202 >      nCutoffGroups_ += mol->getNCutoffGroups();
203 >      nConstraints_ += mol->getNConstraintPairs();
204 >
205 >      addExcludePairs(mol);
206 >        
207 >      return true;
208 >    } else {
209 >      return false;
210      }
211    }
212  
213 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
214 <
215 < }
138 <
213 >  bool SimInfo::removeMolecule(Molecule* mol) {
214 >    MoleculeIterator i;
215 >    i = molecules_.find(mol->getGlobalIndex());
216  
217 < void SimInfo::getBoxM (double theBox[3][3]) {
217 >    if (i != molecules_.end() ) {
218  
219 <  int i, j;
220 <  for(i=0; i<3; i++)
221 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
222 < }
219 >      assert(mol == i->second);
220 >        
221 >      nAtoms_ -= mol->getNAtoms();
222 >      nBonds_ -= mol->getNBonds();
223 >      nBends_ -= mol->getNBends();
224 >      nTorsions_ -= mol->getNTorsions();
225 >      nRigidBodies_ -= mol->getNRigidBodies();
226 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
227 >      nCutoffGroups_ -= mol->getNCutoffGroups();
228 >      nConstraints_ -= mol->getNConstraintPairs();
229  
230 +      removeExcludePairs(mol);
231 +      molecules_.erase(mol->getGlobalIndex());
232  
233 < void SimInfo::scaleBox(double scale) {
234 <  double theBox[3][3];
235 <  int i, j;
233 >      delete mol;
234 >        
235 >      return true;
236 >    } else {
237 >      return false;
238 >    }
239  
152  // cerr << "Scaling box by " << scale << "\n";
240  
241 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
241 >  }    
242  
243 <  setBoxM(theBox);
243 >        
244 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
245 >    i = molecules_.begin();
246 >    return i == molecules_.end() ? NULL : i->second;
247 >  }    
248  
249 < }
249 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
250 >    ++i;
251 >    return i == molecules_.end() ? NULL : i->second;    
252 >  }
253  
161 void SimInfo::calcHmatInv( void ) {
162  
163  int oldOrtho;
164  int i,j;
165  double smallDiag;
166  double tol;
167  double sanity[3][3];
254  
255 <  invertMat3( Hmat, HmatInv );
255 >  void SimInfo::calcNdf() {
256 >    int ndf_local;
257 >    MoleculeIterator i;
258 >    std::vector<StuntDouble*>::iterator j;
259 >    Molecule* mol;
260 >    StuntDouble* integrableObject;
261  
262 <  // check to see if Hmat is orthorhombic
263 <  
264 <  oldOrtho = orthoRhombic;
262 >    ndf_local = 0;
263 >    
264 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
265 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
266 >           integrableObject = mol->nextIntegrableObject(j)) {
267  
268 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
268 >        ndf_local += 3;
269  
270 <  orthoRhombic = 1;
271 <  
272 <  for (i = 0; i < 3; i++ ) {
273 <    for (j = 0 ; j < 3; j++) {
274 <      if (i != j) {
275 <        if (orthoRhombic) {
276 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
277 <        }        
270 >        if (integrableObject->isDirectional()) {
271 >          if (integrableObject->isLinear()) {
272 >            ndf_local += 2;
273 >          } else {
274 >            ndf_local += 3;
275 >          }
276 >        }
277 >            
278        }
279      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
280      
281 <    if( orthoRhombic ) {
282 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
281 >    // n_constraints is local, so subtract them on each processor
282 >    ndf_local -= nConstraints_;
283  
284 < void SimInfo::calcBoxL( void ){
285 <
286 <  double dx, dy, dz, dsq;
287 <
288 <  // boxVol = Determinant of Hmat
225 <
226 <  boxVol = matDet3( Hmat );
227 <
228 <  // boxLx
229 <  
230 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
234 <
235 <  // boxLy
236 <  
237 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 <
242 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 <
250 <  //calculate the max cutoff
251 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
254 <
255 < }
256 <
257 <
258 < double SimInfo::calcMaxCutOff(){
259 <
260 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
263 <
264 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
267 <
268 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
275 <    
276 <  crossProduct3(ri, rj, rij);
277 <  distXY = dotProduct3(rk,rij) / norm3(rij);
278 <
279 <  crossProduct3(rj,rk, rjk);
280 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
281 <
282 <  crossProduct3(rk,ri, rki);
283 <  distZX = dotProduct3(rj,rki) / norm3(rki);
284 <
285 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
287 <  
288 < }
289 <
290 < void SimInfo::wrapVector( double thePos[3] ){
291 <
292 <  int i;
293 <  double scaled[3];
294 <
295 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
298 <
299 <    matVecMul3(HmatInv, thePos, scaled);
300 <    
301 <    for(i=0; i<3; i++)
302 <      scaled[i] -= roundMe(scaled[i]);
303 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
307 <
308 <  }
309 <  else{
310 <    // calc the scaled coordinates.
