ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1540 by gezelter, Mon Jan 17 21:34:36 2011 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 > #include "UseTheForce/doForces_interface.h"
59 > #include "utils/MemoryUtils.hpp"
60 > #include "utils/simError.h"
61 > #include "selection/SelectionManager.hpp"
62 > #include "io/ForceFieldOptions.hpp"
63 > #include "UseTheForce/ForceField.hpp"
64 > #include "nonbonded/SwitchingFunction.hpp"
65  
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
66   #ifdef IS_MPI
67 < #include "mpiSimulation.hpp"
68 < #endif
67 > #include "UseTheForce/mpiComponentPlan.h"
68 > #include "UseTheForce/DarkSide/simParallel_interface.h"
69 > #endif
70  
71 < inline double roundMe( double x ){
72 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
73 < }
74 <          
75 < inline double min( double a, double b ){
76 <  return (a < b ) ? a : b;
77 < }
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128 >    }
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 >    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 >    std::cerr << "nG = " << nGroups << "\n";
138  
139 < SimInfo* currentInfo;
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140  
141 < SimInfo::SimInfo(){
141 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151 >    nGlobalMols_ = molStampIds_.size();
152 >    molToProcMap_.resize(nGlobalMols_);
153 >  }
154 >  
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 >      delete i->second;
159 >    }
160 >    molecules_.clear();
161 >      
162 >    delete sman_;
163 >    delete simParams_;
164 >    delete forceField_;
165 >  }
166  
33  n_constraints = 0;
34  nZconstraints = 0;
35  n_oriented = 0;
36  n_dipoles = 0;
37  ndf = 0;
38  ndfRaw = 0;
39  nZconstraints = 0;
40  the_integrator = NULL;
41  setTemp = 0;
42  thermalTime = 0.0;
43  currentTime = 0.0;
44  rCut = 0.0;
45  rSw = 0.0;
167  
168 <  haveRcut = 0;
169 <  haveRsw = 0;
170 <  boxIsInit = 0;
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170 >    
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189 >    } else {
190 >      return false;
191 >    }
192 >  }
193    
194 <  resetTime = 1e99;
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195 >    MoleculeIterator i;
196 >    i = molecules_.find(mol->getGlobalIndex());
197  
198 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
198 >    if (i != molecules_.end() ) {
199  
200 <  usePBC = 0;
201 <  useLJ = 0;
202 <  useSticky = 0;
203 <  useCharges = 0;
204 <  useDipoles = 0;
205 <  useReactionField = 0;
206 <  useGB = 0;
207 <  useEAM = 0;
208 <  useSolidThermInt = 0;
209 <  useLiquidThermInt = 0;
210 <
68 <  haveCutoffGroups = false;
69 <
70 <  excludes = Exclude::Instance();
71 <
72 <  myConfiguration = new SimState();
200 >      assert(mol == i->second);
201 >        
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <  has_minimizer = false;
213 <  the_minimizer =NULL;
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <  ngroup = 0;
215 >      delete mol;
216 >        
217 >      return true;
218 >    } else {
219 >      return false;
220 >    }
221 >  }    
222  
223 <  wrapMeSimInfo( this );
224 < }
223 >        
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 >  }    
228  
229 +  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 +    ++i;
231 +    return i == molecules_.end() ? NULL : i->second;    
232 +  }
233  
83 SimInfo::~SimInfo(){
234  
235 <  delete myConfiguration;
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local;
237 >    MoleculeIterator i;
238 >    vector<StuntDouble*>::iterator j;
239 >    Molecule* mol;
240 >    StuntDouble* integrableObject;
241  
242 <  map<string, GenericData*>::iterator i;
243 <  
244 <  for(i = properties.begin(); i != properties.end(); i++)
245 <    delete (*i).second;
242 >    ndf_local = 0;
243 >    
244 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 >           integrableObject = mol->nextIntegrableObject(j)) {
247  
248 < }
248 >        ndf_local += 3;
249  
250 < void SimInfo::setBox(double newBox[3]) {
251 <  
252 <  int i, j;
253 <  double tempMat[3][3];
250 >        if (integrableObject->isDirectional()) {
251 >          if (integrableObject->isLinear()) {
252 >            ndf_local += 2;
253 >          } else {
254 >            ndf_local += 3;
255 >          }
256 >        }
257 >            
258 >      }
259 >    }
260 >    
261 >    // n_constraints is local, so subtract them on each processor
