125 |
|
//equal to the total number of atoms minus number of atoms belong to |
126 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
|
//groups defined in meta-data file |
128 |
– |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 |
– |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 |
– |
std::cerr << "nG = " << nGroups << "\n"; |
128 |
|
|
129 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
– |
|
134 |
– |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
130 |
|
|
131 |
|
//every free atom (atom does not belong to rigid bodies) is an |
132 |
|
//integrable object therefore the total number of integrable objects |
269 |
|
#endif |
270 |
|
return fdf_; |
271 |
|
} |
272 |
+ |
|
273 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
274 |
+ |
int nLocalCutoffAtoms = 0; |
275 |
+ |
Molecule* mol; |
276 |
+ |
MoleculeIterator mi; |
277 |
+ |
CutoffGroup* cg; |
278 |
+ |
Molecule::CutoffGroupIterator ci; |
279 |
|
|
280 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
281 |
+ |
|
282 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
283 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
284 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
285 |
+ |
|
286 |
+ |
} |
287 |
+ |
} |
288 |
+ |
|
289 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
290 |
+ |
} |
291 |
+ |
|
292 |
|
void SimInfo::calcNdfRaw() { |
293 |
|
int ndfRaw_local; |
294 |
|
|
838 |
|
Atom* atom; |
839 |
|
RealType totalMass; |
840 |
|
|
841 |
< |
//to avoid memory reallocation, reserve enough space for massFactors_ |
841 |
> |
/** |
842 |
> |
* The mass factor is the relative mass of an atom to the total |
843 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
844 |
> |
* are their own cutoff groups, and therefore have mass factors of |
845 |
> |
* 1. We need some special handling for massless atoms, which |
846 |
> |
* will be treated as carrying the entire mass of the cutoff |
847 |
> |
* group. |
848 |
> |
*/ |
849 |
|
massFactors_.clear(); |
850 |
< |
massFactors_.reserve(getNCutoffGroups()); |
850 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
851 |
|
|
852 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
853 |
|
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
856 |
|
totalMass = cg->getMass(); |
857 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
858 |
|
// Check for massless groups - set mfact to 1 if true |
859 |
< |
if (totalMass != 0) |
860 |
< |
massFactors_.push_back(atom->getMass()/totalMass); |
859 |
> |
if (totalMass != 0) |
860 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
861 |
|
else |
862 |
< |
massFactors_.push_back( 1.0 ); |
862 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
863 |
|
} |
864 |
|
} |
865 |
|
} |
886 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
887 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
888 |
|
|
868 |
– |
//setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 |
– |
// &nExclude, excludeList, |
870 |
– |
// &nOneTwo, oneTwoList, |
871 |
– |
// &nOneThree, oneThreeList, |
872 |
– |
// &nOneFour, oneFourList, |
873 |
– |
// &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 |
– |
// &fortranGlobalGroupMembership[0], &isError); |
875 |
– |
|
889 |
|
topologyDone_ = true; |
890 |
|
} |
891 |
|
|