311 <    
312 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
327 <
284 > #ifdef IS_MPI
285 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
286 > #else
287 >    ndf_ = ndf_local;
288 > #endif
289  
290 < int SimInfo::getNDF(){
291 <  int ndf_local;
290 >    // nZconstraints_ is global, as are the 3 COM translations for the
291 >    // entire system:
292 >    ndf_ = ndf_ - 3 - nZconstraint_;
293  
332  ndf_local = 0;
333  
334  for(int i = 0; i < integrableObjects.size(); i++){
335    ndf_local += 3;
336    if (integrableObjects[i]->isDirectional()) {
337      if (integrableObjects[i]->isLinear())
338        ndf_local += 2;
339      else
340        ndf_local += 3;
341    }
294    }
295  
296 <  // n_constraints is local, so subtract them on each processor:
345 <
346 <  ndf_local -= n_constraints;
347 <
296 >  int SimInfo::getFdf() {
297   #ifdef IS_MPI
298 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
298 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
299   #else
300 <  ndf = ndf_local;
300 >    fdf_ = fdf_local;
301   #endif
302 +    return fdf_;
303 +  }
304 +    
305 +  void SimInfo::calcNdfRaw() {
306 +    int ndfRaw_local;
307  
308 <  // nZconstraints is global, as are the 3 COM translations for the
309 <  // entire system:
308 >    MoleculeIterator i;
309 >    std::vector<StuntDouble*>::iterator j;
310 >    Molecule* mol;
311 >    StuntDouble* integrableObject;
312  
313 <  ndf = ndf - 3 - nZconstraints;
313 >    // Raw degrees of freedom that we have to set
314 >    ndfRaw_local = 0;
315 >    
316 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
317 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
318 >           integrableObject = mol->nextIntegrableObject(j)) {
319  
320 <  return ndf;
360 < }
320 >        ndfRaw_local += 3;
321  
322 < int SimInfo::getNDFraw() {
323 <  int ndfRaw_local;
324 <
325 <  // Raw degrees of freedom that we have to set
326 <  ndfRaw_local = 0;
327 <
328 <  for(int i = 0; i < integrableObjects.size(); i++){
329 <    ndfRaw_local += 3;
330 <    if (integrableObjects[i]->isDirectional()) {
371 <       if (integrableObjects[i]->isLinear())
372 <        ndfRaw_local += 2;
373 <      else
374 <        ndfRaw_local += 3;
322 >        if (integrableObject->isDirectional()) {
323 >          if (integrableObject->isLinear()) {
324 >            ndfRaw_local += 2;
325 >          } else {
326 >            ndfRaw_local += 3;
327 >          }
328 >        }
329 >            
330 >      }
331      }
376  }
332      
333   #ifdef IS_MPI
334 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
334 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335   #else
336 <  ndfRaw = ndfRaw_local;
336 >    ndfRaw_ = ndfRaw_local;
337   #endif
338 +  }
339  
340 <  return ndfRaw;
341 < }
340 >  void SimInfo::calcNdfTrans() {
341 >    int ndfTrans_local;
342  
343 < int SimInfo::getNDFtranslational() {
388 <  int ndfTrans_local;
343 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
344  
390  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
345  
392
346   #ifdef IS_MPI
347 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
347 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
348   #else
349 <  ndfTrans = ndfTrans_local;
349 >    ndfTrans_ = ndfTrans_local;
350   #endif
351  
352 <  ndfTrans = ndfTrans - 3 - nZconstraints;
352 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
353 >
354 >  }
355  
356 <  return ndfTrans;
357 < }
356 >  void SimInfo::addExcludePairs(Molecule* mol) {
357 >    std::vector<Bond*>::iterator bondIter;
358 >    std::vector<Bend*>::iterator bendIter;
359 >    std::vector<Torsion*>::iterator torsionIter;
360 >    Bond* bond;
361 >    Bend* bend;
362 >    Torsion* torsion;
363 >    int a;
364 >    int b;
365 >    int c;
366 >    int d;
367  
368 < int SimInfo::getTotIntegrableObjects() {
405 <  int nObjs_local;
406 <  int nObjs;
368 >    std::map<int, std::set<int> > atomGroups;
369  
370 <  nObjs_local =  integrableObjects.size();
370 >    Molecule::RigidBodyIterator rbIter;
371 >    RigidBody* rb;
372 >    Molecule::IntegrableObjectIterator ii;
373 >    StuntDouble* integrableObject;
374 >    
375 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
376 >           integrableObject = mol->nextIntegrableObject(ii)) {
377  
378 +      if (integrableObject->isRigidBody()) {
379 +          rb = static_cast<RigidBody*>(integrableObject);
380 +          std::vector<Atom*> atoms = rb->getAtoms();
381 +          std::set<int> rigidAtoms;
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
384 +          }
385 +          for (int i = 0; i < atoms.size(); ++i) {
386 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
387 +          }      
388 +      } else {
389 +        std::set<int> oneAtomSet;
390 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
391 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
392 +      }
393 +    }  
394  
395 < #ifdef IS_MPI
396 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
397 < #else
398 <  nObjs = nObjs_local;
399 < #endif
395 >    
396 >    
397 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
398 >      a = bond->getAtomA()->getGlobalIndex();
399 >      b = bond->getAtomB()->getGlobalIndex();        
400 >      exclude_.addPair(a, b);
401 >    }
402  
403 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
404 +      a = bend->getAtomA()->getGlobalIndex();
405 +      b = bend->getAtomB()->getGlobalIndex();        
406 +      c = bend->getAtomC()->getGlobalIndex();
407 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
408 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
409 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
410  
411 <  return nObjs;
412 < }
411 >      exclude_.addPairs(rigidSetA, rigidSetB);
412 >      exclude_.addPairs(rigidSetA, rigidSetC);
413 >      exclude_.addPairs(rigidSetB, rigidSetC);
414 >      
415 >      //exclude_.addPair(a, b);
416 >      //exclude_.addPair(a, c);
417 >      //exclude_.addPair(b, c);        
418 >    }
419  
420 < void SimInfo::refreshSim(){
420 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
421 >      a = torsion->getAtomA()->getGlobalIndex();
422 >      b = torsion->getAtomB()->getGlobalIndex();        
423 >      c = torsion->getAtomC()->getGlobalIndex();        
424 >      d = torsion->getAtomD()->getGlobalIndex();        
425 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
426 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
427 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
428 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
429  
430 <  simtype fInfo;
431 <  int isError;
432 <  int n_global;
433 <  int* excl;
430 >      exclude_.addPairs(rigidSetA, rigidSetB);
