ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing branches/development/src/brains/SimInfo.cpp (file contents):
Revision 1505 by gezelter, Sun Oct 3 22:18:59 2010 UTC vs.
Revision 1535 by gezelter, Fri Dec 31 18:31:56 2010 UTC

# Line 54 | Line 54
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56   #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 #include "UseTheForce/doForces_interface.h"
57   #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 #include "UseTheForce/DarkSide/switcheroo_interface.h"
58   #include "utils/MemoryUtils.hpp"
59   #include "utils/simError.h"
60   #include "selection/SelectionManager.hpp"
61   #include "io/ForceFieldOptions.hpp"
62   #include "UseTheForce/ForceField.hpp"
63 + #include "nonbonded/SwitchingFunction.hpp"
64  
68
65   #ifdef IS_MPI
66   #include "UseTheForce/mpiComponentPlan.h"
67   #include "UseTheForce/DarkSide/simParallel_interface.h"
68   #endif
69  
70 + using namespace std;
71   namespace OpenMD {
75  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
76    std::map<int, std::set<int> >::iterator i = container.find(index);
77    std::set<int> result;
78    if (i != container.end()) {
79        result = i->second;
80    }
81
82    return result;
83  }
72    
73    SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
74      forceField_(ff), simParams_(simParams),
# Line 90 | Line 78 | namespace OpenMD {
78      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
79      nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
80      nConstraints_(0), sman_(NULL), fortranInitialized_(false),
81 <    calcBoxDipole_(false), useAtomicVirial_(true) {
82 <
83 <
84 <      MoleculeStamp* molStamp;
85 <      int nMolWithSameStamp;
86 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
88 <      CutoffGroupStamp* cgStamp;    
89 <      RigidBodyStamp* rbStamp;
90 <      int nRigidAtoms = 0;
91 <
92 <      std::vector<Component*> components = simParams->getComponents();
81 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
82 >    
83 >    MoleculeStamp* molStamp;
84 >    int nMolWithSameStamp;
85 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
86 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
87 >    CutoffGroupStamp* cgStamp;    
88 >    RigidBodyStamp* rbStamp;
89 >    int nRigidAtoms = 0;
90 >    
91 >    vector<Component*> components = simParams->getComponents();
92 >    
93 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
94 >      molStamp = (*i)->getMoleculeStamp();
95 >      nMolWithSameStamp = (*i)->getNMol();
96        
97 <      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
98 <        molStamp = (*i)->getMoleculeStamp();
99 <        nMolWithSameStamp = (*i)->getNMol();
100 <        
101 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
102 <
103 <        //calculate atoms in molecules
104 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
105 <
106 <        //calculate atoms in cutoff groups
107 <        int nAtomsInGroups = 0;
108 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
118 <        
119 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
120 <          cgStamp = molStamp->getCutoffGroupStamp(j);
121 <          nAtomsInGroups += cgStamp->getNMembers();
122 <        }
123 <
124 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
125 <
126 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
127 <
128 <        //calculate atoms in rigid bodies
129 <        int nAtomsInRigidBodies = 0;
130 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
131 <        
132 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
133 <          rbStamp = molStamp->getRigidBodyStamp(j);
134 <          nAtomsInRigidBodies += rbStamp->getNMembers();
135 <        }
136 <
137 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
138 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
139 <        
97 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
98 >      
99 >      //calculate atoms in molecules
100 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
101 >      
102 >      //calculate atoms in cutoff groups
103 >      int nAtomsInGroups = 0;
104 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 >      
106 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 >        cgStamp = molStamp->getCutoffGroupStamp(j);
108 >        nAtomsInGroups += cgStamp->getNMembers();
109        }
110 <
111 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
112 <      //group therefore the total number of cutoff groups in the system is
113 <      //equal to the total number of atoms minus number of atoms belong to
114 <      //cutoff group defined in meta-data file plus the number of cutoff
115 <      //groups defined in meta-data file
116 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
117 <
118 <      //every free atom (atom does not belong to rigid bodies) is an
119 <      //integrable object therefore the total number of integrable objects
120 <      //in the system is equal to the total number of atoms minus number of