262 >    ndf_local -= nConstraints_;
263  
264 <  for(i=0; i<3; i++)
265 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
264 > #ifdef IS_MPI
265 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 > #else
267 >    ndf_ = ndf_local;
268 > #endif
269  
270 <  tempMat[0][0] = newBox[0];
271 <  tempMat[1][1] = newBox[1];
272 <  tempMat[2][2] = newBox[2];
270 >    // nZconstraints_ is global, as are the 3 COM translations for the
271 >    // entire system:
272 >    ndf_ = ndf_ - 3 - nZconstraint_;
273  
274 <  setBoxM( tempMat );
274 >  }
275  
276 < }
277 <
278 < void SimInfo::setBoxM( double theBox[3][3] ){
279 <  
280 <  int i, j;
281 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
282 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
119 <
120 <  if( !boxIsInit ) boxIsInit = 1;
121 <
122 <  for(i=0; i < 3; i++)
123 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
124 <  
125 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
132 <    }
276 >  int SimInfo::getFdf() {
277 > #ifdef IS_MPI
278 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 > #else
280 >    fdf_ = fdf_local;
281 > #endif
282 >    return fdf_;
283    }
284 +    
285 +  void SimInfo::calcNdfRaw() {
286 +    int ndfRaw_local;
287  
288 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
289 <
290 < }
291 <
288 >    MoleculeIterator i;
289 >    vector<StuntDouble*>::iterator j;
290 >    Molecule* mol;
291 >    StuntDouble* integrableObject;
292  
293 < void SimInfo::getBoxM (double theBox[3][3]) {
293 >    // Raw degrees of freedom that we have to set
294 >    ndfRaw_local = 0;
295 >    
296 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
297 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298 >           integrableObject = mol->nextIntegrableObject(j)) {
299  
300 <  int i, j;
143 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
300 >        ndfRaw_local += 3;
301  
302 <
303 < void SimInfo::scaleBox(double scale) {
304 <  double theBox[3][3];
305 <  int i, j;
306 <
307 <  // cerr << "Scaling box by " << scale << "\n";
308 <
309 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
156 <
157 <  setBoxM(theBox);
158 <
159 < }
160 <
161 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
302 >        if (integrableObject->isDirectional()) {
303 >          if (integrableObject->isLinear()) {
304 >            ndfRaw_local += 2;
305 >          } else {
306 >            ndfRaw_local += 3;
307 >          }
308 >        }
309 >            
310        }
311      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
312      
313 <    if( orthoRhombic ) {
314 <      sprintf( painCave.errMsg,
315 <               "OOPSE is switching from the default Non-Orthorhombic\n"
316 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
317 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
313 > #ifdef IS_MPI
314 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
315 > #else
316 >    ndfRaw_ = ndfRaw_local;
317 > #endif
318    }
218 }
319  
320 < void SimInfo::calcBoxL( void ){
320 >  void SimInfo::calcNdfTrans() {
321 >    int ndfTrans_local;
322  
323 <  double dx, dy, dz, dsq;
323 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
324  
224  // boxVol = Determinant of Hmat
325  
326 <  boxVol = matDet3( Hmat );
326 > #ifdef IS_MPI
327 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
328 > #else
329 >    ndfTrans_ = ndfTrans_local;
330 > #endif
331  
332 <  // boxLx
333 <  
334 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
332 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
333 >
334 >  }
335  
336 <  // boxLy
337 <  
338 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
339 <  dsq = dx*dx + dy*dy + dz*dz;
340 <  boxL[1] = sqrt( dsq );
341 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342 >    Bond* bond;
343 >    Bend* bend;
344 >    Torsion* torsion;
345 >    Inversion* inversion;
346 >    int a;
347 >    int b;
348 >    int c;
349 >    int d;
350  
351 +    // atomGroups can be used to add special interaction maps between
352 +    // groups of atoms that are in two separate rigid bodies.
353 +    // However, most site-site interactions between two rigid bodies
354 +    // are probably not special, just the ones between the physically
355 +    // bonded atoms.  Interactions *within* a single rigid body should
356 +    // always be excluded.  These are done at the bottom of this
357 +    // function.