431 >      exclude_.addPairs(rigidSetA, rigidSetC);
432 >      exclude_.addPairs(rigidSetA, rigidSetD);
433 >      exclude_.addPairs(rigidSetB, rigidSetC);
434 >      exclude_.addPairs(rigidSetB, rigidSetD);
435 >      exclude_.addPairs(rigidSetC, rigidSetD);
436  
437 <  fInfo.dielect = 0.0;
437 >      /*
438 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
439 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
440 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
441 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
442 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
443 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
444 >        
445 >      
446 >      exclude_.addPair(a, b);
447 >      exclude_.addPair(a, c);
448 >      exclude_.addPair(a, d);
449 >      exclude_.addPair(b, c);
450 >      exclude_.addPair(b, d);
451 >      exclude_.addPair(c, d);        
452 >      */
453 >    }
454 >
455 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
456 >      std::vector<Atom*> atoms = rb->getAtoms();
457 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
458 >        for (int j = i + 1; j < atoms.size(); ++j) {
459 >          a = atoms[i]->getGlobalIndex();
460 >          b = atoms[j]->getGlobalIndex();
461 >          exclude_.addPair(a, b);
462 >        }
463 >      }
464 >    }        
465 >
466 >  }
467 >
468 >  void SimInfo::removeExcludePairs(Molecule* mol) {
469 >    std::vector<Bond*>::iterator bondIter;
470 >    std::vector<Bend*>::iterator bendIter;
471 >    std::vector<Torsion*>::iterator torsionIter;
472 >    Bond* bond;
473 >    Bend* bend;
474 >    Torsion* torsion;
475 >    int a;
476 >    int b;
477 >    int c;
478 >    int d;
479 >
480 >    std::map<int, std::set<int> > atomGroups;
481 >
482 >    Molecule::RigidBodyIterator rbIter;
483 >    RigidBody* rb;
484 >    Molecule::IntegrableObjectIterator ii;
485 >    StuntDouble* integrableObject;
486 >    
487 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
488 >           integrableObject = mol->nextIntegrableObject(ii)) {
489 >
490 >      if (integrableObject->isRigidBody()) {
491 >          rb = static_cast<RigidBody*>(integrableObject);
492 >          std::vector<Atom*> atoms = rb->getAtoms();
493 >          std::set<int> rigidAtoms;
494 >          for (int i = 0; i < atoms.size(); ++i) {
495 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
496 >          }
497 >          for (int i = 0; i < atoms.size(); ++i) {
498 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
499 >          }      
500 >      } else {
501 >        std::set<int> oneAtomSet;
502 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
503 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
504 >      }
505 >    }  
506 >
507 >    
508 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
509 >      a = bond->getAtomA()->getGlobalIndex();
510 >      b = bond->getAtomB()->getGlobalIndex();        
511 >      exclude_.removePair(a, b);
512 >    }
513 >
514 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
515 >      a = bend->getAtomA()->getGlobalIndex();
516 >      b = bend->getAtomB()->getGlobalIndex();        
517 >      c = bend->getAtomC()->getGlobalIndex();
518 >
519 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
520 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
521 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
522 >
523 >      exclude_.removePairs(rigidSetA, rigidSetB);
524 >      exclude_.removePairs(rigidSetA, rigidSetC);
525 >      exclude_.removePairs(rigidSetB, rigidSetC);
526 >      
527 >      //exclude_.removePair(a, b);
528 >      //exclude_.removePair(a, c);
529 >      //exclude_.removePair(b, c);        
530 >    }
531 >
532 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
533 >      a = torsion->getAtomA()->getGlobalIndex();
534 >      b = torsion->getAtomB()->getGlobalIndex();        
535 >      c = torsion->getAtomC()->getGlobalIndex();        
536 >      d = torsion->getAtomD()->getGlobalIndex();        
537 >
538 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
539 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
540 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
541 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
542 >
543 >      exclude_.removePairs(rigidSetA, rigidSetB);
544 >      exclude_.removePairs(rigidSetA, rigidSetC);
545 >      exclude_.removePairs(rigidSetA, rigidSetD);
546 >      exclude_.removePairs(rigidSetB, rigidSetC);
547 >      exclude_.removePairs(rigidSetB, rigidSetD);
548 >      exclude_.removePairs(rigidSetC, rigidSetD);
549 >
550 >      /*
551 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
552 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
553 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
554 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
555 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
556 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
557 >
558 >      
559 >      exclude_.removePair(a, b);
560 >      exclude_.removePair(a, c);
561 >      exclude_.removePair(a, d);
562 >      exclude_.removePair(b, c);
563 >      exclude_.removePair(b, d);
564 >      exclude_.removePair(c, d);        
565 >      */
566 >    }
567 >
568 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
569 >      std::vector<Atom*> atoms = rb->getAtoms();
570 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
571 >        for (int j = i + 1; j < atoms.size(); ++j) {
572 >          a = atoms[i]->getGlobalIndex();
573 >          b = atoms[j]->getGlobalIndex();
574 >          exclude_.removePair(a, b);
575 >        }
576 >      }
577 >    }        
578 >
579 >  }
580 >
581 >
582 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
583 >    int curStampId;
584 >
585 >    //index from 0
586 >    curStampId = moleculeStamps_.size();
587 >
588 >    moleculeStamps_.push_back(molStamp);
589 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
590 >  }
591 >
592 >  void SimInfo::update() {
593 >
594 >    setupSimType();
595 >
596 > #ifdef IS_MPI
597 >    setupFortranParallel();
598 > #endif
599 >
600 >    setupFortranSim();
601 >
602 >    //setup fortran force field
603 >    /** @deprecate */    
604 >    int isError = 0;
605 >    
606 >    setupCutoff();
607 >    
608 >    setupElectrostaticSummationMethod( isError );
609 >    setupSwitchingFunction();
610 >    setupAccumulateBoxDipole();
611 >
612 >    if(isError){
613 >      sprintf( painCave.errMsg,
614 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
615 >      painCave.isFatal = 1;
616 >      simError();
617 >    }
618 >
619 >    calcNdf();
620 >    calcNdfRaw();
621 >    calcNdfTrans();
622 >
623 >    fortranInitialized_ = true;
624 >  }
625 >
626 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
627 >    SimInfo::MoleculeIterator mi;
628 >    Molecule* mol;
629 >    Molecule::AtomIterator ai;
630 >    Atom* atom;
631 >    std::set<AtomType*> atomTypes;
632 >
633 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
634 >
635 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
636 >        atomTypes.insert(atom->getAtomType());
637 >      }
638 >        
639 >    }
640 >
641 >    return atomTypes;        
642 >  }
643 >
644 >  void SimInfo::setupSimType() {
645 >    std::set<AtomType*>::iterator i;
646 >    std::set<AtomType*> atomTypes;
647 >    atomTypes = getUniqueAtomTypes();
648 >    
649 >    int useLennardJones = 0;
650 >    int useElectrostatic = 0;
651 >    int useEAM = 0;
652 >    int useSC = 0;
653 >    int useCharge = 0;
654 >    int useDirectional = 0;
655 >    int useDipole = 0;
656 >    int useGayBerne = 0;
657 >    int useSticky = 0;
658 >    int useStickyPower = 0;
659 >    int useShape = 0;
660 >    int useFLARB = 0; //it is not in AtomType yet
661 >    int useDirectionalAtom = 0;    
662 >    int useElectrostatics = 0;
663 >    //usePBC and useRF are from simParams
664 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
665 >    int useRF;
666 >    int useSF;
667 >    int useSP;
668 >    int useBoxDipole;
669 >    std::string myMethod;
670 >
671 >    // set the useRF logical
672 >    useRF = 0;
673 >    useSF = 0;
674 >    useSP = 0;
675 >
676 >
677 >    if (simParams_->haveElectrostaticSummationMethod()) {
678 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
679 >      toUpper(myMethod);
680 >      if (myMethod == "REACTION_FIELD"){
681 >        useRF = 1;
682 >      } else if (myMethod == "SHIFTED_FORCE"){
683 >        useSF = 1;
684 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
685 >        useSP = 1;
686 >      }
687 >    }
688 >    
689 >    if (simParams_->haveAccumulateBoxDipole())
690 >      if (simParams_->getAccumulateBoxDipole())
691 >        useBoxDipole = 1;
692 >
693 >    //loop over all of the atom types
694 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 >      useLennardJones |= (*i)->isLennardJones();
696 >      useElectrostatic |= (*i)->isElectrostatic();
697 >      useEAM |= (*i)->isEAM();
698 >      useSC |= (*i)->isSC();
699 >      useCharge |= (*i)->isCharge();
700 >      useDirectional |= (*i)->isDirectional();
701 >      useDipole |= (*i)->isDipole();
702 >      useGayBerne |= (*i)->isGayBerne();
703 >      useSticky |= (*i)->isSticky();
704 >      useStickyPower |= (*i)->isStickyPower();
705 >      useShape |= (*i)->isShape();
706 >    }
707 >
708 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 >      useDirectionalAtom = 1;
710 >    }
711 >
712 >    if (useCharge || useDipole) {
713 >      useElectrostatics = 1;
714 >    }
715 >
716 > #ifdef IS_MPI    
717 >    int temp;
718 >
719 >    temp = usePBC;
720 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 >
722 >    temp = useDirectionalAtom;
723 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >
725 >    temp = useLennardJones;
726 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 >
728 >    temp = useElectrostatics;
729 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 >
731 >    temp = useCharge;
732 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 >
734 >    temp = useDipole;
735 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 >
737 >    temp = useSticky;
738 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 >
740 >    temp = useStickyPower;
741 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 >    
743 >    temp = useGayBerne;
744 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 >
746 >    temp = useEAM;
747 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
748  
749 <  if( useDipoles ){
750 <    if( useReactionField )fInfo.dielect = dielectric;
751 <  }
749 >    temp = useSC;
750 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751 >    
752 >    temp = useShape;
753 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
754  
755 <  fInfo.SIM_uses_PBC = usePBC;
756 <  //fInfo.SIM_uses_LJ = 0;
436 <  fInfo.SIM_uses_LJ = useLJ;
437 <  fInfo.SIM_uses_sticky = useSticky;
438 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
755 >    temp = useFLARB;
756 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757  
758 <  n_exclude = excludes->getSize();
759 <  excl = excludes->getFortranArray();
760 <  
761 < #ifdef IS_MPI
762 <  n_global = mpiSim->getNAtomsGlobal();
763 < #else
764 <  n_global = n_atoms;
758 >    temp = useRF;
759 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760 >
761 >    temp = useSF;
762 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763 >
764 >    temp = useSP;
765 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 >    temp = useBoxDipole;
768 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 >
770   #endif
455  
456  isError = 0;
457  
458  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459  //it may not be a good idea to pass the address of first element in vector
460  //since c++ standard does not require vector to be stored continuously in meomory
461  //Most of the compilers will organize the memory of vector continuously
462  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
771  
772 <  if( isError ){
773 <    
774 <    sprintf( painCave.errMsg,
775 <             "There was an error setting the simulation information in fortran.\n" );
776 <    painCave.isFatal = 1;
777 <    painCave.severity = OOPSE_ERROR;
778 <    simError();
772 >    fInfo_.SIM_uses_PBC = usePBC;    
773 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
774 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
775 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
776 >    fInfo_.SIM_uses_Charges = useCharge;
777 >    fInfo_.SIM_uses_Dipoles = useDipole;
778 >    fInfo_.SIM_uses_Sticky = useSticky;
779 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
780 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
781 >    fInfo_.SIM_uses_EAM = useEAM;
782 >    fInfo_.SIM_uses_SC = useSC;
783 >    fInfo_.SIM_uses_Shapes = useShape;
784 >    fInfo_.SIM_uses_FLARB = useFLARB;
785 >    fInfo_.SIM_uses_RF = useRF;
786 >    fInfo_.SIM_uses_SF = useSF;
787 >    fInfo_.SIM_uses_SP = useSP;
788 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
789    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
790  
791 < void SimInfo::setDefaultRcut( double theRcut ){
792 <  
793 <  haveRcut = 1;
794 <  rCut = theRcut;
795 <  rList = rCut + 1.0;
796 <  
797 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
791 >  void SimInfo::setupFortranSim() {
792 >    int isError;
793 >    int nExclude;
794 >    std::vector<int> fortranGlobalGroupMembership;
795 >    
796 >    nExclude = exclude_.getSize();
797 >    isError = 0;
798  
799 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
799 >    //globalGroupMembership_ is filled by SimCreator    
800 >    for (int i = 0; i < nGlobalAtoms_; i++) {
801 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
802 >    }
803  
804 <  rSw = theRsw;
805 <  setDefaultRcut( theRcut );
806 < }
804 >    //calculate mass ratio of cutoff group
805 >    std::vector<RealType> mfact;
806 >    SimInfo::MoleculeIterator mi;
807 >    Molecule* mol;
808 >    Molecule::CutoffGroupIterator ci;
809 >    CutoffGroup* cg;
810 >    Molecule::AtomIterator ai;
811 >    Atom* atom;
812 >    RealType totalMass;
813  
814 +    //to avoid memory reallocation, reserve enough space for mfact
815 +    mfact.reserve(getNCutoffGroups());
816 +    
817 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
818 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
819  
820 < void SimInfo::checkCutOffs( void ){
821 <  
822 <  if( boxIsInit ){
820 >        totalMass = cg->getMass();
821 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
822 >          // Check for massless groups - set mfact to 1 if true
823 >          if (totalMass != 0)
824 >            mfact.push_back(atom->getMass()/totalMass);
825 >          else
826 >            mfact.push_back( 1.0 );
827 >        }
828 >
829 >      }      
830 >    }
831 >
832 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
833 >    std::vector<int> identArray;
834 >
835 >    //to avoid memory reallocation, reserve enough space identArray
836 >    identArray.reserve(getNAtoms());
837      
838 <    //we need to check cutOffs against the box
838 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
839 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
840 >        identArray.push_back(atom->getIdent());
841 >      }
842 >    }    
843 >
844 >    //fill molMembershipArray
845 >    //molMembershipArray is filled by SimCreator    
846 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
847 >    for (int i = 0; i < nGlobalAtoms_; i++) {
848 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
849 >    }
850      
851 <    if( rCut > maxCutoff ){
851 >    //setup fortran simulation
852 >    int nGlobalExcludes = 0;
853 >    int* globalExcludes = NULL;
854 >    int* excludeList = exclude_.getExcludeList();
855 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
856 >                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
857 >                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
858 >
859 >    if( isError ){
860 >
861        sprintf( painCave.errMsg,
862 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
862 >               "There was an error setting the simulation information in fortran.\n" );
863        painCave.isFatal = 1;
864 +      painCave.severity = OOPSE_ERROR;
865        simError();
866 <    }    
867 <  } else {
868 <    // initialize this stuff before using it, OK?
869 <    sprintf( painCave.errMsg,
870 <             "Trying to check cutoffs without a box.\n"
871 <             "\tOOPSE should have better programmers than that.\n" );
872 <    painCave.severity = OOPSE_ERROR;
873 <    painCave.isFatal = 1;
874 <    simError();      
866 >    }
867 >
868 > #ifdef IS_MPI
869 >    sprintf( checkPointMsg,
870 >             "succesfully sent the simulation information to fortran.\n");
871 >    MPIcheckPoint();
872 > #endif // is_mpi
873 >
874 >    // Setup number of neighbors in neighbor list if present
875 >    if (simParams_->haveNeighborListNeighbors()) {
876 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
877 >      setNeighbors(&nlistNeighbors);
878 >    }
879 >  
880 >
881    }
535  
536 }
882  
538 void SimInfo::addProperty(GenericData* prop){
883  
884 <  map<string, GenericData*>::iterator result;
885 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
884 > #ifdef IS_MPI
885 >  void SimInfo::setupFortranParallel() {
886      
887 <    delete (*result).second;
888 <    (*result).second = prop;
889 <      
890 <  }
891 <  else{
887 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
888 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 >    std::vector<int> localToGlobalCutoffGroupIndex;
890 >    SimInfo::MoleculeIterator mi;
891 >    Molecule::AtomIterator ai;
892 >    Molecule::CutoffGroupIterator ci;
893 >    Molecule* mol;
894 >    Atom* atom;
895 >    CutoffGroup* cg;
896 >    mpiSimData parallelData;
897 >    int isError;
898  
899 <    properties[prop->getID()] = prop;
899 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
900  
901 +      //local index(index in DataStorge) of atom is important
902 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
903 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
904 +      }
905 +
906 +      //local index of cutoff group is trivial, it only depends on the order of travesing
907 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
908 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
909 +      }        
910 +        
911 +    }
912 +
913 +    //fill up mpiSimData struct
914 +    parallelData.nMolGlobal = getNGlobalMolecules();
915 +    parallelData.nMolLocal = getNMolecules();
916 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
917 +    parallelData.nAtomsLocal = getNAtoms();
918 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
919 +    parallelData.nGroupsLocal = getNCutoffGroups();
920 +    parallelData.myNode = worldRank;
921 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
922 +
923 +    //pass mpiSimData struct and index arrays to fortran
924 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
925 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
926 +                    &localToGlobalCutoffGroupIndex[0], &isError);
927 +
928 +    if (isError) {
929 +      sprintf(painCave.errMsg,
930 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
931 +      painCave.isFatal = 1;
932 +      simError();
933 +    }
934 +
935 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
936 +    MPIcheckPoint();
937 +
938 +
939    }
940 +
941 + #endif
942 +
943 +  void SimInfo::setupCutoff() {          
944      
945 < }
945 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
946  
947 < GenericData* SimInfo::getProperty(const string& propName){
948 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
947 >    // Check the cutoff policy
948 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
949  
950 +    std::string myPolicy;
951 +    if (forceFieldOptions_.haveCutoffPolicy()){
952 +      myPolicy = forceFieldOptions_.getCutoffPolicy();
953 +    }else if (simParams_->haveCutoffPolicy()) {
954 +      myPolicy = simParams_->getCutoffPolicy();
955 +    }
956  
957 < void SimInfo::getFortranGroupArrays(SimInfo* info,
958 <                                    vector<int>& FglobalGroupMembership,
959 <                                    vector<double>& mfact){
960 <  
961 <  Molecule* myMols;
962 <  Atom** myAtoms;
963 <  int numAtom;
964 <  double mtot;
965 <  int numMol;
966 <  int numCutoffGroups;
967 <  CutoffGroup* myCutoffGroup;
968 <  vector<CutoffGroup*>::iterator iterCutoff;
969 <  Atom* cutoffAtom;
970 <  vector<Atom*>::iterator iterAtom;
971 <  int atomIndex;
972 <  double totalMass;
973 <  
974 <  mfact.clear();
975 <  FglobalGroupMembership.clear();
976 <  
957 >    if (!myPolicy.empty()){
958 >      toUpper(myPolicy);
959 >      if (myPolicy == "MIX") {
960 >        cp = MIX_CUTOFF_POLICY;
961 >      } else {
962 >        if (myPolicy == "MAX") {
963 >          cp = MAX_CUTOFF_POLICY;
964 >        } else {
965 >          if (myPolicy == "TRADITIONAL") {            
966 >            cp = TRADITIONAL_CUTOFF_POLICY;
967 >          } else {
968 >            // throw error        
969 >            sprintf( painCave.errMsg,
970 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
971 >            painCave.isFatal = 1;
972 >            simError();
973 >          }    
974 >        }          
975 >      }
976 >    }          
977 >    notifyFortranCutoffPolicy(&cp);
978  
979 <  // Fix the silly fortran indexing problem
980 < #ifdef IS_MPI
981 <  numAtom = mpiSim->getNAtomsGlobal();
982 < #else
983 <  numAtom = n_atoms;
984 < #endif
985 <  for (int i = 0; i < numAtom; i++)
986 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
987 <  
979 >    // Check the Skin Thickness for neighborlists
980 >    RealType skin;
981 >    if (simParams_->haveSkinThickness()) {
982 >      skin = simParams_->getSkinThickness();
983 >      notifyFortranSkinThickness(&skin);
984 >    }            
985 >        
986 >    // Check if the cutoff was set explicitly:
987 >    if (simParams_->haveCutoffRadius()) {
988 >      rcut_ = simParams_->getCutoffRadius();
989 >      if (simParams_->haveSwitchingRadius()) {
990 >        rsw_  = simParams_->getSwitchingRadius();
991 >      } else {
992 >        if (fInfo_.SIM_uses_Charges |
993 >            fInfo_.SIM_uses_Dipoles |
994 >            fInfo_.SIM_uses_RF) {
995 >          
996 >          rsw_ = 0.85 * rcut_;
997 >          sprintf(painCave.errMsg,
998 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
999 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1000 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1001 >        painCave.isFatal = 0;
1002 >        simError();
1003 >        } else {
1004 >          rsw_ = rcut_;
1005 >          sprintf(painCave.errMsg,
1006 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1008 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009 >          painCave.isFatal = 0;
1010 >          simError();
1011 >        }
1012 >      }
1013 >      
1014 >      notifyFortranCutoffs(&rcut_, &rsw_);
1015 >      
1016 >    } else {
1017 >      
1018 >      // For electrostatic atoms, we'll assume a large safe value:
1019 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1020 >        sprintf(painCave.errMsg,
1021 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1022 >                "\tOOPSE will use a default value of 15.0 angstroms"
1023 >                "\tfor the cutoffRadius.\n");
1024 >        painCave.isFatal = 0;
1025 >        simError();
1026 >        rcut_ = 15.0;
1027 >      
1028 >        if (simParams_->haveElectrostaticSummationMethod()) {
1029 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1030 >          toUpper(myMethod);
1031 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1032 >            if (simParams_->haveSwitchingRadius()){
1033 >              sprintf(painCave.errMsg,
1034 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1035 >                      "\teven though the electrostaticSummationMethod was\n"
1036 >                      "\tset to %s\n", myMethod.c_str());
1037 >              painCave.isFatal = 1;
1038 >              simError();            
1039 >            }
1040 >          }
1041 >        }
1042 >      
1043 >        if (simParams_->haveSwitchingRadius()){
1044 >          rsw_ = simParams_->getSwitchingRadius();
1045 >        } else {        
1046 >          sprintf(painCave.errMsg,
1047 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1048 >                  "\tOOPSE will use a default value of\n"
1049 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1050 >          painCave.isFatal = 0;
1051 >          simError();
1052 >          rsw_ = 0.85 * rcut_;
1053 >        }
1054 >        notifyFortranCutoffs(&rcut_, &rsw_);
1055 >      } else {
1056 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1057 >        // We'll punt and let fortran figure out the cutoffs later.
1058 >        
1059 >        notifyFortranYouAreOnYourOwn();
1060  
1061 <  myMols = info->molecules;
1062 <  numMol = info->n_mol;
1063 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1061 >      }
1062 >    }
1063 >  }
1064  
1065 <      totalMass = myCutoffGroup->getMass();
1065 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1066 >    
1067 >    int errorOut;
1068 >    int esm =  NONE;
1069 >    int sm = UNDAMPED;
1070 >    RealType alphaVal;
1071 >    RealType dielectric;
1072 >    
1073 >    errorOut = isError;
1074 >
1075 >    if (simParams_->haveElectrostaticSummationMethod()) {
1076 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1077 >      toUpper(myMethod);
1078 >      if (myMethod == "NONE") {
1079 >        esm = NONE;
1080 >      } else {
1081 >        if (myMethod == "SWITCHING_FUNCTION") {
1082 >          esm = SWITCHING_FUNCTION;
1083 >        } else {
1084 >          if (myMethod == "SHIFTED_POTENTIAL") {
1085 >            esm = SHIFTED_POTENTIAL;
1086 >          } else {
1087 >            if (myMethod == "SHIFTED_FORCE") {            
1088 >              esm = SHIFTED_FORCE;
1089 >            } else {
1090 >              if (myMethod == "REACTION_FIELD") {
1091 >                esm = REACTION_FIELD;
1092 >                dielectric = simParams_->getDielectric();
1093 >                if (!simParams_->haveDielectric()) {
1094 >                  // throw warning
1095 >                  sprintf( painCave.errMsg,
1096 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1097 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1098 >                  painCave.isFatal = 0;
1099 >                  simError();
1100 >                }
1101 >              } else {
1102 >                // throw error        
1103 >                sprintf( painCave.errMsg,
1104 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1105 >                         "\t(Input file specified %s .)\n"
1106 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1107 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1108 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1109 >                painCave.isFatal = 1;
1110 >                simError();
1111 >              }    
1112 >            }          
1113 >          }
1114 >        }
1115 >      }
1116 >    }
1117 >    
1118 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1119 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1120 >      toUpper(myScreen);
1121 >      if (myScreen == "UNDAMPED") {
1122 >        sm = UNDAMPED;
1123 >      } else {
1124 >        if (myScreen == "DAMPED") {
1125 >          sm = DAMPED;
1126 >          if (!simParams_->haveDampingAlpha()) {
1127 >            // first set a cutoff dependent alpha value
1128 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1129 >            alphaVal = 0.5125 - rcut_* 0.025;
1130 >            // for values rcut > 20.5, alpha is zero
1131 >            if (alphaVal < 0) alphaVal = 0;
1132 >
1133 >            // throw warning
1134 >            sprintf( painCave.errMsg,
1135 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1136 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1137 >            painCave.isFatal = 0;
1138 >            simError();
1139 >          } else {
1140 >            alphaVal = simParams_->getDampingAlpha();
1141 >          }
1142 >          
1143 >        } else {
1144 >          // throw error        
1145 >          sprintf( painCave.errMsg,
1146 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1147 >                   "\t(Input file specified %s .)\n"
1148 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1149 >                   "or \"damped\".\n", myScreen.c_str() );
1150 >          painCave.isFatal = 1;
1151 >          simError();
1152 >        }
1153 >      }
1154 >    }
1155 >    
1156 >    // let's pass some summation method variables to fortran
1157 >    setElectrostaticSummationMethod( &esm );
1158 >    setFortranElectrostaticMethod( &esm );
1159 >    setScreeningMethod( &sm );
1160 >    setDampingAlpha( &alphaVal );
1161 >    setReactionFieldDielectric( &dielectric );
1162 >    initFortranFF( &errorOut );
1163 >  }
1164 >
1165 >  void SimInfo::setupSwitchingFunction() {    
1166 >    int ft = CUBIC;
1167 >
1168 >    if (simParams_->haveSwitchingFunctionType()) {
1169 >      std::string funcType = simParams_->getSwitchingFunctionType();
1170 >      toUpper(funcType);
1171 >      if (funcType == "CUBIC") {
1172 >        ft = CUBIC;
1173 >      } else {
1174 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1175 >          ft = FIFTH_ORDER_POLY;
1176 >        } else {
1177 >          // throw error        
1178 >          sprintf( painCave.errMsg,
1179 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1180 >          painCave.isFatal = 1;
1181 >          simError();
1182 >        }          
1183 >      }
1184 >    }
1185 >
1186 >    // send switching function notification to switcheroo
1187 >    setFunctionType(&ft);
1188 >
1189 >  }
1190 >
1191 >  void SimInfo::setupAccumulateBoxDipole() {    
1192 >
1193 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1194 >    if ( simParams_->haveAccumulateBoxDipole() )
1195 >      if ( simParams_->getAccumulateBoxDipole() ) {
1196 >        setAccumulateBoxDipole();
1197 >        calcBoxDipole_ = true;
1198 >      }
1199 >
1200 >  }
1201 >
1202 >  void SimInfo::addProperty(GenericData* genData) {
1203 >    properties_.addProperty(genData);  
1204 >  }
1205 >
1206 >  void SimInfo::removeProperty(const std::string& propName) {
1207 >    properties_.removeProperty(propName);  
1208 >  }
1209 >
1210 >  void SimInfo::clearProperties() {
1211 >    properties_.clearProperties();
1212 >  }
1213 >
1214 >  std::vector<std::string> SimInfo::getPropertyNames() {
1215 >    return properties_.getPropertyNames();  
1216 >  }
1217        
1218 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1219 <          cutoffAtom != NULL;
1220 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1221 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1218 >  std::vector<GenericData*> SimInfo::getProperties() {
1219 >    return properties_.getProperties();
1220 >  }
1221 >
1222 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1223 >    return properties_.getPropertyByName(propName);
1224 >  }
1225 >
1226 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1227 >    if (sman_ == sman) {
1228 >      return;
1229 >    }    
1230 >    delete sman_;
1231 >    sman_ = sman;
1232 >
1233 >    Molecule* mol;
1234 >    RigidBody* rb;
1235 >    Atom* atom;
1236 >    SimInfo::MoleculeIterator mi;
1237 >    Molecule::RigidBodyIterator rbIter;
1238 >    Molecule::AtomIterator atomIter;;
1239 >
1240 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1241 >        
1242 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1243 >        atom->setSnapshotManager(sman_);
1244 >      }
1245 >        
1246 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1247 >        rb->setSnapshotManager(sman_);
1248 >      }
1249 >    }    
1250 >    
1251 >  }
1252 >
1253 >  Vector3d SimInfo::getComVel(){
1254 >    SimInfo::MoleculeIterator i;
1255 >    Molecule* mol;
1256 >
1257 >    Vector3d comVel(0.0);
1258 >    RealType totalMass = 0.0;
1259 >    
1260 >
1261 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1262 >      RealType mass = mol->getMass();
1263 >      totalMass += mass;
1264 >      comVel += mass * mol->getComVel();
1265 >    }  
1266 >
1267 > #ifdef IS_MPI
1268 >    RealType tmpMass = totalMass;
1269 >    Vector3d tmpComVel(comVel);    
1270 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1271 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1272 > #endif
1273 >
1274 >    comVel /= totalMass;
1275 >
1276 >    return comVel;
1277 >  }
1278 >
1279 >  Vector3d SimInfo::getCom(){
1280 >    SimInfo::MoleculeIterator i;
1281 >    Molecule* mol;
1282 >
1283 >    Vector3d com(0.0);
1284 >    RealType totalMass = 0.0;
1285 >    
1286 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1287 >      RealType mass = mol->getMass();
1288 >      totalMass += mass;
1289 >      com += mass * mol->getCom();
1290 >    }  
1291 >
1292 > #ifdef IS_MPI
1293 >    RealType tmpMass = totalMass;
1294 >    Vector3d tmpCom(com);    
1295 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1296 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 > #endif
1298 >
1299 >    com /= totalMass;
1300 >
1301 >    return com;
1302 >
1303 >  }        
1304 >
1305 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1306 >
1307 >    return o;
1308 >  }
1309 >  
1310 >  
1311 >   /*
1312 >   Returns center of mass and center of mass velocity in one function call.
1313 >   */
1314 >  
1315 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1316 >      SimInfo::MoleculeIterator i;
1317 >      Molecule* mol;
1318 >      
1319 >    
1320 >      RealType totalMass = 0.0;
1321 >    
1322 >
1323 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1324 >         RealType mass = mol->getMass();
1325 >         totalMass += mass;
1326 >         com += mass * mol->getCom();
1327 >         comVel += mass * mol->getComVel();          
1328        }  
1329 <    }
1329 >      
1330 > #ifdef IS_MPI
1331 >      RealType tmpMass = totalMass;
1332 >      Vector3d tmpCom(com);  
1333 >      Vector3d tmpComVel(comVel);
1334 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1335 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1336 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1337 > #endif
1338 >      
1339 >      com /= totalMass;
1340 >      comVel /= totalMass;
1341 >   }        
1342 >  
1343 >   /*
1344 >   Return intertia tensor for entire system and angular momentum Vector.
1345 >
1346 >
1347 >       [  Ixx -Ixy  -Ixz ]
1348 >  J =| -Iyx  Iyy  -Iyz |
1349 >       [ -Izx -Iyz   Izz ]
1350 >    */
1351 >
1352 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1353 >      
1354 >
1355 >      RealType xx = 0.0;
1356 >      RealType yy = 0.0;
1357 >      RealType zz = 0.0;
1358 >      RealType xy = 0.0;
1359 >      RealType xz = 0.0;
1360 >      RealType yz = 0.0;
1361 >      Vector3d com(0.0);
1362 >      Vector3d comVel(0.0);
1363 >      
1364 >      getComAll(com, comVel);
1365 >      
1366 >      SimInfo::MoleculeIterator i;
1367 >      Molecule* mol;
1368 >      
1369 >      Vector3d thisq(0.0);
1370 >      Vector3d thisv(0.0);
1371 >
1372 >      RealType thisMass = 0.0;
1373 >    
1374 >      
1375 >      
1376 >  
1377 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1378 >        
1379 >         thisq = mol->getCom()-com;
1380 >         thisv = mol->getComVel()-comVel;
1381 >         thisMass = mol->getMass();
1382 >         // Compute moment of intertia coefficients.
1383 >         xx += thisq[0]*thisq[0]*thisMass;
1384 >         yy += thisq[1]*thisq[1]*thisMass;
1385 >         zz += thisq[2]*thisq[2]*thisMass;
1386 >        
1387 >         // compute products of intertia
1388 >         xy += thisq[0]*thisq[1]*thisMass;
1389 >         xz += thisq[0]*thisq[2]*thisMass;
1390 >         yz += thisq[1]*thisq[2]*thisMass;
1391 >            
1392 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1393 >            
1394 >      }  
1395 >      
1396 >      
1397 >      inertiaTensor(0,0) = yy + zz;
1398 >      inertiaTensor(0,1) = -xy;
1399 >      inertiaTensor(0,2) = -xz;
1400 >      inertiaTensor(1,0) = -xy;
1401 >      inertiaTensor(1,1) = xx + zz;
1402 >      inertiaTensor(1,2) = -yz;
1403 >      inertiaTensor(2,0) = -xz;
1404 >      inertiaTensor(2,1) = -yz;
1405 >      inertiaTensor(2,2) = xx + yy;
1406 >      
1407 > #ifdef IS_MPI
1408 >      Mat3x3d tmpI(inertiaTensor);
1409 >      Vector3d tmpAngMom;
1410 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1411 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1412 > #endif
1413 >              
1414 >      return;
1415 >   }
1416 >
1417 >   //Returns the angular momentum of the system
1418 >   Vector3d SimInfo::getAngularMomentum(){
1419 >      
1420 >      Vector3d com(0.0);
1421 >      Vector3d comVel(0.0);
1422 >      Vector3d angularMomentum(0.0);
1423 >      
1424 >      getComAll(com,comVel);
1425 >      
1426 >      SimInfo::MoleculeIterator i;
1427 >      Molecule* mol;
1428 >      
1429 >      Vector3d thisr(0.0);
1430 >      Vector3d thisp(0.0);
1431 >      
1432 >      RealType thisMass;
1433 >      
1434 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1435 >        thisMass = mol->getMass();
1436 >        thisr = mol->getCom()-com;
1437 >        thisp = (mol->getComVel()-comVel)*thisMass;
1438 >        
1439 >        angularMomentum += cross( thisr, thisp );
1440 >        
1441 >      }  
1442 >      
1443 > #ifdef IS_MPI
1444 >      Vector3d tmpAngMom;
1445 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1446 > #endif
1447 >      
1448 >      return angularMomentum;
1449 >   }
1450 >  
1451 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1452 >    return IOIndexToIntegrableObject.at(index);
1453    }
1454 +  
1455 +  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1456 +    IOIndexToIntegrableObject= v;
1457 +  }
1458  
1459 < }
1459 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1460 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1461 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1462 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1463 >  */
1464 >  void SimInfo::getGyrationalVolume(RealType &volume){
1465 >    Mat3x3d intTensor;
1466 >    RealType det;
1467 >    Vector3d dummyAngMom;
1468 >    RealType sysconstants;
1469 >    RealType geomCnst;
1470 >
1471 >    geomCnst = 3.0/2.0;
1472 >    /* Get the inertial tensor and angular momentum for free*/
1473 >    getInertiaTensor(intTensor,dummyAngMom);
1474 >    
1475 >    det = intTensor.determinant();
1476 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1477 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1478 >    return;
1479 >  }
1480 >
1481 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1482 >    Mat3x3d intTensor;
1483 >    Vector3d dummyAngMom;
1484 >    RealType sysconstants;
1485 >    RealType geomCnst;
1486 >
1487 >    geomCnst = 3.0/2.0;
1488 >    /* Get the inertial tensor and angular momentum for free*/
1489 >    getInertiaTensor(intTensor,dummyAngMom);
1490 >    
1491 >    detI = intTensor.determinant();
1492 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1493 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1494 >    return;
1495 >  }
1496 > /*
1497 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1498 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1499 >      sdByGlobalIndex_ = v;
1500 >    }
1501 >
1502 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1503 >      //assert(index < nAtoms_ + nRigidBodies_);
1504 >      return sdByGlobalIndex_.at(index);
1505 >    }  
1506 > */  
1507 > }//end namespace oopse
1508 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines