ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1540
Committed: Mon Jan 17 21:34:36 2011 UTC (14 years, 3 months ago) by gezelter
File size: 40610 byte(s)
Log Message:
changes for new parallel architecture

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 #include "UseTheForce/doForces_interface.h"
59 #include "utils/MemoryUtils.hpp"
60 #include "utils/simError.h"
61 #include "selection/SelectionManager.hpp"
62 #include "io/ForceFieldOptions.hpp"
63 #include "UseTheForce/ForceField.hpp"
64 #include "nonbonded/SwitchingFunction.hpp"
65
66 #ifdef IS_MPI
67 #include "UseTheForce/mpiComponentPlan.h"
68 #include "UseTheForce/DarkSide/simParallel_interface.h"
69 #endif
70
71 using namespace std;
72 namespace OpenMD {
73
74 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 forceField_(ff), simParams_(simParams),
76 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0),
80 nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 calcBoxDipole_(false), useAtomicVirial_(true) {
83
84 MoleculeStamp* molStamp;
85 int nMolWithSameStamp;
86 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 int nGroups = 0; //total cutoff groups defined in meta-data file
88 CutoffGroupStamp* cgStamp;
89 RigidBodyStamp* rbStamp;
90 int nRigidAtoms = 0;
91
92 vector<Component*> components = simParams->getComponents();
93
94 for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 molStamp = (*i)->getMoleculeStamp();
96 nMolWithSameStamp = (*i)->getNMol();
97
98 addMoleculeStamp(molStamp, nMolWithSameStamp);
99
100 //calculate atoms in molecules
101 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
102
103 //calculate atoms in cutoff groups
104 int nAtomsInGroups = 0;
105 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106
107 for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 cgStamp = molStamp->getCutoffGroupStamp(j);
109 nAtomsInGroups += cgStamp->getNMembers();
110 }
111
112 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113
114 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
115
116 //calculate atoms in rigid bodies
117 int nAtomsInRigidBodies = 0;
118 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119
120 for (int j=0; j < nRigidBodiesInStamp; j++) {
121 rbStamp = molStamp->getRigidBodyStamp(j);
122 nAtomsInRigidBodies += rbStamp->getNMembers();
123 }
124
125 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
127
128 }
129
130 //every free atom (atom does not belong to cutoff groups) is a cutoff
131 //group therefore the total number of cutoff groups in the system is
132 //equal to the total number of atoms minus number of atoms belong to
133 //cutoff group defined in meta-data file plus the number of cutoff
134 //groups defined in meta-data file
135 std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 std::cerr << "nG = " << nGroups << "\n";
138
139 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140
141 std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142
143 //every free atom (atom does not belong to rigid bodies) is an
144 //integrable object therefore the total number of integrable objects
145 //in the system is equal to the total number of atoms minus number of
146 //atoms belong to rigid body defined in meta-data file plus the number
147 //of rigid bodies defined in meta-data file
148 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 + nGlobalRigidBodies_;
150
151 nGlobalMols_ = molStampIds_.size();
152 molToProcMap_.resize(nGlobalMols_);
153 }
154
155 SimInfo::~SimInfo() {
156 map<int, Molecule*>::iterator i;
157 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 delete i->second;
159 }
160 molecules_.clear();
161
162 delete sman_;
163 delete simParams_;
164 delete forceField_;
165 }
166
167
168 bool SimInfo::addMolecule(Molecule* mol) {
169 MoleculeIterator i;
170
171 i = molecules_.find(mol->getGlobalIndex());
172 if (i == molecules_.end() ) {
173
174 molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175
176 nAtoms_ += mol->getNAtoms();
177 nBonds_ += mol->getNBonds();
178 nBends_ += mol->getNBends();
179 nTorsions_ += mol->getNTorsions();
180 nInversions_ += mol->getNInversions();
181 nRigidBodies_ += mol->getNRigidBodies();
182 nIntegrableObjects_ += mol->getNIntegrableObjects();
183 nCutoffGroups_ += mol->getNCutoffGroups();
184 nConstraints_ += mol->getNConstraintPairs();
185
186 addInteractionPairs(mol);
187
188 return true;
189 } else {
190 return false;
191 }
192 }
193
194 bool SimInfo::removeMolecule(Molecule* mol) {
195 MoleculeIterator i;
196 i = molecules_.find(mol->getGlobalIndex());
197
198 if (i != molecules_.end() ) {
199
200 assert(mol == i->second);
201
202 nAtoms_ -= mol->getNAtoms();
203 nBonds_ -= mol->getNBonds();
204 nBends_ -= mol->getNBends();
205 nTorsions_ -= mol->getNTorsions();
206 nInversions_ -= mol->getNInversions();
207 nRigidBodies_ -= mol->getNRigidBodies();
208 nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 nCutoffGroups_ -= mol->getNCutoffGroups();
210 nConstraints_ -= mol->getNConstraintPairs();
211
212 removeInteractionPairs(mol);
213 molecules_.erase(mol->getGlobalIndex());
214
215 delete mol;
216
217 return true;
218 } else {
219 return false;
220 }
221 }
222
223
224 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 i = molecules_.begin();
226 return i == molecules_.end() ? NULL : i->second;
227 }
228
229 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 ++i;
231 return i == molecules_.end() ? NULL : i->second;
232 }
233
234
235 void SimInfo::calcNdf() {
236 int ndf_local;
237 MoleculeIterator i;
238 vector<StuntDouble*>::iterator j;
239 Molecule* mol;
240 StuntDouble* integrableObject;
241
242 ndf_local = 0;
243
244 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 integrableObject = mol->nextIntegrableObject(j)) {
247
248 ndf_local += 3;
249
250 if (integrableObject->isDirectional()) {
251 if (integrableObject->isLinear()) {
252 ndf_local += 2;
253 } else {
254 ndf_local += 3;
255 }
256 }
257
258 }
259 }
260
261 // n_constraints is local, so subtract them on each processor
262 ndf_local -= nConstraints_;
263
264 #ifdef IS_MPI
265 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 #else
267 ndf_ = ndf_local;
268 #endif
269
270 // nZconstraints_ is global, as are the 3 COM translations for the
271 // entire system:
272 ndf_ = ndf_ - 3 - nZconstraint_;
273
274 }
275
276 int SimInfo::getFdf() {
277 #ifdef IS_MPI
278 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 #else
280 fdf_ = fdf_local;
281 #endif
282 return fdf_;
283 }
284
285 void SimInfo::calcNdfRaw() {
286 int ndfRaw_local;
287
288 MoleculeIterator i;
289 vector<StuntDouble*>::iterator j;
290 Molecule* mol;
291 StuntDouble* integrableObject;
292
293 // Raw degrees of freedom that we have to set
294 ndfRaw_local = 0;
295
296 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
297 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298 integrableObject = mol->nextIntegrableObject(j)) {
299
300 ndfRaw_local += 3;
301
302 if (integrableObject->isDirectional()) {
303 if (integrableObject->isLinear()) {
304 ndfRaw_local += 2;
305 } else {
306 ndfRaw_local += 3;
307 }
308 }
309
310 }
311 }
312
313 #ifdef IS_MPI
314 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
315 #else
316 ndfRaw_ = ndfRaw_local;
317 #endif
318 }
319
320 void SimInfo::calcNdfTrans() {
321 int ndfTrans_local;
322
323 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
324
325
326 #ifdef IS_MPI
327 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
328 #else
329 ndfTrans_ = ndfTrans_local;
330 #endif
331
332 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
333
334 }
335
336 void SimInfo::addInteractionPairs(Molecule* mol) {
337 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 vector<Bond*>::iterator bondIter;
339 vector<Bend*>::iterator bendIter;
340 vector<Torsion*>::iterator torsionIter;
341 vector<Inversion*>::iterator inversionIter;
342 Bond* bond;
343 Bend* bend;
344 Torsion* torsion;
345 Inversion* inversion;
346 int a;
347 int b;
348 int c;
349 int d;
350
351 // atomGroups can be used to add special interaction maps between
352 // groups of atoms that are in two separate rigid bodies.
353 // However, most site-site interactions between two rigid bodies
354 // are probably not special, just the ones between the physically
355 // bonded atoms. Interactions *within* a single rigid body should
356 // always be excluded. These are done at the bottom of this
357 // function.
358
359 map<int, set<int> > atomGroups;
360 Molecule::RigidBodyIterator rbIter;
361 RigidBody* rb;
362 Molecule::IntegrableObjectIterator ii;
363 StuntDouble* integrableObject;
364
365 for (integrableObject = mol->beginIntegrableObject(ii);
366 integrableObject != NULL;
367 integrableObject = mol->nextIntegrableObject(ii)) {
368
369 if (integrableObject->isRigidBody()) {
370 rb = static_cast<RigidBody*>(integrableObject);
371 vector<Atom*> atoms = rb->getAtoms();
372 set<int> rigidAtoms;
373 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 }
376 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 }
379 } else {
380 set<int> oneAtomSet;
381 oneAtomSet.insert(integrableObject->getGlobalIndex());
382 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
383 }
384 }
385
386 for (bond= mol->beginBond(bondIter); bond != NULL;
387 bond = mol->nextBond(bondIter)) {
388
389 a = bond->getAtomA()->getGlobalIndex();
390 b = bond->getAtomB()->getGlobalIndex();
391
392 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 oneTwoInteractions_.addPair(a, b);
394 } else {
395 excludedInteractions_.addPair(a, b);
396 }
397 }
398
399 for (bend= mol->beginBend(bendIter); bend != NULL;
400 bend = mol->nextBend(bendIter)) {
401
402 a = bend->getAtomA()->getGlobalIndex();
403 b = bend->getAtomB()->getGlobalIndex();
404 c = bend->getAtomC()->getGlobalIndex();
405
406 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 oneTwoInteractions_.addPair(a, b);
408 oneTwoInteractions_.addPair(b, c);
409 } else {
410 excludedInteractions_.addPair(a, b);
411 excludedInteractions_.addPair(b, c);
412 }
413
414 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 oneThreeInteractions_.addPair(a, c);
416 } else {
417 excludedInteractions_.addPair(a, c);
418 }
419 }
420
421 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 torsion = mol->nextTorsion(torsionIter)) {
423
424 a = torsion->getAtomA()->getGlobalIndex();
425 b = torsion->getAtomB()->getGlobalIndex();
426 c = torsion->getAtomC()->getGlobalIndex();
427 d = torsion->getAtomD()->getGlobalIndex();
428
429 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 oneTwoInteractions_.addPair(a, b);
431 oneTwoInteractions_.addPair(b, c);
432 oneTwoInteractions_.addPair(c, d);
433 } else {
434 excludedInteractions_.addPair(a, b);
435 excludedInteractions_.addPair(b, c);
436 excludedInteractions_.addPair(c, d);
437 }
438
439 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 oneThreeInteractions_.addPair(a, c);
441 oneThreeInteractions_.addPair(b, d);
442 } else {
443 excludedInteractions_.addPair(a, c);
444 excludedInteractions_.addPair(b, d);
445 }
446
447 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 oneFourInteractions_.addPair(a, d);
449 } else {
450 excludedInteractions_.addPair(a, d);
451 }
452 }
453
454 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 inversion = mol->nextInversion(inversionIter)) {
456
457 a = inversion->getAtomA()->getGlobalIndex();
458 b = inversion->getAtomB()->getGlobalIndex();
459 c = inversion->getAtomC()->getGlobalIndex();
460 d = inversion->getAtomD()->getGlobalIndex();
461
462 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 oneTwoInteractions_.addPair(a, b);
464 oneTwoInteractions_.addPair(a, c);
465 oneTwoInteractions_.addPair(a, d);
466 } else {
467 excludedInteractions_.addPair(a, b);
468 excludedInteractions_.addPair(a, c);
469 excludedInteractions_.addPair(a, d);
470 }
471
472 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 oneThreeInteractions_.addPair(b, c);
474 oneThreeInteractions_.addPair(b, d);
475 oneThreeInteractions_.addPair(c, d);
476 } else {
477 excludedInteractions_.addPair(b, c);
478 excludedInteractions_.addPair(b, d);
479 excludedInteractions_.addPair(c, d);
480 }
481 }
482
483 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 rb = mol->nextRigidBody(rbIter)) {
485 vector<Atom*> atoms = rb->getAtoms();
486 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488 a = atoms[i]->getGlobalIndex();
489 b = atoms[j]->getGlobalIndex();
490 excludedInteractions_.addPair(a, b);
491 }
492 }
493 }
494
495 }
496
497 void SimInfo::removeInteractionPairs(Molecule* mol) {
498 ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 vector<Bond*>::iterator bondIter;
500 vector<Bend*>::iterator bendIter;
501 vector<Torsion*>::iterator torsionIter;
502 vector<Inversion*>::iterator inversionIter;
503 Bond* bond;
504 Bend* bend;
505 Torsion* torsion;
506 Inversion* inversion;
507 int a;
508 int b;
509 int c;
510 int d;
511
512 map<int, set<int> > atomGroups;
513 Molecule::RigidBodyIterator rbIter;
514 RigidBody* rb;
515 Molecule::IntegrableObjectIterator ii;
516 StuntDouble* integrableObject;
517
518 for (integrableObject = mol->beginIntegrableObject(ii);
519 integrableObject != NULL;
520 integrableObject = mol->nextIntegrableObject(ii)) {
521
522 if (integrableObject->isRigidBody()) {
523 rb = static_cast<RigidBody*>(integrableObject);
524 vector<Atom*> atoms = rb->getAtoms();
525 set<int> rigidAtoms;
526 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 }
529 for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 }
532 } else {
533 set<int> oneAtomSet;
534 oneAtomSet.insert(integrableObject->getGlobalIndex());
535 atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
536 }
537 }
538
539 for (bond= mol->beginBond(bondIter); bond != NULL;
540 bond = mol->nextBond(bondIter)) {
541
542 a = bond->getAtomA()->getGlobalIndex();
543 b = bond->getAtomB()->getGlobalIndex();
544
545 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 oneTwoInteractions_.removePair(a, b);
547 } else {
548 excludedInteractions_.removePair(a, b);
549 }
550 }
551
552 for (bend= mol->beginBend(bendIter); bend != NULL;
553 bend = mol->nextBend(bendIter)) {
554
555 a = bend->getAtomA()->getGlobalIndex();
556 b = bend->getAtomB()->getGlobalIndex();
557 c = bend->getAtomC()->getGlobalIndex();
558
559 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 oneTwoInteractions_.removePair(a, b);
561 oneTwoInteractions_.removePair(b, c);
562 } else {
563 excludedInteractions_.removePair(a, b);
564 excludedInteractions_.removePair(b, c);
565 }
566
567 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 oneThreeInteractions_.removePair(a, c);
569 } else {
570 excludedInteractions_.removePair(a, c);
571 }
572 }
573
574 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 torsion = mol->nextTorsion(torsionIter)) {
576
577 a = torsion->getAtomA()->getGlobalIndex();
578 b = torsion->getAtomB()->getGlobalIndex();
579 c = torsion->getAtomC()->getGlobalIndex();
580 d = torsion->getAtomD()->getGlobalIndex();
581
582 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 oneTwoInteractions_.removePair(a, b);
584 oneTwoInteractions_.removePair(b, c);
585 oneTwoInteractions_.removePair(c, d);
586 } else {
587 excludedInteractions_.removePair(a, b);
588 excludedInteractions_.removePair(b, c);
589 excludedInteractions_.removePair(c, d);
590 }
591
592 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 oneThreeInteractions_.removePair(a, c);
594 oneThreeInteractions_.removePair(b, d);
595 } else {
596 excludedInteractions_.removePair(a, c);
597 excludedInteractions_.removePair(b, d);
598 }
599
600 if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 oneFourInteractions_.removePair(a, d);
602 } else {
603 excludedInteractions_.removePair(a, d);
604 }
605 }
606
607 for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 inversion = mol->nextInversion(inversionIter)) {
609
610 a = inversion->getAtomA()->getGlobalIndex();
611 b = inversion->getAtomB()->getGlobalIndex();
612 c = inversion->getAtomC()->getGlobalIndex();
613 d = inversion->getAtomD()->getGlobalIndex();
614
615 if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 oneTwoInteractions_.removePair(a, b);
617 oneTwoInteractions_.removePair(a, c);
618 oneTwoInteractions_.removePair(a, d);
619 } else {
620 excludedInteractions_.removePair(a, b);
621 excludedInteractions_.removePair(a, c);
622 excludedInteractions_.removePair(a, d);
623 }
624
625 if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 oneThreeInteractions_.removePair(b, c);
627 oneThreeInteractions_.removePair(b, d);
628 oneThreeInteractions_.removePair(c, d);
629 } else {
630 excludedInteractions_.removePair(b, c);
631 excludedInteractions_.removePair(b, d);
632 excludedInteractions_.removePair(c, d);
633 }
634 }
635
636 for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 rb = mol->nextRigidBody(rbIter)) {
638 vector<Atom*> atoms = rb->getAtoms();
639 for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641 a = atoms[i]->getGlobalIndex();
642 b = atoms[j]->getGlobalIndex();
643 excludedInteractions_.removePair(a, b);
644 }
645 }
646 }
647
648 }
649
650
651 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652 int curStampId;
653
654 //index from 0
655 curStampId = moleculeStamps_.size();
656
657 moleculeStamps_.push_back(molStamp);
658 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659 }
660
661
662 /**
663 * update
664 *
665 * Performs the global checks and variable settings after the
666 * objects have been created.
667 *
668 */
669 void SimInfo::update() {
670 setupSimVariables();
671 calcNdf();
672 calcNdfRaw();
673 calcNdfTrans();
674 }
675
676 /**
677 * getSimulatedAtomTypes
678 *
679 * Returns an STL set of AtomType* that are actually present in this
680 * simulation. Must query all processors to assemble this information.
681 *
682 */
683 set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684 SimInfo::MoleculeIterator mi;
685 Molecule* mol;
686 Molecule::AtomIterator ai;
687 Atom* atom;
688 set<AtomType*> atomTypes;
689
690 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
691 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 atomTypes.insert(atom->getAtomType());
693 }
694 }
695
696 #ifdef IS_MPI
697
698 // loop over the found atom types on this processor, and add their
699 // numerical idents to a vector:
700
701 vector<int> foundTypes;
702 set<AtomType*>::iterator i;
703 for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 foundTypes.push_back( (*i)->getIdent() );
705
706 // count_local holds the number of found types on this processor
707 int count_local = foundTypes.size();
708
709 // count holds the total number of found types on all processors
710 // (some will be redundant with the ones found locally):
711 int count;
712 MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713
714 // create a vector to hold the globally found types, and resize it:
715 vector<int> ftGlobal;
716 ftGlobal.resize(count);
717 vector<int> counts;
718
719 int nproc = MPI::COMM_WORLD.Get_size();
720 counts.resize(nproc);
721 vector<int> disps;
722 disps.resize(nproc);
723
724 // now spray out the foundTypes to all the other processors:
725
726 MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728
729 // foundIdents is a stl set, so inserting an already found ident
730 // will have no effect.
731 set<int> foundIdents;
732 vector<int>::iterator j;
733 for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 foundIdents.insert((*j));
735
736 // now iterate over the foundIdents and get the actual atom types
737 // that correspond to these:
738 set<int>::iterator it;
739 for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 atomTypes.insert( forceField_->getAtomType((*it)) );
741
742 #endif
743
744 return atomTypes;
745 }
746
747 void SimInfo::setupSimVariables() {
748 useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 calcBoxDipole_ = false;
751 if ( simParams_->haveAccumulateBoxDipole() )
752 if ( simParams_->getAccumulateBoxDipole() ) {
753 calcBoxDipole_ = true;
754 }
755
756 set<AtomType*>::iterator i;
757 set<AtomType*> atomTypes;
758 atomTypes = getSimulatedAtomTypes();
759 int usesElectrostatic = 0;
760 int usesMetallic = 0;
761 int usesDirectional = 0;
762 //loop over all of the atom types
763 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 usesElectrostatic |= (*i)->isElectrostatic();
765 usesMetallic |= (*i)->isMetal();
766 usesDirectional |= (*i)->isDirectional();
767 }
768
769 #ifdef IS_MPI
770 int temp;
771 temp = usesDirectional;
772 MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773
774 temp = usesMetallic;
775 MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776
777 temp = usesElectrostatic;
778 MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779 #endif
780 fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;
781 fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786 }
787
788 void SimInfo::setupFortran() {
789 int isError;
790 int nExclude, nOneTwo, nOneThree, nOneFour;
791 vector<int> fortranGlobalGroupMembership;
792
793 isError = 0;
794
795 //globalGroupMembership_ is filled by SimCreator
796 for (int i = 0; i < nGlobalAtoms_; i++) {
797 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
798 }
799
800 //calculate mass ratio of cutoff group
801 vector<RealType> mfact;
802 SimInfo::MoleculeIterator mi;
803 Molecule* mol;
804 Molecule::CutoffGroupIterator ci;
805 CutoffGroup* cg;
806 Molecule::AtomIterator ai;
807 Atom* atom;
808 RealType totalMass;
809
810 //to avoid memory reallocation, reserve enough space for mfact
811 mfact.reserve(getNCutoffGroups());
812
813 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
814 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
815
816 totalMass = cg->getMass();
817 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
818 // Check for massless groups - set mfact to 1 if true
819 if (totalMass != 0)
820 mfact.push_back(atom->getMass()/totalMass);
821 else
822 mfact.push_back( 1.0 );
823 }
824 }
825 }
826
827 //fill ident array of local atoms (it is actually ident of
828 //AtomType, it is so confusing !!!)
829 vector<int> identArray;
830
831 //to avoid memory reallocation, reserve enough space identArray
832 identArray.reserve(getNAtoms());
833
834 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
835 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
836 identArray.push_back(atom->getIdent());
837 }
838 }
839
840 //fill molMembershipArray
841 //molMembershipArray is filled by SimCreator
842 vector<int> molMembershipArray(nGlobalAtoms_);
843 for (int i = 0; i < nGlobalAtoms_; i++) {
844 molMembershipArray[i] = globalMolMembership_[i] + 1;
845 }
846
847 //setup fortran simulation
848
849 nExclude = excludedInteractions_.getSize();
850 nOneTwo = oneTwoInteractions_.getSize();
851 nOneThree = oneThreeInteractions_.getSize();
852 nOneFour = oneFourInteractions_.getSize();
853
854 int* excludeList = excludedInteractions_.getPairList();
855 int* oneTwoList = oneTwoInteractions_.getPairList();
856 int* oneThreeList = oneThreeInteractions_.getPairList();
857 int* oneFourList = oneFourInteractions_.getPairList();
858
859 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 &nExclude, excludeList,
861 &nOneTwo, oneTwoList,
862 &nOneThree, oneThreeList,
863 &nOneFour, oneFourList,
864 &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
865 &fortranGlobalGroupMembership[0], &isError);
866
867 if( isError ){
868
869 sprintf( painCave.errMsg,
870 "There was an error setting the simulation information in fortran.\n" );
871 painCave.isFatal = 1;
872 painCave.severity = OPENMD_ERROR;
873 simError();
874 }
875
876
877 sprintf( checkPointMsg,
878 "succesfully sent the simulation information to fortran.\n");
879
880 errorCheckPoint();
881
882 // Setup number of neighbors in neighbor list if present
883 if (simParams_->haveNeighborListNeighbors()) {
884 int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 setNeighbors(&nlistNeighbors);
886 }
887
888 #ifdef IS_MPI
889 //SimInfo is responsible for creating localToGlobalAtomIndex and
890 //localToGlobalGroupIndex
891 vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
892 vector<int> localToGlobalCutoffGroupIndex;
893 mpiSimData parallelData;
894
895 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
896
897 //local index(index in DataStorge) of atom is important
898 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
899 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
900 }
901
902 //local index of cutoff group is trivial, it only depends on the order of travesing
903 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
904 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
905 }
906
907 }
908
909 //fill up mpiSimData struct
910 parallelData.nMolGlobal = getNGlobalMolecules();
911 parallelData.nMolLocal = getNMolecules();
912 parallelData.nAtomsGlobal = getNGlobalAtoms();
913 parallelData.nAtomsLocal = getNAtoms();
914 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
915 parallelData.nGroupsLocal = getNCutoffGroups();
916 parallelData.myNode = worldRank;
917 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
918
919 //pass mpiSimData struct and index arrays to fortran
920 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
921 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
922 &localToGlobalCutoffGroupIndex[0], &isError);
923
924 if (isError) {
925 sprintf(painCave.errMsg,
926 "mpiRefresh errror: fortran didn't like something we gave it.\n");
927 painCave.isFatal = 1;
928 simError();
929 }
930
931 sprintf(checkPointMsg, " mpiRefresh successful.\n");
932 errorCheckPoint();
933 #endif
934
935 initFortranFF(&isError);
936 if (isError) {
937 sprintf(painCave.errMsg,
938 "initFortranFF errror: fortran didn't like something we gave it.\n");
939 painCave.isFatal = 1;
940 simError();
941 }
942 fortranInitialized_ = true;
943 }
944
945 void SimInfo::addProperty(GenericData* genData) {
946 properties_.addProperty(genData);
947 }
948
949 void SimInfo::removeProperty(const string& propName) {
950 properties_.removeProperty(propName);
951 }
952
953 void SimInfo::clearProperties() {
954 properties_.clearProperties();
955 }
956
957 vector<string> SimInfo::getPropertyNames() {
958 return properties_.getPropertyNames();
959 }
960
961 vector<GenericData*> SimInfo::getProperties() {
962 return properties_.getProperties();
963 }
964
965 GenericData* SimInfo::getPropertyByName(const string& propName) {
966 return properties_.getPropertyByName(propName);
967 }
968
969 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
970 if (sman_ == sman) {
971 return;
972 }
973 delete sman_;
974 sman_ = sman;
975
976 Molecule* mol;
977 RigidBody* rb;
978 Atom* atom;
979 CutoffGroup* cg;
980 SimInfo::MoleculeIterator mi;
981 Molecule::RigidBodyIterator rbIter;
982 Molecule::AtomIterator atomIter;
983 Molecule::CutoffGroupIterator cgIter;
984
985 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
986
987 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
988 atom->setSnapshotManager(sman_);
989 }
990
991 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
992 rb->setSnapshotManager(sman_);
993 }
994
995 for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
996 cg->setSnapshotManager(sman_);
997 }
998 }
999
1000 }
1001
1002 Vector3d SimInfo::getComVel(){
1003 SimInfo::MoleculeIterator i;
1004 Molecule* mol;
1005
1006 Vector3d comVel(0.0);
1007 RealType totalMass = 0.0;
1008
1009
1010 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1011 RealType mass = mol->getMass();
1012 totalMass += mass;
1013 comVel += mass * mol->getComVel();
1014 }
1015
1016 #ifdef IS_MPI
1017 RealType tmpMass = totalMass;
1018 Vector3d tmpComVel(comVel);
1019 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1020 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1021 #endif
1022
1023 comVel /= totalMass;
1024
1025 return comVel;
1026 }
1027
1028 Vector3d SimInfo::getCom(){
1029 SimInfo::MoleculeIterator i;
1030 Molecule* mol;
1031
1032 Vector3d com(0.0);
1033 RealType totalMass = 0.0;
1034
1035 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1036 RealType mass = mol->getMass();
1037 totalMass += mass;
1038 com += mass * mol->getCom();
1039 }
1040
1041 #ifdef IS_MPI
1042 RealType tmpMass = totalMass;
1043 Vector3d tmpCom(com);
1044 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1045 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1046 #endif
1047
1048 com /= totalMass;
1049
1050 return com;
1051
1052 }
1053
1054 ostream& operator <<(ostream& o, SimInfo& info) {
1055
1056 return o;
1057 }
1058
1059
1060 /*
1061 Returns center of mass and center of mass velocity in one function call.
1062 */
1063
1064 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1065 SimInfo::MoleculeIterator i;
1066 Molecule* mol;
1067
1068
1069 RealType totalMass = 0.0;
1070
1071
1072 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1073 RealType mass = mol->getMass();
1074 totalMass += mass;
1075 com += mass * mol->getCom();
1076 comVel += mass * mol->getComVel();
1077 }
1078
1079 #ifdef IS_MPI
1080 RealType tmpMass = totalMass;
1081 Vector3d tmpCom(com);
1082 Vector3d tmpComVel(comVel);
1083 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1084 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1085 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1086 #endif
1087
1088 com /= totalMass;
1089 comVel /= totalMass;
1090 }
1091
1092 /*
1093 Return intertia tensor for entire system and angular momentum Vector.
1094
1095
1096 [ Ixx -Ixy -Ixz ]
1097 J =| -Iyx Iyy -Iyz |
1098 [ -Izx -Iyz Izz ]
1099 */
1100
1101 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1102
1103
1104 RealType xx = 0.0;
1105 RealType yy = 0.0;
1106 RealType zz = 0.0;
1107 RealType xy = 0.0;
1108 RealType xz = 0.0;
1109 RealType yz = 0.0;
1110 Vector3d com(0.0);
1111 Vector3d comVel(0.0);
1112
1113 getComAll(com, comVel);
1114
1115 SimInfo::MoleculeIterator i;
1116 Molecule* mol;
1117
1118 Vector3d thisq(0.0);
1119 Vector3d thisv(0.0);
1120
1121 RealType thisMass = 0.0;
1122
1123
1124
1125
1126 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1127
1128 thisq = mol->getCom()-com;
1129 thisv = mol->getComVel()-comVel;
1130 thisMass = mol->getMass();
1131 // Compute moment of intertia coefficients.
1132 xx += thisq[0]*thisq[0]*thisMass;
1133 yy += thisq[1]*thisq[1]*thisMass;
1134 zz += thisq[2]*thisq[2]*thisMass;
1135
1136 // compute products of intertia
1137 xy += thisq[0]*thisq[1]*thisMass;
1138 xz += thisq[0]*thisq[2]*thisMass;
1139 yz += thisq[1]*thisq[2]*thisMass;
1140
1141 angularMomentum += cross( thisq, thisv ) * thisMass;
1142
1143 }
1144
1145
1146 inertiaTensor(0,0) = yy + zz;
1147 inertiaTensor(0,1) = -xy;
1148 inertiaTensor(0,2) = -xz;
1149 inertiaTensor(1,0) = -xy;
1150 inertiaTensor(1,1) = xx + zz;
1151 inertiaTensor(1,2) = -yz;
1152 inertiaTensor(2,0) = -xz;
1153 inertiaTensor(2,1) = -yz;
1154 inertiaTensor(2,2) = xx + yy;
1155
1156 #ifdef IS_MPI
1157 Mat3x3d tmpI(inertiaTensor);
1158 Vector3d tmpAngMom;
1159 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1160 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1161 #endif
1162
1163 return;
1164 }
1165
1166 //Returns the angular momentum of the system
1167 Vector3d SimInfo::getAngularMomentum(){
1168
1169 Vector3d com(0.0);
1170 Vector3d comVel(0.0);
1171 Vector3d angularMomentum(0.0);
1172
1173 getComAll(com,comVel);
1174
1175 SimInfo::MoleculeIterator i;
1176 Molecule* mol;
1177
1178 Vector3d thisr(0.0);
1179 Vector3d thisp(0.0);
1180
1181 RealType thisMass;
1182
1183 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1184 thisMass = mol->getMass();
1185 thisr = mol->getCom()-com;
1186 thisp = (mol->getComVel()-comVel)*thisMass;
1187
1188 angularMomentum += cross( thisr, thisp );
1189
1190 }
1191
1192 #ifdef IS_MPI
1193 Vector3d tmpAngMom;
1194 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1195 #endif
1196
1197 return angularMomentum;
1198 }
1199
1200 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1201 return IOIndexToIntegrableObject.at(index);
1202 }
1203
1204 void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1205 IOIndexToIntegrableObject= v;
1206 }
1207
1208 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1209 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1210 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1211 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1212 */
1213 void SimInfo::getGyrationalVolume(RealType &volume){
1214 Mat3x3d intTensor;
1215 RealType det;
1216 Vector3d dummyAngMom;
1217 RealType sysconstants;
1218 RealType geomCnst;
1219
1220 geomCnst = 3.0/2.0;
1221 /* Get the inertial tensor and angular momentum for free*/
1222 getInertiaTensor(intTensor,dummyAngMom);
1223
1224 det = intTensor.determinant();
1225 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1226 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1227 return;
1228 }
1229
1230 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1231 Mat3x3d intTensor;
1232 Vector3d dummyAngMom;
1233 RealType sysconstants;
1234 RealType geomCnst;
1235
1236 geomCnst = 3.0/2.0;
1237 /* Get the inertial tensor and angular momentum for free*/
1238 getInertiaTensor(intTensor,dummyAngMom);
1239
1240 detI = intTensor.determinant();
1241 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1242 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1243 return;
1244 }
1245 /*
1246 void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1247 assert( v.size() == nAtoms_ + nRigidBodies_);
1248 sdByGlobalIndex_ = v;
1249 }
1250
1251 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1252 //assert(index < nAtoms_ + nRigidBodies_);
1253 return sdByGlobalIndex_.at(index);
1254 }
1255 */
1256 int SimInfo::getNGlobalConstraints() {
1257 int nGlobalConstraints;
1258 #ifdef IS_MPI
1259 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1260 MPI_COMM_WORLD);
1261 #else
1262 nGlobalConstraints = nConstraints_;
1263 #endif
1264 return nGlobalConstraints;
1265 }
1266
1267 }//end namespace OpenMD
1268

Properties

Name Value
svn:keywords Author Id Revision Date