121 <      //atoms belong to rigid body defined in meta-data file plus the number
122 <      //of rigid bodies defined in meta-data file
123 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
124 <                                                + nGlobalRigidBodies_;
125 <  
126 <      nGlobalMols_ = molStampIds_.size();
127 <      molToProcMap_.resize(nGlobalMols_);
128 <    }
129 <
110 >      
111 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 >      
113 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
114 >      
115 >      //calculate atoms in rigid bodies
116 >      int nAtomsInRigidBodies = 0;
117 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
118 >      
119 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
120 >        rbStamp = molStamp->getRigidBodyStamp(j);
121 >        nAtomsInRigidBodies += rbStamp->getNMembers();
122 >      }
123 >      
124 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
125 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
126 >      
127 >    }
128 >    
129 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
130 >    //group therefore the total number of cutoff groups in the system is
131 >    //equal to the total number of atoms minus number of atoms belong to
132 >    //cutoff group defined in meta-data file plus the number of cutoff
133 >    //groups defined in meta-data file
134 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
135 >    
136 >    //every free atom (atom does not belong to rigid bodies) is an
137 >    //integrable object therefore the total number of integrable objects
138 >    //in the system is equal to the total number of atoms minus number of
139 >    //atoms belong to rigid body defined in meta-data file plus the number
140 >    //of rigid bodies defined in meta-data file
141 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
142 >      + nGlobalRigidBodies_;
143 >    
144 >    nGlobalMols_ = molStampIds_.size();
145 >    molToProcMap_.resize(nGlobalMols_);
146 >  }
147 >  
148    SimInfo::~SimInfo() {
149 <    std::map<int, Molecule*>::iterator i;
149 >    map<int, Molecule*>::iterator i;
150      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
151        delete i->second;
152      }
# Line 170 | Line 157 | namespace OpenMD {
157      delete forceField_;
158    }
159  
173  int SimInfo::getNGlobalConstraints() {
174    int nGlobalConstraints;
175 #ifdef IS_MPI
176    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
177                  MPI_COMM_WORLD);    
178 #else
179    nGlobalConstraints =  nConstraints_;
180 #endif
181    return nGlobalConstraints;
182  }
160  
161    bool SimInfo::addMolecule(Molecule* mol) {
162      MoleculeIterator i;
163 <
163 >    
164      i = molecules_.find(mol->getGlobalIndex());
165      if (i == molecules_.end() ) {
166 <
167 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
168 <        
166 >      
167 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
168 >      
169        nAtoms_ += mol->getNAtoms();
170        nBonds_ += mol->getNBonds();
171        nBends_ += mol->getNBends();
# Line 198 | Line 175 | namespace OpenMD {
175        nIntegrableObjects_ += mol->getNIntegrableObjects();
176        nCutoffGroups_ += mol->getNCutoffGroups();
177        nConstraints_ += mol->getNConstraintPairs();
178 <
178 >      
179        addInteractionPairs(mol);
180 <  
180 >      
181        return true;
182      } else {
183        return false;
184      }
185    }
186 <
186 >  
187    bool SimInfo::removeMolecule(Molecule* mol) {
188      MoleculeIterator i;
189      i = molecules_.find(mol->getGlobalIndex());
# Line 234 | Line 211 | namespace OpenMD {
211      } else {
212        return false;
213      }
237
238
214    }    
215  
216          
# Line 253 | Line 228 | namespace OpenMD {
228    void SimInfo::calcNdf() {
229      int ndf_local;
230      MoleculeIterator i;
231 <    std::vector<StuntDouble*>::iterator j;
231 >    vector<StuntDouble*>::iterator j;
232      Molecule* mol;
233      StuntDouble* integrableObject;
234  
# Line 304 | Line 279 | namespace OpenMD {
279      int ndfRaw_local;
280  
281      MoleculeIterator i;
282 <    std::vector<StuntDouble*>::iterator j;
282 >    vector<StuntDouble*>::iterator j;
283      Molecule* mol;
284      StuntDouble* integrableObject;
285  
# Line 353 | Line 328 | namespace OpenMD {
328  
329    void SimInfo::addInteractionPairs(Molecule* mol) {
330      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
331 <    std::vector<Bond*>::iterator bondIter;
332 <    std::vector<Bend*>::iterator bendIter;
333 <    std::vector<Torsion*>::iterator torsionIter;
334 <    std::vector<Inversion*>::iterator inversionIter;
331 >    vector<Bond*>::iterator bondIter;
332 >    vector<Bend*>::iterator bendIter;
333 >    vector<Torsion*>::iterator torsionIter;
334 >    vector<Inversion*>::iterator inversionIter;
335      Bond* bond;
336      Bend* bend;
337      Torsion* torsion;
# Line 374 | Line 349 | namespace OpenMD {
349      // always be excluded.  These are done at the bottom of this
350      // function.