358  
359 <  // boxLz
360 <  
361 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
362 <  dsq = dx*dx + dy*dy + dz*dz;
363 <  boxL[2] = sqrt( dsq );
364 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
359 >    map<int, set<int> > atomGroups;
360 >    Molecule::RigidBodyIterator rbIter;
361 >    RigidBody* rb;
362 >    Molecule::IntegrableObjectIterator ii;
363 >    StuntDouble* integrableObject;
364 >    
365 >    for (integrableObject = mol->beginIntegrableObject(ii);
366 >         integrableObject != NULL;
367 >         integrableObject = mol->nextIntegrableObject(ii)) {
368 >      
369 >      if (integrableObject->isRigidBody()) {
370 >        rb = static_cast<RigidBody*>(integrableObject);
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >        }
376 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >        }      
379 >      } else {
380 >        set<int> oneAtomSet;
381 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383 >      }
384 >    }  
385 >          
386 >    for (bond= mol->beginBond(bondIter); bond != NULL;
387 >         bond = mol->nextBond(bondIter)) {
388  
389 <  //calculate the max cutoff
390 <  maxCutoff =  calcMaxCutOff();
391 <  
392 <  checkCutOffs();
389 >      a = bond->getAtomA()->getGlobalIndex();
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397 >    }
398  
399 < }
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401  
402 +      a = bend->getAtomA()->getGlobalIndex();
403 +      b = bend->getAtomB()->getGlobalIndex();        
404 +      c = bend->getAtomC()->getGlobalIndex();
405 +      
406 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 +        oneTwoInteractions_.addPair(a, b);      
408 +        oneTwoInteractions_.addPair(b, c);
409 +      } else {
410 +        excludedInteractions_.addPair(a, b);
411 +        excludedInteractions_.addPair(b, c);
412 +      }
413  
414 < double SimInfo::calcMaxCutOff(){
414 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 >        oneThreeInteractions_.addPair(a, c);      
416 >      } else {
417 >        excludedInteractions_.addPair(a, c);
418 >      }
419 >    }
420  
421 <  double ri[3], rj[3], rk[3];
422 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423  
424 <  ri[0] = Hmat[0][0];
425 <  ri[1] = Hmat[1][0];
426 <  ri[2] = Hmat[2][0];
424 >      a = torsion->getAtomA()->getGlobalIndex();
425 >      b = torsion->getAtomB()->getGlobalIndex();        
426 >      c = torsion->getAtomC()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428  
429 <  rj[0] = Hmat[0][1];
430 <  rj[1] = Hmat[1][1];
431 <  rj[2] = Hmat[2][1];
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438  
439 <  rk[0] = Hmat[0][2];
440 <  rk[1] = Hmat[1][2];
441 <  rk[2] = Hmat[2][2];
442 <    
443 <  crossProduct3(ri, rj, rij);
444 <  distXY = dotProduct3(rk,rij) / norm3(rij);
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446  
447 <  crossProduct3(rj,rk, rjk);
448 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452 >    }
453  
454 <  crossProduct3(rk,ri, rki);
455 <  distZX = dotProduct3(rj,rki) / norm3(rki);
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456  
457 <  minDist = min(min(distXY, distYZ), distZX);
458 <  return minDist/2;
459 <  
460 < }
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461  
462 < void SimInfo::wrapVector( double thePos[3] ){
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471  
472 <  int i;
473 <  double scaled[3];
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482  
483 <  if( !orthoRhombic ){
484 <    // calc the scaled coordinates.
485 <  
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488 >          a = atoms[i]->getGlobalIndex();
489 >          b = atoms[j]->getGlobalIndex();
490 >          excludedInteractions_.addPair(a, b);
491 >        }
492 >      }
493 >    }        
494  
495 <    matVecMul3(HmatInv, thePos, scaled);
495 >  }
496 >
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503 >    Bond* bond;
504 >    Bend* bend;
505 >    Torsion* torsion;
506 >    Inversion* inversion;
507 >    int a;
508 >    int b;
509 >    int c;
510 >    int d;
511 >
512 >    map<int, set<int> > atomGroups;
513 >    Molecule::RigidBodyIterator rbIter;
514 >    RigidBody* rb;
515 >    Molecule::IntegrableObjectIterator ii;
516 >    StuntDouble* integrableObject;
517      
518 <    for(i=0; i<3; i++)
519 <      scaled[i] -= roundMe(scaled[i]);
520 <    
521 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
522 <    
523 <    matVecMul3(Hmat, scaled, thePos);
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522 >      if (integrableObject->isRigidBody()) {
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532 >      } else {
533 >        set<int> oneAtomSet;
534 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536 >      }
537 >    }  
538  
539 <  }
540 <  else{
541 <    // calc the scaled coordinates.
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542 >      a = bond->getAtomA()->getGlobalIndex();
543 >      b = bond->getAtomB()->getGlobalIndex();  
544      
545 <    for(i=0; i<3; i++)
546 <      scaled[i] = thePos[i]*HmatInv[i][i];
547 <    
548 <    // wrap the scaled coordinates
549 <    
550 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550 >    }
551  
552 +    for (bend= mol->beginBend(bendIter); bend != NULL;
553 +         bend = mol->nextBend(bendIter)) {
554  
555 < int SimInfo::getNDF(){
556 <  int ndf_local;
555 >      a = bend->getAtomA()->getGlobalIndex();
556 >      b = bend->getAtomB()->getGlobalIndex();        
557 >      c = bend->getAtomC()->getGlobalIndex();
558 >      
559 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 >        oneTwoInteractions_.removePair(a, b);      
561 >        oneTwoInteractions_.removePair(b, c);
562 >      } else {
563 >        excludedInteractions_.removePair(a, b);
564 >        excludedInteractions_.removePair(b, c);
565 >      }
566  
567 <  ndf_local = 0;
568 <  
569 <  for(int i = 0; i < integrableObjects.size(); i++){
570 <    ndf_local += 3;
571 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
342  }
573  
574 <  // n_constraints is local, so subtract them on each processor:
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576  
577 <  ndf_local -= n_constraints;
577 >      a = torsion->getAtomA()->getGlobalIndex();
578 >      b = torsion->getAtomB()->getGlobalIndex();        
579 >      c = torsion->getAtomC()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591  
592 < #ifdef IS_MPI
593 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
594 < #else
595 <  ndf = ndf_local;
596 < #endif
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599  
600 <  // nZconstraints is global, as are the 3 COM translations for the
601 <  // entire system:
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605 >    }
606  
607 <  ndf = ndf - 3 - nZconstraints;
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609  
610 <  return ndf;
611 < }
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614  
615 < int SimInfo::getNDFraw() {
616 <  int ndfRaw_local;
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624  
625 <  // Raw degrees of freedom that we have to set
626 <  ndfRaw_local = 0;
627 <
628 <  for(int i = 0; i < integrableObjects.size(); i++){
629 <    ndfRaw_local += 3;
630 <    if (integrableObjects[i]->isDirectional()) {
631 <       if (integrableObjects[i]->isLinear())
632 <        ndfRaw_local += 2;
633 <      else
374 <        ndfRaw_local += 3;
625 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 >        oneThreeInteractions_.removePair(b, c);    
627 >        oneThreeInteractions_.removePair(b, d);    
628 >        oneThreeInteractions_.removePair(c, d);      
629 >      } else {
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(b, d);
632 >        excludedInteractions_.removePair(c, d);
633 >      }
634      }
635 +
636 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 +         rb = mol->nextRigidBody(rbIter)) {
638 +      vector<Atom*> atoms = rb->getAtoms();
639 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641 +          a = atoms[i]->getGlobalIndex();
642 +          b = atoms[j]->getGlobalIndex();
643 +          excludedInteractions_.removePair(a, b);
644 +        }
645 +      }
646 +    }        
647 +    
648    }
649 +  
650 +  
651 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652 +    int curStampId;
653      
654 < #ifdef IS_MPI
655 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
654 >    //index from 0
655 >    curStampId = moleculeStamps_.size();
656  
657 <  return ndfRaw;
658 < }
657 >    moleculeStamps_.push_back(molStamp);
658 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659 >  }
660  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
661  
662 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671 >    calcNdf();
672 >    calcNdfRaw();
673 >    calcNdfTrans();
674 >  }
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684 >    SimInfo::MoleculeIterator mi;
685 >    Molecule* mol;
686 >    Molecule::AtomIterator ai;
687 >    Atom* atom;
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 >        atomTypes.insert(atom->getAtomType());
693 >      }      
694 >    }    
695  
392
696   #ifdef IS_MPI
394  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 #else
396  ndfTrans = ndfTrans_local;
397 #endif
697  
698 <  ndfTrans = ndfTrans - 3 - nZconstraints;
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <  return ndfTrans;
702 < }
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 < int SimInfo::getTotIntegrableObjects() {
707 <  int nObjs_local;
406 <  int nObjs;
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 <  nObjs_local =  integrableObjects.size();
709 >    // count holds the total number of found types on all processors
710 >    // (some will be redundant with the ones found locally):
711 >    int count;
712 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713  
714 +    // create a vector to hold the globally found types, and resize it:
715 +    vector<int> ftGlobal;
716 +    ftGlobal.resize(count);
717 +    vector<int> counts;
718  
719 < #ifdef IS_MPI
720 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
721 < #else
722 <  nObjs = nObjs_local;
415 < #endif
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723  
724 +    // now spray out the foundTypes to all the other processors:
725 +    
726 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728  
729 <  return nObjs;
730 < }
729 >    // foundIdents is a stl set, so inserting an already found ident
730 >    // will have no effect.
731 >    set<int> foundIdents;
732 >    vector<int>::iterator j;
733 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 >      foundIdents.insert((*j));
735 >    
736 >    // now iterate over the foundIdents and get the actual atom types
737 >    // that correspond to these:
738 >    set<int>::iterator it;
739 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 >      atomTypes.insert( forceField_->getAtomType((*it)) );
741 >
742 > #endif
743 >    
744 >    return atomTypes;        
745 >  }
746  
747 < void SimInfo::refreshSim(){
747 >  void SimInfo::setupSimVariables() {
748 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 >    calcBoxDipole_ = false;
751 >    if ( simParams_->haveAccumulateBoxDipole() )
752 >      if ( simParams_->getAccumulateBoxDipole() ) {
753 >        calcBoxDipole_ = true;      
754 >      }
755  
756 <  simtype fInfo;
757 <  int isError;
758 <  int n_global;
759 <  int* excl;
756 >    set<AtomType*>::iterator i;
757 >    set<AtomType*> atomTypes;
758 >    atomTypes = getSimulatedAtomTypes();    
759 >    int usesElectrostatic = 0;
760 >    int usesMetallic = 0;
761 >    int usesDirectional = 0;
762 >    //loop over all of the atom types
763 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767 >    }
768  
769 <  fInfo.dielect = 0.0;
769 > #ifdef IS_MPI    
770 >    int temp;
771 >    temp = usesDirectional;
772 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 <  if( useDipoles ){
775 <    if( useReactionField )fInfo.dielect = dielectric;
432 <  }
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776  
777 <  fInfo.SIM_uses_PBC = usePBC;
778 <  //fInfo.SIM_uses_LJ = 0;
436 <  fInfo.SIM_uses_LJ = useLJ;
437 <  fInfo.SIM_uses_sticky = useSticky;
438 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
446 <
447 <  n_exclude = excludes->getSize();
448 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
777 >    temp = usesElectrostatic;
778 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779   #endif
780 <  
781 <  isError = 0;
782 <  
783 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
784 <  //it may not be a good idea to pass the address of first element in vector
785 <  //since c++ standard does not require vector to be stored continuously in meomory
786 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786 >  }
787  
788 <  if( isError ){
788 >  void SimInfo::setupFortran() {
789 >    int isError;
790 >    int nExclude, nOneTwo, nOneThree, nOneFour;
791 >    vector<int> fortranGlobalGroupMembership;
792      
793 <    sprintf( painCave.errMsg,
469 <             "There was an error setting the simulation information in fortran.\n" );
470 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
793 >    isError = 0;
794  
795 < void SimInfo::setDefaultRcut( double theRcut ){
796 <  
797 <  haveRcut = 1;
798 <  rCut = theRcut;
490 <  rList = rCut + 1.0;
491 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
795 >    //globalGroupMembership_ is filled by SimCreator    
796 >    for (int i = 0; i < nGlobalAtoms_; i++) {
797 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
798 >    }
799  
800 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
800 >    //calculate mass ratio of cutoff group
801 >    vector<RealType> mfact;
802 >    SimInfo::MoleculeIterator mi;
803 >    Molecule* mol;
804 >    Molecule::CutoffGroupIterator ci;
805 >    CutoffGroup* cg;
806 >    Molecule::AtomIterator ai;
807 >    Atom* atom;
808 >    RealType totalMass;
809  
810 <  rSw = theRsw;
811 <  setDefaultRcut( theRcut );
812 < }
810 >    //to avoid memory reallocation, reserve enough space for mfact
811 >    mfact.reserve(getNCutoffGroups());
812 >    
813 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
814 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
815  
816 +        totalMass = cg->getMass();
817 +        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
818 +          // Check for massless groups - set mfact to 1 if true
819 +          if (totalMass != 0)
820 +            mfact.push_back(atom->getMass()/totalMass);
821 +          else
822 +            mfact.push_back( 1.0 );
823 +        }
824 +      }      
825 +    }
826  
827 < void SimInfo::checkCutOffs( void ){
828 <  
829 <  if( boxIsInit ){
827 >    //fill ident array of local atoms (it is actually ident of
828 >    //AtomType, it is so confusing !!!)
829 >    vector<int> identArray;
830 >
831 >    //to avoid memory reallocation, reserve enough space identArray
832 >    identArray.reserve(getNAtoms());
833      
834 <    //we need to check cutOffs against the box
835 <    
836 <    if( rCut > maxCutoff ){
837 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
834 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
835 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
836 >        identArray.push_back(atom->getIdent());
837 >      }
838      }    
526  } else {
527    // initialize this stuff before using it, OK?
528    sprintf( painCave.errMsg,
529             "Trying to check cutoffs without a box.\n"
530             "\tOOPSE should have better programmers than that.\n" );
531    painCave.severity = OOPSE_ERROR;
532    painCave.isFatal = 1;
533    simError();      
534  }
535  
536 }
839  
840 < void SimInfo::addProperty(GenericData* prop){
840 >    //fill molMembershipArray
841 >    //molMembershipArray is filled by SimCreator    
842 >    vector<int> molMembershipArray(nGlobalAtoms_);
843 >    for (int i = 0; i < nGlobalAtoms_; i++) {
844 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
845 >    }
846 >    
847 >    //setup fortran simulation
848  
849 <  map<string, GenericData*>::iterator result;
850 <  result = properties.find(prop->getID());
851 <  
852 <  //we can't simply use  properties[prop->getID()] = prop,
853 <  //it will cause memory leak if we already contain a propery which has the same name of prop
854 <  
855 <  if(result != properties.end()){
849 >    nExclude = excludedInteractions_.getSize();
850 >    nOneTwo = oneTwoInteractions_.getSize();
851 >    nOneThree = oneThreeInteractions_.getSize();
852 >    nOneFour = oneFourInteractions_.getSize();
853 >
854 >    int* excludeList = excludedInteractions_.getPairList();
855 >    int* oneTwoList = oneTwoInteractions_.getPairList();
856 >    int* oneThreeList = oneThreeInteractions_.getPairList();
857 >    int* oneFourList = oneFourInteractions_.getPairList();
858 >
859 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 >                   &nExclude, excludeList,
861 >                   &nOneTwo, oneTwoList,
862 >                   &nOneThree, oneThreeList,
863 >                   &nOneFour, oneFourList,
864 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
865 >                   &fortranGlobalGroupMembership[0], &isError);
866      
867 <    delete (*result).second;
549 <    (*result).second = prop;
867 >    if( isError ){
868        
869 <  }
870 <  else{
869 >      sprintf( painCave.errMsg,
870 >               "There was an error setting the simulation information in fortran.\n" );
871 >      painCave.isFatal = 1;
872 >      painCave.severity = OPENMD_ERROR;
873 >      simError();
874 >    }
875 >    
876 >    
877 >    sprintf( checkPointMsg,
878 >             "succesfully sent the simulation information to fortran.\n");
879 >    
880 >    errorCheckPoint();
881 >    
882 >    // Setup number of neighbors in neighbor list if present
883 >    if (simParams_->haveNeighborListNeighbors()) {
884 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 >      setNeighbors(&nlistNeighbors);
886 >    }
887 >  
888 > #ifdef IS_MPI    
889 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
890 >    //localToGlobalGroupIndex
891 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
892 >    vector<int> localToGlobalCutoffGroupIndex;
893 >    mpiSimData parallelData;
894  
895 <    properties[prop->getID()] = prop;
895 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
896  
897 <  }
898 <    
899 < }
897 >      //local index(index in DataStorge) of atom is important
898 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
899 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
900 >      }
901  
902 < GenericData* SimInfo::getProperty(const string& propName){
903 <
904 <  map<string, GenericData*>::iterator result;
905 <  
906 <  //string lowerCaseName = ();
907 <  
908 <  result = properties.find(propName);
909 <  
910 <  if(result != properties.end())
911 <    return (*result).second;  
912 <  else  
913 <    return NULL;  
914 < }
902 >      //local index of cutoff group is trivial, it only depends on the order of travesing
903 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
904 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
905 >      }        
906 >        
907 >    }
908 >
909 >    //fill up mpiSimData struct
910 >    parallelData.nMolGlobal = getNGlobalMolecules();
911 >    parallelData.nMolLocal = getNMolecules();
912 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
913 >    parallelData.nAtomsLocal = getNAtoms();
914 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
915 >    parallelData.nGroupsLocal = getNCutoffGroups();
916 >    parallelData.myNode = worldRank;
917 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
918  
919 +    //pass mpiSimData struct and index arrays to fortran
920 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
921 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
922 +                    &localToGlobalCutoffGroupIndex[0], &isError);
923  
924 < void SimInfo::getFortranGroupArrays(SimInfo* info,
925 <                                    vector<int>& FglobalGroupMembership,
926 <                                    vector<double>& mfact){
927 <  
928 <  Molecule* myMols;
929 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
924 >    if (isError) {
925 >      sprintf(painCave.errMsg,
926 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
927 >      painCave.isFatal = 1;
928 >      simError();
929 >    }
930  
931 <  // Fix the silly fortran indexing problem
931 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
932 >    errorCheckPoint();
933 > #endif
934 >
935 >    initFortranFF(&isError);
936 >    if (isError) {
937 >      sprintf(painCave.errMsg,
938 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
939 >      painCave.isFatal = 1;
940 >      simError();
941 >    }
942 >    fortranInitialized_ = true;
943 >  }
944 >
945 >  void SimInfo::addProperty(GenericData* genData) {
946 >    properties_.addProperty(genData);  
947 >  }
948 >
949 >  void SimInfo::removeProperty(const string& propName) {
950 >    properties_.removeProperty(propName);  
951 >  }
952 >
953 >  void SimInfo::clearProperties() {
954 >    properties_.clearProperties();
955 >  }
956 >
957 >  vector<string> SimInfo::getPropertyNames() {
958 >    return properties_.getPropertyNames();  
959 >  }
960 >      
961 >  vector<GenericData*> SimInfo::getProperties() {
962 >    return properties_.getProperties();
963 >  }
964 >
965 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
966 >    return properties_.getPropertyByName(propName);
967 >  }
968 >
969 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
970 >    if (sman_ == sman) {
971 >      return;
972 >    }    
973 >    delete sman_;
974 >    sman_ = sman;
975 >
976 >    Molecule* mol;
977 >    RigidBody* rb;
978 >    Atom* atom;
979 >    CutoffGroup* cg;
980 >    SimInfo::MoleculeIterator mi;
981 >    Molecule::RigidBodyIterator rbIter;
982 >    Molecule::AtomIterator atomIter;
983 >    Molecule::CutoffGroupIterator cgIter;
984 >
985 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
986 >        
987 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
988 >        atom->setSnapshotManager(sman_);
989 >      }
990 >        
991 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
992 >        rb->setSnapshotManager(sman_);
993 >      }
994 >
995 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
996 >        cg->setSnapshotManager(sman_);
997 >      }
998 >    }    
999 >    
1000 >  }
1001 >
1002 >  Vector3d SimInfo::getComVel(){
1003 >    SimInfo::MoleculeIterator i;
1004 >    Molecule* mol;
1005 >
1006 >    Vector3d comVel(0.0);
1007 >    RealType totalMass = 0.0;
1008 >    
1009 >
1010 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1011 >      RealType mass = mol->getMass();
1012 >      totalMass += mass;
1013 >      comVel += mass * mol->getComVel();
1014 >    }  
1015 >
1016   #ifdef IS_MPI
1017 <  numAtom = mpiSim->getNAtomsGlobal();
1018 < #else
1019 <  numAtom = n_atoms;
1017 >    RealType tmpMass = totalMass;
1018 >    Vector3d tmpComVel(comVel);    
1019 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1020 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1021   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
1022  
1023 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1023 >    comVel /= totalMass;
1024  
1025 <      totalMass = myCutoffGroup->getMass();
1025 >    return comVel;
1026 >  }
1027 >
1028 >  Vector3d SimInfo::getCom(){
1029 >    SimInfo::MoleculeIterator i;
1030 >    Molecule* mol;
1031 >
1032 >    Vector3d com(0.0);
1033 >    RealType totalMass = 0.0;
1034 >    
1035 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1036 >      RealType mass = mol->getMass();
1037 >      totalMass += mass;
1038 >      com += mass * mol->getCom();
1039 >    }  
1040 >
1041 > #ifdef IS_MPI
1042 >    RealType tmpMass = totalMass;
1043 >    Vector3d tmpCom(com);    
1044 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1045 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1046 > #endif
1047 >
1048 >    com /= totalMass;
1049 >
1050 >    return com;
1051 >
1052 >  }        
1053 >
1054 >  ostream& operator <<(ostream& o, SimInfo& info) {
1055 >
1056 >    return o;
1057 >  }
1058 >  
1059 >  
1060 >   /*
1061 >   Returns center of mass and center of mass velocity in one function call.
1062 >   */
1063 >  
1064 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1065 >      SimInfo::MoleculeIterator i;
1066 >      Molecule* mol;
1067        
1068 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1069 <          cutoffAtom != NULL;
1070 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1071 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1068 >    
1069 >      RealType totalMass = 0.0;
1070 >    
1071 >
1072 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1073 >         RealType mass = mol->getMass();
1074 >         totalMass += mass;
1075 >         com += mass * mol->getCom();
1076 >         comVel += mass * mol->getComVel();          
1077        }  
1078 +      
1079 + #ifdef IS_MPI
1080 +      RealType tmpMass = totalMass;
1081 +      Vector3d tmpCom(com);  
1082 +      Vector3d tmpComVel(comVel);
1083 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1084 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1085 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1086 + #endif
1087 +      
1088 +      com /= totalMass;
1089 +      comVel /= totalMass;
1090 +   }        
1091 +  
1092 +   /*
1093 +   Return intertia tensor for entire system and angular momentum Vector.
1094 +
1095 +
1096 +       [  Ixx -Ixy  -Ixz ]
1097 +    J =| -Iyx  Iyy  -Iyz |
1098 +       [ -Izx -Iyz   Izz ]
1099 +    */
1100 +
1101 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1102 +      
1103 +
1104 +      RealType xx = 0.0;
1105 +      RealType yy = 0.0;
1106 +      RealType zz = 0.0;
1107 +      RealType xy = 0.0;
1108 +      RealType xz = 0.0;
1109 +      RealType yz = 0.0;
1110 +      Vector3d com(0.0);
1111 +      Vector3d comVel(0.0);
1112 +      
1113 +      getComAll(com, comVel);
1114 +      
1115 +      SimInfo::MoleculeIterator i;
1116 +      Molecule* mol;
1117 +      
1118 +      Vector3d thisq(0.0);
1119 +      Vector3d thisv(0.0);
1120 +
1121 +      RealType thisMass = 0.0;
1122 +    
1123 +      
1124 +      
1125 +  
1126 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1127 +        
1128 +         thisq = mol->getCom()-com;
1129 +         thisv = mol->getComVel()-comVel;
1130 +         thisMass = mol->getMass();
1131 +         // Compute moment of intertia coefficients.
1132 +         xx += thisq[0]*thisq[0]*thisMass;
1133 +         yy += thisq[1]*thisq[1]*thisMass;
1134 +         zz += thisq[2]*thisq[2]*thisMass;
1135 +        
1136 +         // compute products of intertia
1137 +         xy += thisq[0]*thisq[1]*thisMass;
1138 +         xz += thisq[0]*thisq[2]*thisMass;
1139 +         yz += thisq[1]*thisq[2]*thisMass;
1140 +            
1141 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1142 +            
1143 +      }  
1144 +      
1145 +      
1146 +      inertiaTensor(0,0) = yy + zz;
1147 +      inertiaTensor(0,1) = -xy;
1148 +      inertiaTensor(0,2) = -xz;
1149 +      inertiaTensor(1,0) = -xy;
1150 +      inertiaTensor(1,1) = xx + zz;
1151 +      inertiaTensor(1,2) = -yz;
1152 +      inertiaTensor(2,0) = -xz;
1153 +      inertiaTensor(2,1) = -yz;
1154 +      inertiaTensor(2,2) = xx + yy;
1155 +      
1156 + #ifdef IS_MPI
1157 +      Mat3x3d tmpI(inertiaTensor);
1158 +      Vector3d tmpAngMom;
1159 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1160 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1161 + #endif
1162 +              
1163 +      return;
1164 +   }
1165 +
1166 +   //Returns the angular momentum of the system
1167 +   Vector3d SimInfo::getAngularMomentum(){
1168 +      
1169 +      Vector3d com(0.0);
1170 +      Vector3d comVel(0.0);
1171 +      Vector3d angularMomentum(0.0);
1172 +      
1173 +      getComAll(com,comVel);
1174 +      
1175 +      SimInfo::MoleculeIterator i;
1176 +      Molecule* mol;
1177 +      
1178 +      Vector3d thisr(0.0);
1179 +      Vector3d thisp(0.0);
1180 +      
1181 +      RealType thisMass;
1182 +      
1183 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1184 +        thisMass = mol->getMass();
1185 +        thisr = mol->getCom()-com;
1186 +        thisp = (mol->getComVel()-comVel)*thisMass;
1187 +        
1188 +        angularMomentum += cross( thisr, thisp );
1189 +        
1190 +      }  
1191 +      
1192 + #ifdef IS_MPI
1193 +      Vector3d tmpAngMom;
1194 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1195 + #endif
1196 +      
1197 +      return angularMomentum;
1198 +   }
1199 +  
1200 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1201 +    return IOIndexToIntegrableObject.at(index);
1202 +  }
1203 +  
1204 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1205 +    IOIndexToIntegrableObject= v;
1206 +  }
1207 +
1208 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1209 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1210 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1211 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1212 +  */
1213 +  void SimInfo::getGyrationalVolume(RealType &volume){
1214 +    Mat3x3d intTensor;
1215 +    RealType det;
1216 +    Vector3d dummyAngMom;
1217 +    RealType sysconstants;
1218 +    RealType geomCnst;
1219 +
1220 +    geomCnst = 3.0/2.0;
1221 +    /* Get the inertial tensor and angular momentum for free*/
1222 +    getInertiaTensor(intTensor,dummyAngMom);
1223 +    
1224 +    det = intTensor.determinant();
1225 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1226 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1227 +    return;
1228 +  }
1229 +
1230 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1231 +    Mat3x3d intTensor;
1232 +    Vector3d dummyAngMom;
1233 +    RealType sysconstants;
1234 +    RealType geomCnst;
1235 +
1236 +    geomCnst = 3.0/2.0;
1237 +    /* Get the inertial tensor and angular momentum for free*/
1238 +    getInertiaTensor(intTensor,dummyAngMom);
1239 +    
1240 +    detI = intTensor.determinant();
1241 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1242 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1243 +    return;
1244 +  }
1245 + /*
1246 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1247 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1248 +      sdByGlobalIndex_ = v;
1249      }
1250 +
1251 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1252 +      //assert(index < nAtoms_ + nRigidBodies_);
1253 +      return sdByGlobalIndex_.at(index);
1254 +    }  
1255 + */  
1256 +  int SimInfo::getNGlobalConstraints() {
1257 +    int nGlobalConstraints;
1258 + #ifdef IS_MPI
1259 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1260 +                  MPI_COMM_WORLD);    
1261 + #else
1262 +    nGlobalConstraints =  nConstraints_;
1263 + #endif
1264 +    return nGlobalConstraints;
1265    }
1266  
1267 < }
1267 > }//end namespace OpenMD
1268 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1540 by gezelter, Mon Jan 17 21:34:36 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines