6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
48 |
|
|
49 |
|
#include <algorithm> |
50 |
|
#include <set> |
51 |
+ |
#include <map> |
52 |
|
|
53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
< |
#include "UseTheForce/fCutoffPolicy.h" |
56 |
< |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
57 |
< |
#include "UseTheForce/doForces_interface.h" |
58 |
< |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
59 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
56 |
> |
#include "primitives/StuntDouble.hpp" |
57 |
|
#include "utils/MemoryUtils.hpp" |
58 |
|
#include "utils/simError.h" |
59 |
|
#include "selection/SelectionManager.hpp" |
60 |
+ |
#include "io/ForceFieldOptions.hpp" |
61 |
+ |
#include "UseTheForce/ForceField.hpp" |
62 |
+ |
#include "nonbonded/SwitchingFunction.hpp" |
63 |
|
|
64 |
< |
#ifdef IS_MPI |
65 |
< |
#include "UseTheForce/mpiComponentPlan.h" |
66 |
< |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
67 |
< |
#endif |
68 |
< |
|
69 |
< |
namespace oopse { |
70 |
< |
|
71 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
72 |
< |
ForceField* ff, Globals* simParams) : |
73 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
74 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
64 |
> |
using namespace std; |
65 |
> |
namespace OpenMD { |
66 |
> |
|
67 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
68 |
> |
forceField_(ff), simParams_(simParams), |
69 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
70 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
71 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
72 |
< |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
73 |
< |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
74 |
< |
sman_(NULL), fortranInitialized_(false) { |
75 |
< |
|
81 |
< |
|
82 |
< |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
83 |
< |
MoleculeStamp* molStamp; |
84 |
< |
int nMolWithSameStamp; |
85 |
< |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
86 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
87 |
< |
CutoffGroupStamp* cgStamp; |
88 |
< |
RigidBodyStamp* rbStamp; |
89 |
< |
int nRigidAtoms = 0; |
72 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
73 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
74 |
> |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
75 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
76 |
|
|
77 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
78 |
< |
molStamp = i->first; |
79 |
< |
nMolWithSameStamp = i->second; |
80 |
< |
|
81 |
< |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
82 |
< |
|
83 |
< |
//calculate atoms in molecules |
84 |
< |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
85 |
< |
|
86 |
< |
|
87 |
< |
//calculate atoms in cutoff groups |
88 |
< |
int nAtomsInGroups = 0; |
89 |
< |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
90 |
< |
|
91 |
< |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
92 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
93 |
< |
nAtomsInGroups += cgStamp->getNMembers(); |
94 |
< |
} |
95 |
< |
|
96 |
< |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
97 |
< |
|
98 |
< |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
99 |
< |
|
100 |
< |
//calculate atoms in rigid bodies |
101 |
< |
int nAtomsInRigidBodies = 0; |
102 |
< |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
117 |
< |
|
118 |
< |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
119 |
< |
rbStamp = molStamp->getRigidBody(j); |
120 |
< |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
121 |
< |
} |
122 |
< |
|
123 |
< |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
124 |
< |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
125 |
< |
|
77 |
> |
MoleculeStamp* molStamp; |
78 |
> |
int nMolWithSameStamp; |
79 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
80 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
81 |
> |
CutoffGroupStamp* cgStamp; |
82 |
> |
RigidBodyStamp* rbStamp; |
83 |
> |
int nRigidAtoms = 0; |
84 |
> |
|
85 |
> |
vector<Component*> components = simParams->getComponents(); |
86 |
> |
|
87 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
88 |
> |
molStamp = (*i)->getMoleculeStamp(); |
89 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
90 |
> |
|
91 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
92 |
> |
|
93 |
> |
//calculate atoms in molecules |
94 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
95 |
> |
|
96 |
> |
//calculate atoms in cutoff groups |
97 |
> |
int nAtomsInGroups = 0; |
98 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
99 |
> |
|
100 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
101 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
102 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
103 |
|
} |
104 |
< |
|
105 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
106 |
< |
//group therefore the total number of cutoff groups in the system is |
107 |
< |
//equal to the total number of atoms minus number of atoms belong to |
108 |
< |
//cutoff group defined in meta-data file plus the number of cutoff |
109 |
< |
//groups defined in meta-data file |
110 |
< |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
111 |
< |
|
112 |
< |
//every free atom (atom does not belong to rigid bodies) is an |
113 |
< |
//integrable object therefore the total number of integrable objects |
114 |
< |
//in the system is equal to the total number of atoms minus number of |
115 |
< |
//atoms belong to rigid body defined in meta-data file plus the number |
116 |
< |
//of rigid bodies defined in meta-data file |
117 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
118 |
< |
+ nGlobalRigidBodies_; |
119 |
< |
|
120 |
< |
nGlobalMols_ = molStampIds_.size(); |
144 |
< |
|
145 |
< |
#ifdef IS_MPI |
146 |
< |
molToProcMap_.resize(nGlobalMols_); |
147 |
< |
#endif |
148 |
< |
|
104 |
> |
|
105 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
106 |
> |
|
107 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
108 |
> |
|
109 |
> |
//calculate atoms in rigid bodies |
110 |
> |
int nAtomsInRigidBodies = 0; |
111 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
112 |
> |
|
113 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
114 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
115 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
116 |
> |
} |
117 |
> |
|
118 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
119 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
120 |
> |
|
121 |
|
} |
122 |
+ |
|
123 |
+ |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
124 |
+ |
//group therefore the total number of cutoff groups in the system is |
125 |
+ |
//equal to the total number of atoms minus number of atoms belong to |
126 |
+ |
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
+ |
//groups defined in meta-data file |
128 |
|
|
129 |
+ |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
130 |
+ |
|
131 |
+ |
//every free atom (atom does not belong to rigid bodies) is an |
132 |
+ |
//integrable object therefore the total number of integrable objects |
133 |
+ |
//in the system is equal to the total number of atoms minus number of |
134 |
+ |
//atoms belong to rigid body defined in meta-data file plus the number |
135 |
+ |
//of rigid bodies defined in meta-data file |
136 |
+ |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
137 |
+ |
+ nGlobalRigidBodies_; |
138 |
+ |
|
139 |
+ |
nGlobalMols_ = molStampIds_.size(); |
140 |
+ |
molToProcMap_.resize(nGlobalMols_); |
141 |
+ |
} |
142 |
+ |
|
143 |
|
SimInfo::~SimInfo() { |
144 |
< |
std::map<int, Molecule*>::iterator i; |
144 |
> |
map<int, Molecule*>::iterator i; |
145 |
|
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
146 |
|
delete i->second; |
147 |
|
} |
148 |
|
molecules_.clear(); |
149 |
|
|
158 |
– |
delete stamps_; |
150 |
|
delete sman_; |
151 |
|
delete simParams_; |
152 |
|
delete forceField_; |
153 |
|
} |
154 |
|
|
164 |
– |
int SimInfo::getNGlobalConstraints() { |
165 |
– |
int nGlobalConstraints; |
166 |
– |
#ifdef IS_MPI |
167 |
– |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
168 |
– |
MPI_COMM_WORLD); |
169 |
– |
#else |
170 |
– |
nGlobalConstraints = nConstraints_; |
171 |
– |
#endif |
172 |
– |
return nGlobalConstraints; |
173 |
– |
} |
155 |
|
|
156 |
|
bool SimInfo::addMolecule(Molecule* mol) { |
157 |
|
MoleculeIterator i; |
158 |
< |
|
158 |
> |
|
159 |
|
i = molecules_.find(mol->getGlobalIndex()); |
160 |
|
if (i == molecules_.end() ) { |
161 |
< |
|
162 |
< |
molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol)); |
163 |
< |
|
161 |
> |
|
162 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
163 |
> |
|
164 |
|
nAtoms_ += mol->getNAtoms(); |
165 |
|
nBonds_ += mol->getNBonds(); |
166 |
|
nBends_ += mol->getNBends(); |
167 |
|
nTorsions_ += mol->getNTorsions(); |
168 |
+ |
nInversions_ += mol->getNInversions(); |
169 |
|
nRigidBodies_ += mol->getNRigidBodies(); |
170 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
171 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
172 |
|
nConstraints_ += mol->getNConstraintPairs(); |
173 |
< |
|
174 |
< |
addExcludePairs(mol); |
175 |
< |
|
173 |
> |
|
174 |
> |
addInteractionPairs(mol); |
175 |
> |
|
176 |
|
return true; |
177 |
|
} else { |
178 |
|
return false; |
179 |
|
} |
180 |
|
} |
181 |
< |
|
181 |
> |
|
182 |
|
bool SimInfo::removeMolecule(Molecule* mol) { |
183 |
|
MoleculeIterator i; |
184 |
|
i = molecules_.find(mol->getGlobalIndex()); |
191 |
|
nBonds_ -= mol->getNBonds(); |
192 |
|
nBends_ -= mol->getNBends(); |
193 |
|
nTorsions_ -= mol->getNTorsions(); |
194 |
+ |
nInversions_ -= mol->getNInversions(); |
195 |
|
nRigidBodies_ -= mol->getNRigidBodies(); |
196 |
|
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
197 |
|
nCutoffGroups_ -= mol->getNCutoffGroups(); |
198 |
|
nConstraints_ -= mol->getNConstraintPairs(); |
199 |
|
|
200 |
< |
removeExcludePairs(mol); |
200 |
> |
removeInteractionPairs(mol); |
201 |
|
molecules_.erase(mol->getGlobalIndex()); |
202 |
|
|
203 |
|
delete mol; |
206 |
|
} else { |
207 |
|
return false; |
208 |
|
} |
226 |
– |
|
227 |
– |
|
209 |
|
} |
210 |
|
|
211 |
|
|
223 |
|
void SimInfo::calcNdf() { |
224 |
|
int ndf_local; |
225 |
|
MoleculeIterator i; |
226 |
< |
std::vector<StuntDouble*>::iterator j; |
226 |
> |
vector<StuntDouble*>::iterator j; |
227 |
|
Molecule* mol; |
228 |
|
StuntDouble* integrableObject; |
229 |
|
|
243 |
|
} |
244 |
|
} |
245 |
|
|
246 |
< |
}//end for (integrableObject) |
247 |
< |
}// end for (mol) |
246 |
> |
} |
247 |
> |
} |
248 |
|
|
249 |
|
// n_constraints is local, so subtract them on each processor |
250 |
|
ndf_local -= nConstraints_; |
261 |
|
|
262 |
|
} |
263 |
|
|
264 |
+ |
int SimInfo::getFdf() { |
265 |
+ |
#ifdef IS_MPI |
266 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
267 |
+ |
#else |
268 |
+ |
fdf_ = fdf_local; |
269 |
+ |
#endif |
270 |
+ |
return fdf_; |
271 |
+ |
} |
272 |
+ |
|
273 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
274 |
+ |
int nLocalCutoffAtoms = 0; |
275 |
+ |
Molecule* mol; |
276 |
+ |
MoleculeIterator mi; |
277 |
+ |
CutoffGroup* cg; |
278 |
+ |
Molecule::CutoffGroupIterator ci; |
279 |
+ |
|
280 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
281 |
+ |
|
282 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
283 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
284 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
285 |
+ |
|
286 |
+ |
} |
287 |
+ |
} |
288 |
+ |
|
289 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
290 |
+ |
} |
291 |
+ |
|
292 |
|
void SimInfo::calcNdfRaw() { |
293 |
|
int ndfRaw_local; |
294 |
|
|
295 |
|
MoleculeIterator i; |
296 |
< |
std::vector<StuntDouble*>::iterator j; |
296 |
> |
vector<StuntDouble*>::iterator j; |
297 |
|
Molecule* mol; |
298 |
|
StuntDouble* integrableObject; |
299 |
|
|
340 |
|
|
341 |
|
} |
342 |
|
|
343 |
< |
void SimInfo::addExcludePairs(Molecule* mol) { |
344 |
< |
std::vector<Bond*>::iterator bondIter; |
345 |
< |
std::vector<Bend*>::iterator bendIter; |
346 |
< |
std::vector<Torsion*>::iterator torsionIter; |
343 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
344 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
345 |
> |
vector<Bond*>::iterator bondIter; |
346 |
> |
vector<Bend*>::iterator bendIter; |
347 |
> |
vector<Torsion*>::iterator torsionIter; |
348 |
> |
vector<Inversion*>::iterator inversionIter; |
349 |
|
Bond* bond; |
350 |
|
Bend* bend; |
351 |
|
Torsion* torsion; |
352 |
+ |
Inversion* inversion; |
353 |
|
int a; |
354 |
|
int b; |
355 |
|
int c; |
356 |
|
int d; |
357 |
+ |
|
358 |
+ |
// atomGroups can be used to add special interaction maps between |
359 |
+ |
// groups of atoms that are in two separate rigid bodies. |
360 |
+ |
// However, most site-site interactions between two rigid bodies |
361 |
+ |
// are probably not special, just the ones between the physically |
362 |
+ |
// bonded atoms. Interactions *within* a single rigid body should |
363 |
+ |
// always be excluded. These are done at the bottom of this |
364 |
+ |
// function. |
365 |
+ |
|
366 |
+ |
map<int, set<int> > atomGroups; |
367 |
+ |
Molecule::RigidBodyIterator rbIter; |
368 |
+ |
RigidBody* rb; |
369 |
+ |
Molecule::IntegrableObjectIterator ii; |
370 |
+ |
StuntDouble* integrableObject; |
371 |
|
|
372 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
372 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
373 |
> |
integrableObject != NULL; |
374 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
375 |
> |
|
376 |
> |
if (integrableObject->isRigidBody()) { |
377 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
378 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
379 |
> |
set<int> rigidAtoms; |
380 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
381 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
382 |
> |
} |
383 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
384 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
385 |
> |
} |
386 |
> |
} else { |
387 |
> |
set<int> oneAtomSet; |
388 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
389 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
390 |
> |
} |
391 |
> |
} |
392 |
> |
|
393 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
394 |
> |
bond = mol->nextBond(bondIter)) { |
395 |
> |
|
396 |
|
a = bond->getAtomA()->getGlobalIndex(); |
397 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
398 |
< |
exclude_.addPair(a, b); |
397 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
398 |
> |
|
399 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
400 |
> |
oneTwoInteractions_.addPair(a, b); |
401 |
> |
} else { |
402 |
> |
excludedInteractions_.addPair(a, b); |
403 |
> |
} |
404 |
|
} |
405 |
|
|
406 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
406 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
407 |
> |
bend = mol->nextBend(bendIter)) { |
408 |
> |
|
409 |
|
a = bend->getAtomA()->getGlobalIndex(); |
410 |
|
b = bend->getAtomB()->getGlobalIndex(); |
411 |
|
c = bend->getAtomC()->getGlobalIndex(); |
412 |
+ |
|
413 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
414 |
+ |
oneTwoInteractions_.addPair(a, b); |
415 |
+ |
oneTwoInteractions_.addPair(b, c); |
416 |
+ |
} else { |
417 |
+ |
excludedInteractions_.addPair(a, b); |
418 |
+ |
excludedInteractions_.addPair(b, c); |
419 |
+ |
} |
420 |
|
|
421 |
< |
exclude_.addPair(a, b); |
422 |
< |
exclude_.addPair(a, c); |
423 |
< |
exclude_.addPair(b, c); |
421 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
422 |
> |
oneThreeInteractions_.addPair(a, c); |
423 |
> |
} else { |
424 |
> |
excludedInteractions_.addPair(a, c); |
425 |
> |
} |
426 |
|
} |
427 |
|
|
428 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
428 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
429 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
430 |
> |
|
431 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
432 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
433 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
434 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
434 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
435 |
|
|
436 |
< |
exclude_.addPair(a, b); |
437 |
< |
exclude_.addPair(a, c); |
438 |
< |
exclude_.addPair(a, d); |
439 |
< |
exclude_.addPair(b, c); |
440 |
< |
exclude_.addPair(b, d); |
441 |
< |
exclude_.addPair(c, d); |
436 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
437 |
> |
oneTwoInteractions_.addPair(a, b); |
438 |
> |
oneTwoInteractions_.addPair(b, c); |
439 |
> |
oneTwoInteractions_.addPair(c, d); |
440 |
> |
} else { |
441 |
> |
excludedInteractions_.addPair(a, b); |
442 |
> |
excludedInteractions_.addPair(b, c); |
443 |
> |
excludedInteractions_.addPair(c, d); |
444 |
> |
} |
445 |
> |
|
446 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
447 |
> |
oneThreeInteractions_.addPair(a, c); |
448 |
> |
oneThreeInteractions_.addPair(b, d); |
449 |
> |
} else { |
450 |
> |
excludedInteractions_.addPair(a, c); |
451 |
> |
excludedInteractions_.addPair(b, d); |
452 |
> |
} |
453 |
> |
|
454 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
455 |
> |
oneFourInteractions_.addPair(a, d); |
456 |
> |
} else { |
457 |
> |
excludedInteractions_.addPair(a, d); |
458 |
> |
} |
459 |
|
} |
460 |
|
|
461 |
< |
Molecule::RigidBodyIterator rbIter; |
462 |
< |
RigidBody* rb; |
463 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
464 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
465 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
466 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
461 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
462 |
> |
inversion = mol->nextInversion(inversionIter)) { |
463 |
> |
|
464 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
465 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
466 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
467 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
468 |
> |
|
469 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
470 |
> |
oneTwoInteractions_.addPair(a, b); |
471 |
> |
oneTwoInteractions_.addPair(a, c); |
472 |
> |
oneTwoInteractions_.addPair(a, d); |
473 |
> |
} else { |
474 |
> |
excludedInteractions_.addPair(a, b); |
475 |
> |
excludedInteractions_.addPair(a, c); |
476 |
> |
excludedInteractions_.addPair(a, d); |
477 |
> |
} |
478 |
> |
|
479 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
480 |
> |
oneThreeInteractions_.addPair(b, c); |
481 |
> |
oneThreeInteractions_.addPair(b, d); |
482 |
> |
oneThreeInteractions_.addPair(c, d); |
483 |
> |
} else { |
484 |
> |
excludedInteractions_.addPair(b, c); |
485 |
> |
excludedInteractions_.addPair(b, d); |
486 |
> |
excludedInteractions_.addPair(c, d); |
487 |
> |
} |
488 |
> |
} |
489 |
> |
|
490 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
491 |
> |
rb = mol->nextRigidBody(rbIter)) { |
492 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
493 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
494 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
495 |
|
a = atoms[i]->getGlobalIndex(); |
496 |
|
b = atoms[j]->getGlobalIndex(); |
497 |
< |
exclude_.addPair(a, b); |
497 |
> |
excludedInteractions_.addPair(a, b); |
498 |
|
} |
499 |
|
} |
500 |
|
} |
501 |
|
|
502 |
|
} |
503 |
|
|
504 |
< |
void SimInfo::removeExcludePairs(Molecule* mol) { |
505 |
< |
std::vector<Bond*>::iterator bondIter; |
506 |
< |
std::vector<Bend*>::iterator bendIter; |
507 |
< |
std::vector<Torsion*>::iterator torsionIter; |
504 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
505 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
506 |
> |
vector<Bond*>::iterator bondIter; |
507 |
> |
vector<Bend*>::iterator bendIter; |
508 |
> |
vector<Torsion*>::iterator torsionIter; |
509 |
> |
vector<Inversion*>::iterator inversionIter; |
510 |
|
Bond* bond; |
511 |
|
Bend* bend; |
512 |
|
Torsion* torsion; |
513 |
+ |
Inversion* inversion; |
514 |
|
int a; |
515 |
|
int b; |
516 |
|
int c; |
517 |
|
int d; |
518 |
+ |
|
519 |
+ |
map<int, set<int> > atomGroups; |
520 |
+ |
Molecule::RigidBodyIterator rbIter; |
521 |
+ |
RigidBody* rb; |
522 |
+ |
Molecule::IntegrableObjectIterator ii; |
523 |
+ |
StuntDouble* integrableObject; |
524 |
|
|
525 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
525 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
526 |
> |
integrableObject != NULL; |
527 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
528 |
> |
|
529 |
> |
if (integrableObject->isRigidBody()) { |
530 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
531 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
532 |
> |
set<int> rigidAtoms; |
533 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
534 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
535 |
> |
} |
536 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
537 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
538 |
> |
} |
539 |
> |
} else { |
540 |
> |
set<int> oneAtomSet; |
541 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
542 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
543 |
> |
} |
544 |
> |
} |
545 |
> |
|
546 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
547 |
> |
bond = mol->nextBond(bondIter)) { |
548 |
> |
|
549 |
|
a = bond->getAtomA()->getGlobalIndex(); |
550 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
551 |
< |
exclude_.removePair(a, b); |
550 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
551 |
> |
|
552 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
553 |
> |
oneTwoInteractions_.removePair(a, b); |
554 |
> |
} else { |
555 |
> |
excludedInteractions_.removePair(a, b); |
556 |
> |
} |
557 |
|
} |
558 |
|
|
559 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
559 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
560 |
> |
bend = mol->nextBend(bendIter)) { |
561 |
> |
|
562 |
|
a = bend->getAtomA()->getGlobalIndex(); |
563 |
|
b = bend->getAtomB()->getGlobalIndex(); |
564 |
|
c = bend->getAtomC()->getGlobalIndex(); |
565 |
+ |
|
566 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
567 |
+ |
oneTwoInteractions_.removePair(a, b); |
568 |
+ |
oneTwoInteractions_.removePair(b, c); |
569 |
+ |
} else { |
570 |
+ |
excludedInteractions_.removePair(a, b); |
571 |
+ |
excludedInteractions_.removePair(b, c); |
572 |
+ |
} |
573 |
|
|
574 |
< |
exclude_.removePair(a, b); |
575 |
< |
exclude_.removePair(a, c); |
576 |
< |
exclude_.removePair(b, c); |
574 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
575 |
> |
oneThreeInteractions_.removePair(a, c); |
576 |
> |
} else { |
577 |
> |
excludedInteractions_.removePair(a, c); |
578 |
> |
} |
579 |
|
} |
580 |
|
|
581 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
581 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
582 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
583 |
> |
|
584 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
585 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
586 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
587 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
587 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
588 |
> |
|
589 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
590 |
> |
oneTwoInteractions_.removePair(a, b); |
591 |
> |
oneTwoInteractions_.removePair(b, c); |
592 |
> |
oneTwoInteractions_.removePair(c, d); |
593 |
> |
} else { |
594 |
> |
excludedInteractions_.removePair(a, b); |
595 |
> |
excludedInteractions_.removePair(b, c); |
596 |
> |
excludedInteractions_.removePair(c, d); |
597 |
> |
} |
598 |
|
|
599 |
< |
exclude_.removePair(a, b); |
600 |
< |
exclude_.removePair(a, c); |
601 |
< |
exclude_.removePair(a, d); |
602 |
< |
exclude_.removePair(b, c); |
603 |
< |
exclude_.removePair(b, d); |
604 |
< |
exclude_.removePair(c, d); |
599 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
600 |
> |
oneThreeInteractions_.removePair(a, c); |
601 |
> |
oneThreeInteractions_.removePair(b, d); |
602 |
> |
} else { |
603 |
> |
excludedInteractions_.removePair(a, c); |
604 |
> |
excludedInteractions_.removePair(b, d); |
605 |
> |
} |
606 |
> |
|
607 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
608 |
> |
oneFourInteractions_.removePair(a, d); |
609 |
> |
} else { |
610 |
> |
excludedInteractions_.removePair(a, d); |
611 |
> |
} |
612 |
|
} |
613 |
|
|
614 |
< |
Molecule::RigidBodyIterator rbIter; |
615 |
< |
RigidBody* rb; |
616 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
617 |
< |
std::vector<Atom*> atoms = rb->getAtoms(); |
618 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
619 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
614 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
615 |
> |
inversion = mol->nextInversion(inversionIter)) { |
616 |
> |
|
617 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
618 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
619 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
620 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
621 |
> |
|
622 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
623 |
> |
oneTwoInteractions_.removePair(a, b); |
624 |
> |
oneTwoInteractions_.removePair(a, c); |
625 |
> |
oneTwoInteractions_.removePair(a, d); |
626 |
> |
} else { |
627 |
> |
excludedInteractions_.removePair(a, b); |
628 |
> |
excludedInteractions_.removePair(a, c); |
629 |
> |
excludedInteractions_.removePair(a, d); |
630 |
> |
} |
631 |
> |
|
632 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
633 |
> |
oneThreeInteractions_.removePair(b, c); |
634 |
> |
oneThreeInteractions_.removePair(b, d); |
635 |
> |
oneThreeInteractions_.removePair(c, d); |
636 |
> |
} else { |
637 |
> |
excludedInteractions_.removePair(b, c); |
638 |
> |
excludedInteractions_.removePair(b, d); |
639 |
> |
excludedInteractions_.removePair(c, d); |
640 |
> |
} |
641 |
> |
} |
642 |
> |
|
643 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
644 |
> |
rb = mol->nextRigidBody(rbIter)) { |
645 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
646 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
647 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
648 |
|
a = atoms[i]->getGlobalIndex(); |
649 |
|
b = atoms[j]->getGlobalIndex(); |
650 |
< |
exclude_.removePair(a, b); |
650 |
> |
excludedInteractions_.removePair(a, b); |
651 |
|
} |
652 |
|
} |
653 |
|
} |
654 |
< |
|
654 |
> |
|
655 |
|
} |
656 |
< |
|
657 |
< |
|
656 |
> |
|
657 |
> |
|
658 |
|
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
659 |
|
int curStampId; |
660 |
< |
|
660 |
> |
|
661 |
|
//index from 0 |
662 |
|
curStampId = moleculeStamps_.size(); |
663 |
|
|
665 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
666 |
|
} |
667 |
|
|
459 |
– |
void SimInfo::update() { |
668 |
|
|
669 |
< |
setupSimType(); |
670 |
< |
|
671 |
< |
#ifdef IS_MPI |
672 |
< |
setupFortranParallel(); |
673 |
< |
#endif |
674 |
< |
|
675 |
< |
setupFortranSim(); |
676 |
< |
|
677 |
< |
//setup fortran force field |
470 |
< |
/** @deprecate */ |
471 |
< |
int isError = 0; |
472 |
< |
|
473 |
< |
setupElectrostaticSummationMethod( isError ); |
474 |
< |
|
475 |
< |
if(isError){ |
476 |
< |
sprintf( painCave.errMsg, |
477 |
< |
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
478 |
< |
painCave.isFatal = 1; |
479 |
< |
simError(); |
480 |
< |
} |
481 |
< |
|
482 |
< |
|
483 |
< |
setupCutoff(); |
484 |
< |
|
669 |
> |
/** |
670 |
> |
* update |
671 |
> |
* |
672 |
> |
* Performs the global checks and variable settings after the |
673 |
> |
* objects have been created. |
674 |
> |
* |
675 |
> |
*/ |
676 |
> |
void SimInfo::update() { |
677 |
> |
setupSimVariables(); |
678 |
|
calcNdf(); |
679 |
|
calcNdfRaw(); |
680 |
|
calcNdfTrans(); |
488 |
– |
|
489 |
– |
fortranInitialized_ = true; |
681 |
|
} |
682 |
< |
|
683 |
< |
std::set<AtomType*> SimInfo::getUniqueAtomTypes() { |
682 |
> |
|
683 |
> |
/** |
684 |
> |
* getSimulatedAtomTypes |
685 |
> |
* |
686 |
> |
* Returns an STL set of AtomType* that are actually present in this |
687 |
> |
* simulation. Must query all processors to assemble this information. |
688 |
> |
* |
689 |
> |
*/ |
690 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
691 |
|
SimInfo::MoleculeIterator mi; |
692 |
|
Molecule* mol; |
693 |
|
Molecule::AtomIterator ai; |
694 |
|
Atom* atom; |
695 |
< |
std::set<AtomType*> atomTypes; |
696 |
< |
|
697 |
< |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
500 |
< |
|
695 |
> |
set<AtomType*> atomTypes; |
696 |
> |
|
697 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
698 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
699 |
|
atomTypes.insert(atom->getAtomType()); |
700 |
< |
} |
701 |
< |
|
505 |
< |
} |
700 |
> |
} |
701 |
> |
} |
702 |
|
|
703 |
< |
return atomTypes; |
508 |
< |
} |
703 |
> |
#ifdef IS_MPI |
704 |
|
|
705 |
< |
void SimInfo::setupSimType() { |
706 |
< |
std::set<AtomType*>::iterator i; |
512 |
< |
std::set<AtomType*> atomTypes; |
513 |
< |
atomTypes = getUniqueAtomTypes(); |
514 |
< |
|
515 |
< |
int useLennardJones = 0; |
516 |
< |
int useElectrostatic = 0; |
517 |
< |
int useEAM = 0; |
518 |
< |
int useCharge = 0; |
519 |
< |
int useDirectional = 0; |
520 |
< |
int useDipole = 0; |
521 |
< |
int useGayBerne = 0; |
522 |
< |
int useSticky = 0; |
523 |
< |
int useStickyPower = 0; |
524 |
< |
int useShape = 0; |
525 |
< |
int useFLARB = 0; //it is not in AtomType yet |
526 |
< |
int useDirectionalAtom = 0; |
527 |
< |
int useElectrostatics = 0; |
528 |
< |
//usePBC and useRF are from simParams |
529 |
< |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
530 |
< |
int useRF; |
531 |
< |
std::string myMethod; |
705 |
> |
// loop over the found atom types on this processor, and add their |
706 |
> |
// numerical idents to a vector: |
707 |
|
|
708 |
< |
// set the useRF logical |
709 |
< |
useRF = 0; |
710 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
711 |
< |
myMethod = simParams_->getElectrostaticSummationMethod(); |
537 |
< |
if (myMethod == "REACTION_FIELD") |
538 |
< |
useRF = 1; |
539 |
< |
} |
708 |
> |
vector<int> foundTypes; |
709 |
> |
set<AtomType*>::iterator i; |
710 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
711 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
712 |
|
|
713 |
< |
//loop over all of the atom types |
714 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
543 |
< |
useLennardJones |= (*i)->isLennardJones(); |
544 |
< |
useElectrostatic |= (*i)->isElectrostatic(); |
545 |
< |
useEAM |= (*i)->isEAM(); |
546 |
< |
useCharge |= (*i)->isCharge(); |
547 |
< |
useDirectional |= (*i)->isDirectional(); |
548 |
< |
useDipole |= (*i)->isDipole(); |
549 |
< |
useGayBerne |= (*i)->isGayBerne(); |
550 |
< |
useSticky |= (*i)->isSticky(); |
551 |
< |
useStickyPower |= (*i)->isStickyPower(); |
552 |
< |
useShape |= (*i)->isShape(); |
553 |
< |
} |
713 |
> |
// count_local holds the number of found types on this processor |
714 |
> |
int count_local = foundTypes.size(); |
715 |
|
|
716 |
< |
if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) { |
717 |
< |
useDirectionalAtom = 1; |
718 |
< |
} |
716 |
> |
// count holds the total number of found types on all processors |
717 |
> |
// (some will be redundant with the ones found locally): |
718 |
> |
int count; |
719 |
> |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
720 |
|
|
721 |
< |
if (useCharge || useDipole) { |
722 |
< |
useElectrostatics = 1; |
723 |
< |
} |
721 |
> |
// create a vector to hold the globally found types, and resize it: |
722 |
> |
vector<int> ftGlobal; |
723 |
> |
ftGlobal.resize(count); |
724 |
> |
vector<int> counts; |
725 |
|
|
726 |
< |
#ifdef IS_MPI |
727 |
< |
int temp; |
726 |
> |
int nproc = MPI::COMM_WORLD.Get_size(); |
727 |
> |
counts.resize(nproc); |
728 |
> |
vector<int> disps; |
729 |
> |
disps.resize(nproc); |
730 |
|
|
731 |
< |
temp = usePBC; |
732 |
< |
MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
731 |
> |
// now spray out the foundTypes to all the other processors: |
732 |
> |
|
733 |
> |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
734 |
> |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
735 |
|
|
736 |
< |
temp = useDirectionalAtom; |
737 |
< |
MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
736 |
> |
// foundIdents is a stl set, so inserting an already found ident |
737 |
> |
// will have no effect. |
738 |
> |
set<int> foundIdents; |
739 |
> |
vector<int>::iterator j; |
740 |
> |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
741 |
> |
foundIdents.insert((*j)); |
742 |
> |
|
743 |
> |
// now iterate over the foundIdents and get the actual atom types |
744 |
> |
// that correspond to these: |
745 |
> |
set<int>::iterator it; |
746 |
> |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
747 |
> |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
748 |
> |
|
749 |
> |
#endif |
750 |
> |
|
751 |
> |
return atomTypes; |
752 |
> |
} |
753 |
|
|
754 |
< |
temp = useLennardJones; |
755 |
< |
MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
756 |
< |
|
757 |
< |
temp = useElectrostatics; |
758 |
< |
MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
759 |
< |
|
760 |
< |
temp = useCharge; |
761 |
< |
MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
580 |
< |
|
581 |
< |
temp = useDipole; |
582 |
< |
MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
583 |
< |
|
584 |
< |
temp = useSticky; |
585 |
< |
MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
586 |
< |
|
587 |
< |
temp = useStickyPower; |
588 |
< |
MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
754 |
> |
void SimInfo::setupSimVariables() { |
755 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
756 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
757 |
> |
calcBoxDipole_ = false; |
758 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
759 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
760 |
> |
calcBoxDipole_ = true; |
761 |
> |
} |
762 |
|
|
763 |
< |
temp = useGayBerne; |
764 |
< |
MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
763 |
> |
set<AtomType*>::iterator i; |
764 |
> |
set<AtomType*> atomTypes; |
765 |
> |
atomTypes = getSimulatedAtomTypes(); |
766 |
> |
int usesElectrostatic = 0; |
767 |
> |
int usesMetallic = 0; |
768 |
> |
int usesDirectional = 0; |
769 |
> |
//loop over all of the atom types |
770 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
771 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
772 |
> |
usesMetallic |= (*i)->isMetal(); |
773 |
> |
usesDirectional |= (*i)->isDirectional(); |
774 |
> |
} |
775 |
> |
|
776 |
> |
#ifdef IS_MPI |
777 |
> |
int temp; |
778 |
> |
temp = usesDirectional; |
779 |
> |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
780 |
> |
|
781 |
> |
temp = usesMetallic; |
782 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
783 |
> |
|
784 |
> |
temp = usesElectrostatic; |
785 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
786 |
> |
#else |
787 |
|
|
788 |
< |
temp = useEAM; |
789 |
< |
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
788 |
> |
usesDirectionalAtoms_ = usesDirectional; |
789 |
> |
usesMetallicAtoms_ = usesMetallic; |
790 |
> |
usesElectrostaticAtoms_ = usesElectrostatic; |
791 |
|
|
596 |
– |
temp = useShape; |
597 |
– |
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
598 |
– |
|
599 |
– |
temp = useFLARB; |
600 |
– |
MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
601 |
– |
|
602 |
– |
temp = useRF; |
603 |
– |
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
604 |
– |
|
792 |
|
#endif |
793 |
+ |
|
794 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
795 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
796 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
797 |
+ |
} |
798 |
|
|
607 |
– |
fInfo_.SIM_uses_PBC = usePBC; |
608 |
– |
fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom; |
609 |
– |
fInfo_.SIM_uses_LennardJones = useLennardJones; |
610 |
– |
fInfo_.SIM_uses_Electrostatics = useElectrostatics; |
611 |
– |
fInfo_.SIM_uses_Charges = useCharge; |
612 |
– |
fInfo_.SIM_uses_Dipoles = useDipole; |
613 |
– |
fInfo_.SIM_uses_Sticky = useSticky; |
614 |
– |
fInfo_.SIM_uses_StickyPower = useStickyPower; |
615 |
– |
fInfo_.SIM_uses_GayBerne = useGayBerne; |
616 |
– |
fInfo_.SIM_uses_EAM = useEAM; |
617 |
– |
fInfo_.SIM_uses_Shapes = useShape; |
618 |
– |
fInfo_.SIM_uses_FLARB = useFLARB; |
619 |
– |
fInfo_.SIM_uses_RF = useRF; |
799 |
|
|
800 |
< |
if( fInfo_.SIM_uses_Dipoles && myMethod == "REACTION_FIELD") { |
800 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
801 |
> |
SimInfo::MoleculeIterator mi; |
802 |
> |
Molecule* mol; |
803 |
> |
Molecule::AtomIterator ai; |
804 |
> |
Atom* atom; |
805 |
|
|
806 |
< |
if (simParams_->haveDielectric()) { |
807 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
808 |
< |
} else { |
809 |
< |
sprintf(painCave.errMsg, |
810 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
811 |
< |
"\tYou are trying to use Reaction Field without" |
629 |
< |
"\tsetting a dielectric constant!\n"); |
630 |
< |
painCave.isFatal = 1; |
631 |
< |
simError(); |
806 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
807 |
> |
|
808 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
809 |
> |
|
810 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
811 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
812 |
|
} |
633 |
– |
|
634 |
– |
} else { |
635 |
– |
fInfo_.dielect = 0.0; |
813 |
|
} |
814 |
< |
|
814 |
> |
return GlobalAtomIndices; |
815 |
|
} |
816 |
|
|
640 |
– |
void SimInfo::setupFortranSim() { |
641 |
– |
int isError; |
642 |
– |
int nExclude; |
643 |
– |
std::vector<int> fortranGlobalGroupMembership; |
644 |
– |
|
645 |
– |
nExclude = exclude_.getSize(); |
646 |
– |
isError = 0; |
817 |
|
|
818 |
< |
//globalGroupMembership_ is filled by SimCreator |
819 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
820 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
818 |
> |
vector<int> SimInfo::getGlobalGroupIndices() { |
819 |
> |
SimInfo::MoleculeIterator mi; |
820 |
> |
Molecule* mol; |
821 |
> |
Molecule::CutoffGroupIterator ci; |
822 |
> |
CutoffGroup* cg; |
823 |
> |
|
824 |
> |
vector<int> GlobalGroupIndices; |
825 |
> |
|
826 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
827 |
> |
|
828 |
> |
//local index of cutoff group is trivial, it only depends on the |
829 |
> |
//order of travesing |
830 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
831 |
> |
cg = mol->nextCutoffGroup(ci)) { |
832 |
> |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
833 |
> |
} |
834 |
|
} |
835 |
+ |
return GlobalGroupIndices; |
836 |
+ |
} |
837 |
|
|
838 |
+ |
|
839 |
+ |
void SimInfo::prepareTopology() { |
840 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
841 |
+ |
|
842 |
|
//calculate mass ratio of cutoff group |
654 |
– |
std::vector<double> mfact; |
843 |
|
SimInfo::MoleculeIterator mi; |
844 |
|
Molecule* mol; |
845 |
|
Molecule::CutoffGroupIterator ci; |
846 |
|
CutoffGroup* cg; |
847 |
|
Molecule::AtomIterator ai; |
848 |
|
Atom* atom; |
849 |
< |
double totalMass; |
849 |
> |
RealType totalMass; |
850 |
|
|
851 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
852 |
< |
mfact.reserve(getNCutoffGroups()); |
851 |
> |
/** |
852 |
> |
* The mass factor is the relative mass of an atom to the total |
853 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
854 |
> |
* are their own cutoff groups, and therefore have mass factors of |
855 |
> |
* 1. We need some special handling for massless atoms, which |
856 |
> |
* will be treated as carrying the entire mass of the cutoff |
857 |
> |
* group. |
858 |
> |
*/ |
859 |
> |
massFactors_.clear(); |
860 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
861 |
|
|
862 |
+ |
cerr << "mfs in si = " << massFactors_.size() << "\n"; |
863 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
864 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
864 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
865 |
> |
cg = mol->nextCutoffGroup(ci)) { |
866 |
|
|
867 |
|
totalMass = cg->getMass(); |
868 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
869 |
|
// Check for massless groups - set mfact to 1 if true |
870 |
< |
if (totalMass != 0) |
871 |
< |
mfact.push_back(atom->getMass()/totalMass); |
870 |
> |
if (totalMass != 0) |
871 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
872 |
|
else |
873 |
< |
mfact.push_back( 1.0 ); |
873 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
874 |
|
} |
677 |
– |
|
875 |
|
} |
876 |
|
} |
877 |
|
|
878 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
682 |
< |
std::vector<int> identArray; |
878 |
> |
// Build the identArray_ |
879 |
|
|
880 |
< |
//to avoid memory reallocation, reserve enough space identArray |
881 |
< |
identArray.reserve(getNAtoms()); |
686 |
< |
|
880 |
> |
identArray_.clear(); |
881 |
> |
identArray_.reserve(getNAtoms()); |
882 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
883 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
884 |
< |
identArray.push_back(atom->getIdent()); |
884 |
> |
identArray_.push_back(atom->getIdent()); |
885 |
|
} |
886 |
|
} |
692 |
– |
|
693 |
– |
//fill molMembershipArray |
694 |
– |
//molMembershipArray is filled by SimCreator |
695 |
– |
std::vector<int> molMembershipArray(nGlobalAtoms_); |
696 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
697 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
698 |
– |
} |
887 |
|
|
888 |
< |
//setup fortran simulation |
701 |
< |
int nGlobalExcludes = 0; |
702 |
< |
int* globalExcludes = NULL; |
703 |
< |
int* excludeList = exclude_.getExcludeList(); |
704 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
705 |
< |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
706 |
< |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
888 |
> |
//scan topology |
889 |
|
|
890 |
< |
if( isError ){ |
891 |
< |
|
892 |
< |
sprintf( painCave.errMsg, |
893 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
712 |
< |
painCave.isFatal = 1; |
713 |
< |
painCave.severity = OOPSE_ERROR; |
714 |
< |
simError(); |
715 |
< |
} |
716 |
< |
|
717 |
< |
#ifdef IS_MPI |
718 |
< |
sprintf( checkPointMsg, |
719 |
< |
"succesfully sent the simulation information to fortran.\n"); |
720 |
< |
MPIcheckPoint(); |
721 |
< |
#endif // is_mpi |
722 |
< |
} |
723 |
< |
|
724 |
< |
|
725 |
< |
#ifdef IS_MPI |
726 |
< |
void SimInfo::setupFortranParallel() { |
727 |
< |
|
728 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
729 |
< |
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
730 |
< |
std::vector<int> localToGlobalCutoffGroupIndex; |
731 |
< |
SimInfo::MoleculeIterator mi; |
732 |
< |
Molecule::AtomIterator ai; |
733 |
< |
Molecule::CutoffGroupIterator ci; |
734 |
< |
Molecule* mol; |
735 |
< |
Atom* atom; |
736 |
< |
CutoffGroup* cg; |
737 |
< |
mpiSimData parallelData; |
738 |
< |
int isError; |
739 |
< |
|
740 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
741 |
< |
|
742 |
< |
//local index(index in DataStorge) of atom is important |
743 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
744 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
745 |
< |
} |
746 |
< |
|
747 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
748 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
749 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
750 |
< |
} |
751 |
< |
|
752 |
< |
} |
753 |
< |
|
754 |
< |
//fill up mpiSimData struct |
755 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
756 |
< |
parallelData.nMolLocal = getNMolecules(); |
757 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
758 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
759 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
760 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
761 |
< |
parallelData.myNode = worldRank; |
762 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
763 |
< |
|
764 |
< |
//pass mpiSimData struct and index arrays to fortran |
765 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
766 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
767 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
768 |
< |
|
769 |
< |
if (isError) { |
770 |
< |
sprintf(painCave.errMsg, |
771 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
772 |
< |
painCave.isFatal = 1; |
773 |
< |
simError(); |
774 |
< |
} |
775 |
< |
|
776 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
777 |
< |
MPIcheckPoint(); |
890 |
> |
nExclude = excludedInteractions_.getSize(); |
891 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
892 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
893 |
> |
nOneFour = oneFourInteractions_.getSize(); |
894 |
|
|
895 |
+ |
int* excludeList = excludedInteractions_.getPairList(); |
896 |
+ |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
897 |
+ |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
898 |
+ |
int* oneFourList = oneFourInteractions_.getPairList(); |
899 |
|
|
900 |
< |
} |
781 |
< |
|
782 |
< |
#endif |
783 |
< |
|
784 |
< |
double SimInfo::calcMaxCutoffRadius() { |
785 |
< |
|
786 |
< |
|
787 |
< |
std::set<AtomType*> atomTypes; |
788 |
< |
std::set<AtomType*>::iterator i; |
789 |
< |
std::vector<double> cutoffRadius; |
790 |
< |
|
791 |
< |
//get the unique atom types |
792 |
< |
atomTypes = getUniqueAtomTypes(); |
793 |
< |
|
794 |
< |
//query the max cutoff radius among these atom types |
795 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
796 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
797 |
< |
} |
798 |
< |
|
799 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
800 |
< |
#ifdef IS_MPI |
801 |
< |
//pick the max cutoff radius among the processors |
802 |
< |
#endif |
803 |
< |
|
804 |
< |
return maxCutoffRadius; |
805 |
< |
} |
806 |
< |
|
807 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
808 |
< |
|
809 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
810 |
< |
|
811 |
< |
if (!simParams_->haveCutoffRadius()){ |
812 |
< |
sprintf(painCave.errMsg, |
813 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
814 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
815 |
< |
"\tfor the cutoffRadius.\n"); |
816 |
< |
painCave.isFatal = 0; |
817 |
< |
simError(); |
818 |
< |
rcut = 15.0; |
819 |
< |
} else{ |
820 |
< |
rcut = simParams_->getCutoffRadius(); |
821 |
< |
} |
822 |
< |
|
823 |
< |
if (!simParams_->haveSwitchingRadius()){ |
824 |
< |
sprintf(painCave.errMsg, |
825 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
826 |
< |
"\tOOPSE will use a default value of\n" |
827 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
828 |
< |
painCave.isFatal = 0; |
829 |
< |
simError(); |
830 |
< |
rsw = 0.95 * rcut; |
831 |
< |
} else{ |
832 |
< |
rsw = simParams_->getSwitchingRadius(); |
833 |
< |
} |
834 |
< |
|
835 |
< |
} else { |
836 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
837 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
838 |
< |
|
839 |
< |
if (simParams_->haveCutoffRadius()) { |
840 |
< |
rcut = simParams_->getCutoffRadius(); |
841 |
< |
} else { |
842 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
843 |
< |
rcut = calcMaxCutoffRadius(); |
844 |
< |
} |
845 |
< |
|
846 |
< |
if (simParams_->haveSwitchingRadius()) { |
847 |
< |
rsw = simParams_->getSwitchingRadius(); |
848 |
< |
} else { |
849 |
< |
rsw = rcut; |
850 |
< |
} |
851 |
< |
|
852 |
< |
} |
853 |
< |
} |
854 |
< |
|
855 |
< |
void SimInfo::setupCutoff() { |
856 |
< |
getCutoff(rcut_, rsw_); |
857 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
858 |
< |
|
859 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
860 |
< |
|
861 |
< |
int cp = TRADITIONAL_CUTOFF_POLICY; |
862 |
< |
if (simParams_->haveCutoffPolicy()) { |
863 |
< |
std::string myPolicy = simParams_->getCutoffPolicy(); |
864 |
< |
toUpper(myPolicy); |
865 |
< |
if (myPolicy == "MIX") { |
866 |
< |
cp = MIX_CUTOFF_POLICY; |
867 |
< |
} else { |
868 |
< |
if (myPolicy == "MAX") { |
869 |
< |
cp = MAX_CUTOFF_POLICY; |
870 |
< |
} else { |
871 |
< |
if (myPolicy == "TRADITIONAL") { |
872 |
< |
cp = TRADITIONAL_CUTOFF_POLICY; |
873 |
< |
} else { |
874 |
< |
// throw error |
875 |
< |
sprintf( painCave.errMsg, |
876 |
< |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
877 |
< |
painCave.isFatal = 1; |
878 |
< |
simError(); |
879 |
< |
} |
880 |
< |
} |
881 |
< |
} |
882 |
< |
} |
883 |
< |
|
884 |
< |
|
885 |
< |
if (simParams_->haveSkinThickness()) { |
886 |
< |
double skinThickness = simParams_->getSkinThickness(); |
887 |
< |
} |
888 |
< |
|
889 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp); |
890 |
< |
// also send cutoff notification to electrostatics |
891 |
< |
setElectrostaticCutoffRadius(&rcut_); |
892 |
< |
} |
893 |
< |
|
894 |
< |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
895 |
< |
|
896 |
< |
int errorOut; |
897 |
< |
int esm = NONE; |
898 |
< |
double alphaVal; |
899 |
< |
double dielectric; |
900 |
< |
|
901 |
< |
errorOut = isError; |
902 |
< |
alphaVal = simParams_->getDampingAlpha(); |
903 |
< |
dielectric = simParams_->getDielectric(); |
904 |
< |
|
905 |
< |
if (simParams_->haveElectrostaticSummationMethod()) { |
906 |
< |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
907 |
< |
toUpper(myMethod); |
908 |
< |
if (myMethod == "NONE") { |
909 |
< |
esm = NONE; |
910 |
< |
} else { |
911 |
< |
if (myMethod == "UNDAMPED_WOLF") { |
912 |
< |
esm = UNDAMPED_WOLF; |
913 |
< |
} else { |
914 |
< |
if (myMethod == "DAMPED_WOLF") { |
915 |
< |
esm = DAMPED_WOLF; |
916 |
< |
if (!simParams_->haveDampingAlpha()) { |
917 |
< |
//throw error |
918 |
< |
sprintf( painCave.errMsg, |
919 |
< |
"SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal); |
920 |
< |
painCave.isFatal = 0; |
921 |
< |
simError(); |
922 |
< |
} |
923 |
< |
} else { |
924 |
< |
if (myMethod == "REACTION_FIELD") { |
925 |
< |
esm = REACTION_FIELD; |
926 |
< |
} else { |
927 |
< |
// throw error |
928 |
< |
sprintf( painCave.errMsg, |
929 |
< |
"SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() ); |
930 |
< |
painCave.isFatal = 1; |
931 |
< |
simError(); |
932 |
< |
} |
933 |
< |
} |
934 |
< |
} |
935 |
< |
} |
936 |
< |
} |
937 |
< |
// let's pass some summation method variables to fortran |
938 |
< |
setElectrostaticSummationMethod( &esm ); |
939 |
< |
setDampedWolfAlpha( &alphaVal ); |
940 |
< |
setReactionFieldDielectric( &dielectric ); |
941 |
< |
initFortranFF( &esm, &errorOut ); |
900 |
> |
topologyDone_ = true; |
901 |
|
} |
902 |
|
|
903 |
|
void SimInfo::addProperty(GenericData* genData) { |
904 |
|
properties_.addProperty(genData); |
905 |
|
} |
906 |
|
|
907 |
< |
void SimInfo::removeProperty(const std::string& propName) { |
907 |
> |
void SimInfo::removeProperty(const string& propName) { |
908 |
|
properties_.removeProperty(propName); |
909 |
|
} |
910 |
|
|
912 |
|
properties_.clearProperties(); |
913 |
|
} |
914 |
|
|
915 |
< |
std::vector<std::string> SimInfo::getPropertyNames() { |
915 |
> |
vector<string> SimInfo::getPropertyNames() { |
916 |
|
return properties_.getPropertyNames(); |
917 |
|
} |
918 |
|
|
919 |
< |
std::vector<GenericData*> SimInfo::getProperties() { |
919 |
> |
vector<GenericData*> SimInfo::getProperties() { |
920 |
|
return properties_.getProperties(); |
921 |
|
} |
922 |
|
|
923 |
< |
GenericData* SimInfo::getPropertyByName(const std::string& propName) { |
923 |
> |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
924 |
|
return properties_.getPropertyByName(propName); |
925 |
|
} |
926 |
|
|
934 |
|
Molecule* mol; |
935 |
|
RigidBody* rb; |
936 |
|
Atom* atom; |
937 |
+ |
CutoffGroup* cg; |
938 |
|
SimInfo::MoleculeIterator mi; |
939 |
|
Molecule::RigidBodyIterator rbIter; |
940 |
< |
Molecule::AtomIterator atomIter;; |
940 |
> |
Molecule::AtomIterator atomIter; |
941 |
> |
Molecule::CutoffGroupIterator cgIter; |
942 |
|
|
943 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
944 |
|
|
949 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
950 |
|
rb->setSnapshotManager(sman_); |
951 |
|
} |
952 |
+ |
|
953 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
954 |
+ |
cg->setSnapshotManager(sman_); |
955 |
+ |
} |
956 |
|
} |
957 |
|
|
958 |
|
} |
962 |
|
Molecule* mol; |
963 |
|
|
964 |
|
Vector3d comVel(0.0); |
965 |
< |
double totalMass = 0.0; |
965 |
> |
RealType totalMass = 0.0; |
966 |
|
|
967 |
|
|
968 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
969 |
< |
double mass = mol->getMass(); |
969 |
> |
RealType mass = mol->getMass(); |
970 |
|
totalMass += mass; |
971 |
|
comVel += mass * mol->getComVel(); |
972 |
|
} |
973 |
|
|
974 |
|
#ifdef IS_MPI |
975 |
< |
double tmpMass = totalMass; |
975 |
> |
RealType tmpMass = totalMass; |
976 |
|
Vector3d tmpComVel(comVel); |
977 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
978 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
977 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
978 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
979 |
|
#endif |
980 |
|
|
981 |
|
comVel /= totalMass; |
988 |
|
Molecule* mol; |
989 |
|
|
990 |
|
Vector3d com(0.0); |
991 |
< |
double totalMass = 0.0; |
991 |
> |
RealType totalMass = 0.0; |
992 |
|
|
993 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
994 |
< |
double mass = mol->getMass(); |
994 |
> |
RealType mass = mol->getMass(); |
995 |
|
totalMass += mass; |
996 |
|
com += mass * mol->getCom(); |
997 |
|
} |
998 |
|
|
999 |
|
#ifdef IS_MPI |
1000 |
< |
double tmpMass = totalMass; |
1000 |
> |
RealType tmpMass = totalMass; |
1001 |
|
Vector3d tmpCom(com); |
1002 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1003 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1002 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1003 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1004 |
|
#endif |
1005 |
|
|
1006 |
|
com /= totalMass; |
1009 |
|
|
1010 |
|
} |
1011 |
|
|
1012 |
< |
std::ostream& operator <<(std::ostream& o, SimInfo& info) { |
1012 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1013 |
|
|
1014 |
|
return o; |
1015 |
|
} |
1024 |
|
Molecule* mol; |
1025 |
|
|
1026 |
|
|
1027 |
< |
double totalMass = 0.0; |
1027 |
> |
RealType totalMass = 0.0; |
1028 |
|
|
1029 |
|
|
1030 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1031 |
< |
double mass = mol->getMass(); |
1031 |
> |
RealType mass = mol->getMass(); |
1032 |
|
totalMass += mass; |
1033 |
|
com += mass * mol->getCom(); |
1034 |
|
comVel += mass * mol->getComVel(); |
1035 |
|
} |
1036 |
|
|
1037 |
|
#ifdef IS_MPI |
1038 |
< |
double tmpMass = totalMass; |
1038 |
> |
RealType tmpMass = totalMass; |
1039 |
|
Vector3d tmpCom(com); |
1040 |
|
Vector3d tmpComVel(comVel); |
1041 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1042 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1043 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1041 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1042 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1043 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1044 |
|
#endif |
1045 |
|
|
1046 |
|
com /= totalMass; |
1052 |
|
|
1053 |
|
|
1054 |
|
[ Ixx -Ixy -Ixz ] |
1055 |
< |
J =| -Iyx Iyy -Iyz | |
1055 |
> |
J =| -Iyx Iyy -Iyz | |
1056 |
|
[ -Izx -Iyz Izz ] |
1057 |
|
*/ |
1058 |
|
|
1059 |
|
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1060 |
|
|
1061 |
|
|
1062 |
< |
double xx = 0.0; |
1063 |
< |
double yy = 0.0; |
1064 |
< |
double zz = 0.0; |
1065 |
< |
double xy = 0.0; |
1066 |
< |
double xz = 0.0; |
1067 |
< |
double yz = 0.0; |
1062 |
> |
RealType xx = 0.0; |
1063 |
> |
RealType yy = 0.0; |
1064 |
> |
RealType zz = 0.0; |
1065 |
> |
RealType xy = 0.0; |
1066 |
> |
RealType xz = 0.0; |
1067 |
> |
RealType yz = 0.0; |
1068 |
|
Vector3d com(0.0); |
1069 |
|
Vector3d comVel(0.0); |
1070 |
|
|
1076 |
|
Vector3d thisq(0.0); |
1077 |
|
Vector3d thisv(0.0); |
1078 |
|
|
1079 |
< |
double thisMass = 0.0; |
1079 |
> |
RealType thisMass = 0.0; |
1080 |
|
|
1081 |
|
|
1082 |
|
|
1114 |
|
#ifdef IS_MPI |
1115 |
|
Mat3x3d tmpI(inertiaTensor); |
1116 |
|
Vector3d tmpAngMom; |
1117 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1118 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1117 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1118 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1119 |
|
#endif |
1120 |
|
|
1121 |
|
return; |
1136 |
|
Vector3d thisr(0.0); |
1137 |
|
Vector3d thisp(0.0); |
1138 |
|
|
1139 |
< |
double thisMass; |
1139 |
> |
RealType thisMass; |
1140 |
|
|
1141 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1142 |
|
thisMass = mol->getMass(); |
1149 |
|
|
1150 |
|
#ifdef IS_MPI |
1151 |
|
Vector3d tmpAngMom; |
1152 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1152 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1153 |
|
#endif |
1154 |
|
|
1155 |
|
return angularMomentum; |
1156 |
|
} |
1157 |
|
|
1158 |
< |
|
1159 |
< |
}//end namespace oopse |
1158 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1159 |
> |
return IOIndexToIntegrableObject.at(index); |
1160 |
> |
} |
1161 |
> |
|
1162 |
> |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1163 |
> |
IOIndexToIntegrableObject= v; |
1164 |
> |
} |
1165 |
|
|
1166 |
+ |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1167 |
+ |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1168 |
+ |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1169 |
+ |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1170 |
+ |
*/ |
1171 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1172 |
+ |
Mat3x3d intTensor; |
1173 |
+ |
RealType det; |
1174 |
+ |
Vector3d dummyAngMom; |
1175 |
+ |
RealType sysconstants; |
1176 |
+ |
RealType geomCnst; |
1177 |
+ |
|
1178 |
+ |
geomCnst = 3.0/2.0; |
1179 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1180 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1181 |
+ |
|
1182 |
+ |
det = intTensor.determinant(); |
1183 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1184 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1185 |
+ |
return; |
1186 |
+ |
} |
1187 |
+ |
|
1188 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1189 |
+ |
Mat3x3d intTensor; |
1190 |
+ |
Vector3d dummyAngMom; |
1191 |
+ |
RealType sysconstants; |
1192 |
+ |
RealType geomCnst; |
1193 |
+ |
|
1194 |
+ |
geomCnst = 3.0/2.0; |
1195 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1196 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1197 |
+ |
|
1198 |
+ |
detI = intTensor.determinant(); |
1199 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1200 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1201 |
+ |
return; |
1202 |
+ |
} |
1203 |
+ |
/* |
1204 |
+ |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1205 |
+ |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1206 |
+ |
sdByGlobalIndex_ = v; |
1207 |
+ |
} |
1208 |
+ |
|
1209 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1210 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1211 |
+ |
return sdByGlobalIndex_.at(index); |
1212 |
+ |
} |
1213 |
+ |
*/ |
1214 |
+ |
int SimInfo::getNGlobalConstraints() { |
1215 |
+ |
int nGlobalConstraints; |
1216 |
+ |
#ifdef IS_MPI |
1217 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1218 |
+ |
MPI_COMM_WORLD); |
1219 |
+ |
#else |
1220 |
+ |
nGlobalConstraints = nConstraints_; |
1221 |
+ |
#endif |
1222 |
+ |
return nGlobalConstraints; |
1223 |
+ |
} |
1224 |
+ |
|
1225 |
+ |
}//end namespace OpenMD |
1226 |
+ |
|