351  
352 <    std::map<int, std::set<int> > atomGroups;
352 >    map<int, set<int> > atomGroups;
353      Molecule::RigidBodyIterator rbIter;
354      RigidBody* rb;
355      Molecule::IntegrableObjectIterator ii;
# Line 386 | Line 361 | namespace OpenMD {
361        
362        if (integrableObject->isRigidBody()) {
363          rb = static_cast<RigidBody*>(integrableObject);
364 <        std::vector<Atom*> atoms = rb->getAtoms();
365 <        std::set<int> rigidAtoms;
364 >        vector<Atom*> atoms = rb->getAtoms();
365 >        set<int> rigidAtoms;
366          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
367            rigidAtoms.insert(atoms[i]->getGlobalIndex());
368          }
369          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
370 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
370 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
371          }      
372        } else {
373 <        std::set<int> oneAtomSet;
373 >        set<int> oneAtomSet;
374          oneAtomSet.insert(integrableObject->getGlobalIndex());
375 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
375 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
376        }
377      }  
378            
# Line 500 | Line 475 | namespace OpenMD {
475  
476      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
477           rb = mol->nextRigidBody(rbIter)) {
478 <      std::vector<Atom*> atoms = rb->getAtoms();
478 >      vector<Atom*> atoms = rb->getAtoms();
479        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
480          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
481            a = atoms[i]->getGlobalIndex();
# Line 514 | Line 489 | namespace OpenMD {
489  
490    void SimInfo::removeInteractionPairs(Molecule* mol) {
491      ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
492 <    std::vector<Bond*>::iterator bondIter;
493 <    std::vector<Bend*>::iterator bendIter;
494 <    std::vector<Torsion*>::iterator torsionIter;
495 <    std::vector<Inversion*>::iterator inversionIter;
492 >    vector<Bond*>::iterator bondIter;
493 >    vector<Bend*>::iterator bendIter;
494 >    vector<Torsion*>::iterator torsionIter;
495 >    vector<Inversion*>::iterator inversionIter;
496      Bond* bond;
497      Bend* bend;
498      Torsion* torsion;
# Line 527 | Line 502 | namespace OpenMD {
502      int c;
503      int d;
504  
505 <    std::map<int, std::set<int> > atomGroups;
505 >    map<int, set<int> > atomGroups;
506      Molecule::RigidBodyIterator rbIter;
507      RigidBody* rb;
508      Molecule::IntegrableObjectIterator ii;
# Line 539 | Line 514 | namespace OpenMD {
514        
515        if (integrableObject->isRigidBody()) {
516          rb = static_cast<RigidBody*>(integrableObject);
517 <        std::vector<Atom*> atoms = rb->getAtoms();
518 <        std::set<int> rigidAtoms;
517 >        vector<Atom*> atoms = rb->getAtoms();
518 >        set<int> rigidAtoms;
519          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
520            rigidAtoms.insert(atoms[i]->getGlobalIndex());
521          }
522          for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
523 <          atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
523 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
524          }      
525        } else {
526 <        std::set<int> oneAtomSet;
526 >        set<int> oneAtomSet;
527          oneAtomSet.insert(integrableObject->getGlobalIndex());
528 <        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
528 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
529        }
530      }  
531  
# Line 653 | Line 628 | namespace OpenMD {
628  
629      for (rb = mol->beginRigidBody(rbIter); rb != NULL;
630           rb = mol->nextRigidBody(rbIter)) {
631 <      std::vector<Atom*> atoms = rb->getAtoms();
631 >      vector<Atom*> atoms = rb->getAtoms();
632        for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
633          for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
634            a = atoms[i]->getGlobalIndex();
# Line 676 | Line 651 | namespace OpenMD {
651      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
652    }
653  
679  void SimInfo::update() {
654  
655 <    setupSimType();
656 <
657 < #ifdef IS_MPI
658 <    setupFortranParallel();
659 < #endif
660 <
661 <    setupFortranSim();
662 <
663 <    //setup fortran force field
690 <    /** @deprecate */    
691 <    int isError = 0;
692 <    
693 <    setupCutoff();
694 <    
695 <    setupElectrostaticSummationMethod( isError );
696 <    setupSwitchingFunction();
697 <    setupAccumulateBoxDipole();
698 <
699 <    if(isError){
700 <      sprintf( painCave.errMsg,
701 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
702 <      painCave.isFatal = 1;
703 <      simError();
704 <    }
705 <
655 >  /**
656 >   * update
657 >   *
658 >   *  Performs the global checks and variable settings after the
659 >   *  objects have been created.
660 >   *
661 >   */
662 >  void SimInfo::update() {  
663 >    setupSimVariables();
664      calcNdf();
665      calcNdfRaw();
666      calcNdfTrans();
709
710    fortranInitialized_ = true;
667    }
668 <
669 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
668 >  
669 >  /**
670 >   * getSimulatedAtomTypes
671 >   *
672 >   * Returns an STL set of AtomType* that are actually present in this
673 >   * simulation.  Must query all processors to assemble this information.
674 >   *
675 >   */
676 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
677      SimInfo::MoleculeIterator mi;
678      Molecule* mol;
679      Molecule::AtomIterator ai;
680      Atom* atom;
681 <    std::set<AtomType*> atomTypes;
682 <
683 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
721 <
681 >    set<AtomType*> atomTypes;
682 >    
683 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
684        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
685          atomTypes.insert(atom->getAtomType());
686 <      }
687 <        
726 <    }
686 >      }      
687 >    }    
688  
689 <    return atomTypes;        
729 <  }
689 > #ifdef IS_MPI
690  
691 <  void SimInfo::setupSimType() {
692 <    std::set<AtomType*>::iterator i;
733 <    std::set<AtomType*> atomTypes;
734 <    atomTypes = getUniqueAtomTypes();
735 <    
736 <    int useLennardJones = 0;
737 <    int useElectrostatic = 0;
738 <    int useEAM = 0;
739 <    int useSC = 0;
740 <    int useCharge = 0;
741 <    int useDirectional = 0;
742 <    int useDipole = 0;
743 <    int useGayBerne = 0;
744 <    int useSticky = 0;
745 <    int useStickyPower = 0;
746 <    int useShape = 0;
747 <    int useFLARB = 0; //it is not in AtomType yet
748 <    int useDirectionalAtom = 0;    
749 <    int useElectrostatics = 0;
750 <    //usePBC and useRF are from simParams
751 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
752 <    int useRF;
753 <    int useSF;
754 <    int useSP;
755 <    int useBoxDipole;
691 >    // loop over the found atom types on this processor, and add their
692 >    // numerical idents to a vector:
693  
694 <    std::string myMethod;
694 >    vector<int> foundTypes;
695 >    set<AtomType*>::iterator i;
696 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
697 >      foundTypes.push_back( (*i)->getIdent() );
698  
699 <    // set the useRF logical
700 <    useRF = 0;
761 <    useSF = 0;
762 <    useSP = 0;
763 <    useBoxDipole = 0;
699 >    // count_local holds the number of found types on this processor
700 >    int count_local = foundTypes.size();
701  
702 <    if (simParams_->haveElectrostaticSummationMethod()) {
703 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
704 <      toUpper(myMethod);
705 <      if (myMethod == "REACTION_FIELD"){
706 <        useRF = 1;
707 <      } else if (myMethod == "SHIFTED_FORCE"){
708 <        useSF = 1;
709 <      } else if (myMethod == "SHIFTED_POTENTIAL"){
710 <        useSP = 1;
711 <      }
712 <    }
702 >    // count holds the total number of found types on all processors
703 >    // (some will be redundant with the ones found locally):
704 >    int count;
705 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
706 >
707 >    // create a vector to hold the globally found types, and resize it:
708 >    vector<int> ftGlobal;
709 >    ftGlobal.resize(count);
710 >    vector<int> counts;
711 >
712 >    int nproc = MPI::COMM_WORLD.Get_size();
713 >    counts.resize(nproc);
714 >    vector<int> disps;
715 >    disps.resize(nproc);
716 >
717 >    // now spray out the foundTypes to all the other processors:
718      
719 <    if (simParams_->haveAccumulateBoxDipole())
720 <      if (simParams_->getAccumulateBoxDipole())
779 <        useBoxDipole = 1;
719 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
720 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
721  
722 +    // foundIdents is a stl set, so inserting an already found ident
723 +    // will have no effect.
724 +    set<int> foundIdents;
725 +    vector<int>::iterator j;
726 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
727 +      foundIdents.insert((*j));
728 +    
729 +    // now iterate over the foundIdents and get the actual atom types
730 +    // that correspond to these:
731 +    set<int>::iterator it;
732 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
733 +      atomTypes.insert( forceField_->getAtomType((*it)) );
734 +
735 + #endif
736 +    
737 +    return atomTypes;        
738 +  }
739 +
740 +  void SimInfo::setupSimVariables() {
741      useAtomicVirial_ = simParams_->getUseAtomicVirial();
742 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
743 +    calcBoxDipole_ = false;
744 +    if ( simParams_->haveAccumulateBoxDipole() )
745 +      if ( simParams_->getAccumulateBoxDipole() ) {
746 +        calcBoxDipole_ = true;      
747 +      }
748  
749 +    set<AtomType*>::iterator i;
750 +    set<AtomType*> atomTypes;
751 +    atomTypes = getSimulatedAtomTypes();    
752 +    int usesElectrostatic = 0;
753 +    int usesMetallic = 0;
754 +    int usesDirectional = 0;
755      //loop over all of the atom types
756      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
757 <      useLennardJones |= (*i)->isLennardJones();
758 <      useElectrostatic |= (*i)->isElectrostatic();
759 <      useEAM |= (*i)->isEAM();
788 <      useSC |= (*i)->isSC();
789 <      useCharge |= (*i)->isCharge();
790 <      useDirectional |= (*i)->isDirectional();
791 <      useDipole |= (*i)->isDipole();
792 <      useGayBerne |= (*i)->isGayBerne();
793 <      useSticky |= (*i)->isSticky();
794 <      useStickyPower |= (*i)->isStickyPower();
795 <      useShape |= (*i)->isShape();
757 >      usesElectrostatic |= (*i)->isElectrostatic();
758 >      usesMetallic |= (*i)->isMetal();
759 >      usesDirectional |= (*i)->isDirectional();
760      }
761  
798    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
799      useDirectionalAtom = 1;
800    }
801
802    if (useCharge || useDipole) {
803      useElectrostatics = 1;
804    }
805
762   #ifdef IS_MPI    
763      int temp;
764 <
765 <    temp = usePBC;
810 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
811 <
812 <    temp = useDirectionalAtom;
813 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
814 <
815 <    temp = useLennardJones;
816 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
764 >    temp = usesDirectional;
765 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
766  
767 <    temp = useElectrostatics;
768 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767 >    temp = usesMetallic;
768 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
769  
770 <    temp = useCharge;
771 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
823 <
824 <    temp = useDipole;
825 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 <
827 <    temp = useSticky;
828 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
829 <
830 <    temp = useStickyPower;
831 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
832 <    
833 <    temp = useGayBerne;
834 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
835 <
836 <    temp = useEAM;
837 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
838 <
839 <    temp = useSC;
840 <    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
841 <    
842 <    temp = useShape;
843 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
844 <
845 <    temp = useFLARB;
846 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
847 <
848 <    temp = useRF;
849 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
850 <
851 <    temp = useSF;
852 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
853 <
854 <    temp = useSP;
855 <    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
856 <
857 <    temp = useBoxDipole;
858 <    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
859 <
860 <    temp = useAtomicVirial_;
861 <    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
862 <
770 >    temp = usesElectrostatic;
771 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772   #endif
773 <    fInfo_.SIM_uses_PBC = usePBC;    
774 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
775 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
776 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
777 <    fInfo_.SIM_uses_Charges = useCharge;
778 <    fInfo_.SIM_uses_Dipoles = useDipole;
870 <    fInfo_.SIM_uses_Sticky = useSticky;
871 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
872 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
873 <    fInfo_.SIM_uses_EAM = useEAM;
874 <    fInfo_.SIM_uses_SC = useSC;
875 <    fInfo_.SIM_uses_Shapes = useShape;
876 <    fInfo_.SIM_uses_FLARB = useFLARB;
877 <    fInfo_.SIM_uses_RF = useRF;
878 <    fInfo_.SIM_uses_SF = useSF;
879 <    fInfo_.SIM_uses_SP = useSP;
880 <    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
881 <    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
773 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
774 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
775 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
776 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
777 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
779    }
780  
781 <  void SimInfo::setupFortranSim() {
781 >  void SimInfo::setupFortran() {
782      int isError;
783      int nExclude, nOneTwo, nOneThree, nOneFour;
784 <    std::vector<int> fortranGlobalGroupMembership;
784 >    vector<int> fortranGlobalGroupMembership;
785      
786      isError = 0;
787  
# Line 894 | Line 791 | namespace OpenMD {
791      }
792  
793      //calculate mass ratio of cutoff group
794 <    std::vector<RealType> mfact;
794 >    vector<RealType> mfact;
795      SimInfo::MoleculeIterator mi;
796      Molecule* mol;
797      Molecule::CutoffGroupIterator ci;
# Line 920 | Line 817 | namespace OpenMD {
817        }      
818      }
819  
820 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
821 <    std::vector<int> identArray;
820 >    //fill ident array of local atoms (it is actually ident of
821 >    //AtomType, it is so confusing !!!)
822 >    vector<int> identArray;
823  
824      //to avoid memory reallocation, reserve enough space identArray
825      identArray.reserve(getNAtoms());
# Line 934 | Line 832 | namespace OpenMD {
832  
833      //fill molMembershipArray
834      //molMembershipArray is filled by SimCreator    
835 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
835 >    vector<int> molMembershipArray(nGlobalAtoms_);
836      for (int i = 0; i < nGlobalAtoms_; i++) {
837        molMembershipArray[i] = globalMolMembership_[i] + 1;
838      }
# Line 980 | Line 878 | namespace OpenMD {
878        setNeighbors(&nlistNeighbors);
879      }
880    
983
984  }
985
986
987  void SimInfo::setupFortranParallel() {
881   #ifdef IS_MPI    
882 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
883 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
884 <    std::vector<int> localToGlobalCutoffGroupIndex;
885 <    SimInfo::MoleculeIterator mi;
993 <    Molecule::AtomIterator ai;
994 <    Molecule::CutoffGroupIterator ci;
995 <    Molecule* mol;
996 <    Atom* atom;
997 <    CutoffGroup* cg;
882 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
883 >    //localToGlobalGroupIndex
884 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
885 >    vector<int> localToGlobalCutoffGroupIndex;
886      mpiSimData parallelData;
999    int isError;
887  
888      for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
889  
# Line 1036 | Line 923 | namespace OpenMD {
923  
924      sprintf(checkPointMsg, " mpiRefresh successful.\n");
925      errorCheckPoint();
1039
926   #endif
927 <  }
1042 <
1043 <  void SimInfo::setupCutoff() {          
1044 <    
1045 <    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
1046 <
1047 <    // Check the cutoff policy
1048 <    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
1049 <
1050 <    // Set LJ shifting bools to false
1051 <    ljsp_ = 0;
1052 <    ljsf_ = 0;
1053 <
1054 <    std::string myPolicy;
1055 <    if (forceFieldOptions_.haveCutoffPolicy()){
1056 <      myPolicy = forceFieldOptions_.getCutoffPolicy();
1057 <    }else if (simParams_->haveCutoffPolicy()) {
1058 <      myPolicy = simParams_->getCutoffPolicy();
1059 <    }
1060 <
1061 <    if (!myPolicy.empty()){
1062 <      toUpper(myPolicy);
1063 <      if (myPolicy == "MIX") {
1064 <        cp = MIX_CUTOFF_POLICY;
1065 <      } else {
1066 <        if (myPolicy == "MAX") {
1067 <          cp = MAX_CUTOFF_POLICY;
1068 <        } else {
1069 <          if (myPolicy == "TRADITIONAL") {            
1070 <            cp = TRADITIONAL_CUTOFF_POLICY;
1071 <          } else {
1072 <            // throw error        
1073 <            sprintf( painCave.errMsg,
1074 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
1075 <            painCave.isFatal = 1;
1076 <            simError();
1077 <          }    
1078 <        }          
1079 <      }
1080 <    }          
1081 <    notifyFortranCutoffPolicy(&cp);
1082 <
1083 <    // Check the Skin Thickness for neighborlists
1084 <    RealType skin;
1085 <    if (simParams_->haveSkinThickness()) {
1086 <      skin = simParams_->getSkinThickness();
1087 <      notifyFortranSkinThickness(&skin);
1088 <    }            
1089 <        
1090 <    // Check if the cutoff was set explicitly:
1091 <    if (simParams_->haveCutoffRadius()) {
1092 <      rcut_ = simParams_->getCutoffRadius();
1093 <      if (simParams_->haveSwitchingRadius()) {
1094 <        rsw_  = simParams_->getSwitchingRadius();
1095 <      } else {
1096 <        if (fInfo_.SIM_uses_Charges |
1097 <            fInfo_.SIM_uses_Dipoles |
1098 <            fInfo_.SIM_uses_RF) {
1099 <          
1100 <          rsw_ = 0.85 * rcut_;
1101 <          sprintf(painCave.errMsg,
1102 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1103 <                  "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
1104 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1105 <        painCave.isFatal = 0;
1106 <        simError();
1107 <        } else {
1108 <          rsw_ = rcut_;
1109 <          sprintf(painCave.errMsg,
1110 <                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1111 <                  "\tOpenMD will use the same value as the cutoffRadius.\n"
1112 <                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1113 <          painCave.isFatal = 0;
1114 <          simError();
1115 <        }
1116 <      }
1117 <
1118 <      if (simParams_->haveElectrostaticSummationMethod()) {
1119 <        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1120 <        toUpper(myMethod);
1121 <        
1122 <        if (myMethod == "SHIFTED_POTENTIAL") {
1123 <          ljsp_ = 1;
1124 <        } else if (myMethod == "SHIFTED_FORCE") {
1125 <          ljsf_ = 1;
1126 <        }
1127 <      }
1128 <
1129 <      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1130 <      
1131 <    } else {
1132 <      
1133 <      // For electrostatic atoms, we'll assume a large safe value:
1134 <      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1135 <        sprintf(painCave.errMsg,
1136 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1137 <                "\tOpenMD will use a default value of 15.0 angstroms"
1138 <                "\tfor the cutoffRadius.\n");
1139 <        painCave.isFatal = 0;
1140 <        simError();
1141 <        rcut_ = 15.0;
1142 <      
1143 <        if (simParams_->haveElectrostaticSummationMethod()) {
1144 <          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1145 <          toUpper(myMethod);
1146 <          
1147 <          // For the time being, we're tethering the LJ shifted behavior to the
1148 <          // electrostaticSummationMethod keyword options
1149 <          if (myMethod == "SHIFTED_POTENTIAL") {
1150 <            ljsp_ = 1;
1151 <          } else if (myMethod == "SHIFTED_FORCE") {
1152 <            ljsf_ = 1;
1153 <          }
1154 <          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1155 <            if (simParams_->haveSwitchingRadius()){
1156 <              sprintf(painCave.errMsg,
1157 <                      "SimInfo Warning: A value was set for the switchingRadius\n"
1158 <                      "\teven though the electrostaticSummationMethod was\n"
1159 <                      "\tset to %s\n", myMethod.c_str());
1160 <              painCave.isFatal = 1;
1161 <              simError();            
1162 <            }
1163 <          }
1164 <        }
1165 <      
1166 <        if (simParams_->haveSwitchingRadius()){
1167 <          rsw_ = simParams_->getSwitchingRadius();
1168 <        } else {        
1169 <          sprintf(painCave.errMsg,
1170 <                  "SimCreator Warning: No value was set for switchingRadius.\n"
1171 <                  "\tOpenMD will use a default value of\n"
1172 <                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1173 <          painCave.isFatal = 0;
1174 <          simError();
1175 <          rsw_ = 0.85 * rcut_;
1176 <        }
1177 <
1178 <        Electrostatic::setElectrostaticCutoffRadius(rcut_, rsw_);
1179 <        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1180 <
1181 <      } else {
1182 <        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1183 <        // We'll punt and let fortran figure out the cutoffs later.
1184 <        
1185 <        notifyFortranYouAreOnYourOwn();
1186 <
1187 <      }
1188 <    }
1189 <  }
1190 <
1191 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1192 <    
1193 <    int errorOut;
1194 <    ElectrostaticSummationMethod esm = NONE;
1195 <    ElectrostaticScreeningMethod sm = UNDAMPED;
1196 <    RealType alphaVal;
1197 <    RealType dielectric;
1198 <    
1199 <    errorOut = isError;
1200 <
1201 <    if (simParams_->haveElectrostaticSummationMethod()) {
1202 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1203 <      toUpper(myMethod);
1204 <      if (myMethod == "NONE") {
1205 <        esm = NONE;
1206 <      } else {
1207 <        if (myMethod == "SWITCHING_FUNCTION") {
1208 <          esm = SWITCHING_FUNCTION;
1209 <        } else {
1210 <          if (myMethod == "SHIFTED_POTENTIAL") {
1211 <            esm = SHIFTED_POTENTIAL;
1212 <          } else {
1213 <            if (myMethod == "SHIFTED_FORCE") {            
1214 <              esm = SHIFTED_FORCE;
1215 <            } else {
1216 <              if (myMethod == "REACTION_FIELD") {
1217 <                esm = REACTION_FIELD;
1218 <                dielectric = simParams_->getDielectric();
1219 <                if (!simParams_->haveDielectric()) {
1220 <                  // throw warning
1221 <                  sprintf( painCave.errMsg,
1222 <                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1223 <                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1224 <                  painCave.isFatal = 0;
1225 <                  simError();
1226 <                }
1227 <              } else {
1228 <                // throw error        
1229 <                sprintf( painCave.errMsg,
1230 <                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1231 <                         "\t(Input file specified %s .)\n"
1232 <                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1233 <                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1234 <                         "\t\"reaction_field\".\n", myMethod.c_str() );
1235 <                painCave.isFatal = 1;
1236 <                simError();
1237 <              }    
1238 <            }          
1239 <          }
1240 <        }
1241 <      }
1242 <    }
1243 <    
1244 <    if (simParams_->haveElectrostaticScreeningMethod()) {
1245 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1246 <      toUpper(myScreen);
1247 <      if (myScreen == "UNDAMPED") {
1248 <        sm = UNDAMPED;
1249 <      } else {
1250 <        if (myScreen == "DAMPED") {
1251 <          sm = DAMPED;
1252 <          if (!simParams_->haveDampingAlpha()) {
1253 <            // first set a cutoff dependent alpha value
1254 <            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1255 <            alphaVal = 0.5125 - rcut_* 0.025;
1256 <            // for values rcut > 20.5, alpha is zero
1257 <            if (alphaVal < 0) alphaVal = 0;
1258 <
1259 <            // throw warning
1260 <            sprintf( painCave.errMsg,
1261 <                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1262 <                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1263 <            painCave.isFatal = 0;
1264 <            simError();
1265 <          } else {
1266 <            alphaVal = simParams_->getDampingAlpha();
1267 <          }
1268 <          
1269 <        } else {
1270 <          // throw error        
1271 <          sprintf( painCave.errMsg,
1272 <                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1273 <                   "\t(Input file specified %s .)\n"
1274 <                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1275 <                   "or \"damped\".\n", myScreen.c_str() );
1276 <          painCave.isFatal = 1;
1277 <          simError();
1278 <        }
1279 <      }
1280 <    }
1281 <    
1282 <
1283 <    Electrostatic::setElectrostaticSummationMethod( esm );
1284 <    Electrostatic::setElectrostaticScreeningMethod( sm );
1285 <    Electrostatic::setDampingAlpha( alphaVal );
1286 <    Electrostatic::setReactionFieldDielectric( dielectric );
1287 <    initFortranFF( &errorOut );
1288 <  }
1289 <
1290 <  void SimInfo::setupSwitchingFunction() {    
1291 <    int ft = CUBIC;
1292 <
1293 <    if (simParams_->haveSwitchingFunctionType()) {
1294 <      std::string funcType = simParams_->getSwitchingFunctionType();
1295 <      toUpper(funcType);
1296 <      if (funcType == "CUBIC") {
1297 <        ft = CUBIC;
1298 <      } else {
1299 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1300 <          ft = FIFTH_ORDER_POLY;
1301 <        } else {
1302 <          // throw error        
1303 <          sprintf( painCave.errMsg,
1304 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1305 <          painCave.isFatal = 1;
1306 <          simError();
1307 <        }          
1308 <      }
1309 <    }
1310 <
1311 <    // send switching function notification to switcheroo
1312 <    setFunctionType(&ft);
1313 <
927 >    fortranInitialized_ = true;
928    }
929  
1316  void SimInfo::setupAccumulateBoxDipole() {    
1317
1318    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1319    if ( simParams_->haveAccumulateBoxDipole() )
1320      if ( simParams_->getAccumulateBoxDipole() ) {
1321        setAccumulateBoxDipole();
1322        calcBoxDipole_ = true;
1323      }
1324
1325  }
1326
930    void SimInfo::addProperty(GenericData* genData) {
931      properties_.addProperty(genData);  
932    }
933  
934 <  void SimInfo::removeProperty(const std::string& propName) {
934 >  void SimInfo::removeProperty(const string& propName) {
935      properties_.removeProperty(propName);  
936    }
937  
# Line 1336 | Line 939 | namespace OpenMD {
939      properties_.clearProperties();
940    }
941  
942 <  std::vector<std::string> SimInfo::getPropertyNames() {
942 >  vector<string> SimInfo::getPropertyNames() {
943      return properties_.getPropertyNames();  
944    }
945        
946 <  std::vector<GenericData*> SimInfo::getProperties() {
946 >  vector<GenericData*> SimInfo::getProperties() {
947      return properties_.getProperties();
948    }
949  
950 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
950 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
951      return properties_.getPropertyByName(propName);
952    }
953  
# Line 1427 | Line 1030 | namespace OpenMD {
1030  
1031    }        
1032  
1033 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1033 >  ostream& operator <<(ostream& o, SimInfo& info) {
1034  
1035      return o;
1036    }
# Line 1577 | Line 1180 | namespace OpenMD {
1180      return IOIndexToIntegrableObject.at(index);
1181    }
1182    
1183 <  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1183 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1184      IOIndexToIntegrableObject= v;
1185    }
1186  
# Line 1619 | Line 1222 | namespace OpenMD {
1222      return;
1223    }
1224   /*
1225 <   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1225 >   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1226        assert( v.size() == nAtoms_ + nRigidBodies_);
1227        sdByGlobalIndex_ = v;
1228      }
# Line 1629 | Line 1232 | namespace OpenMD {
1232        return sdByGlobalIndex_.at(index);
1233      }  
1234   */  
1235 +  int SimInfo::getNGlobalConstraints() {
1236 +    int nGlobalConstraints;
1237 + #ifdef IS_MPI
1238 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1239 +                  MPI_COMM_WORLD);    
1240 + #else
1241 +    nGlobalConstraints =  nConstraints_;
1242 + #endif
1243 +    return nGlobalConstraints;
1244 +  }
1245 +
1246   }//end namespace OpenMD
1247  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines