ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 328 by tim, Sun Feb 13 20:36:24 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57 + #include "UseTheForce/DarkSide/neighborLists_interface.h"
58   #include "UseTheForce/doForces_interface.h"
56 #include "UseTheForce/notifyCutoffs_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66   #ifdef IS_MPI
67   #include "UseTheForce/mpiComponentPlan.h"
68   #include "UseTheForce/DarkSide/simParallel_interface.h"
69   #endif
70  
71 < namespace oopse {
72 <
73 < SimInfo::SimInfo(std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
74 <                                ForceField* ff, Globals* simParams) :
75 <                                forceField_(ff), simParams_(simParams),
76 <                                ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 <                                nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 <                                nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 <                                nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
80 <                                nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
81 <                                sman_(NULL), fortranInitialized_(false), selectMan_(NULL) {
82 <
83 <            
79 <    std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84      MoleculeStamp* molStamp;
85      int nMolWithSameStamp;
86      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 <    int nGroups = 0;          //total cutoff groups defined in meta-data file
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88      CutoffGroupStamp* cgStamp;    
89      RigidBodyStamp* rbStamp;
90      int nRigidAtoms = 0;
91      
92 <    for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
93 <        molStamp = i->first;
94 <        nMolWithSameStamp = i->second;
95 <        
96 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
97 <
98 <        //calculate atoms in molecules
99 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
100 <
101 <
102 <        //calculate atoms in cutoff groups
103 <        int nAtomsInGroups = 0;
104 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
105 <        
106 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
107 <            cgStamp = molStamp->getCutoffGroup(j);
108 <            nAtomsInGroups += cgStamp->getNMembers();
109 <        }
110 <
111 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
112 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
113 <
114 <        //calculate atoms in rigid bodies
115 <        int nAtomsInRigidBodies = 0;
116 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
117 <        
118 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
119 <            rbStamp = molStamp->getRigidBody(j);
120 <            nAtomsInRigidBodies += rbStamp->getNMembers();
121 <        }
122 <
123 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
124 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
125 <        
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128      }
129 +    
130 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 +    //group therefore the total number of cutoff groups in the system is
132 +    //equal to the total number of atoms minus number of atoms belong to
133 +    //cutoff group defined in meta-data file plus the number of cutoff
134 +    //groups defined in meta-data file
135 +    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 +    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 +    std::cerr << "nG = " << nGroups << "\n";
138  
124    //every free atom (atom does not belong to cutoff groups) is a cutoff group
125    //therefore the total number of cutoff groups in the system is equal to
126    //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
127    //file plus the number of cutoff groups defined in meta-data file
139      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140  
141 <    //every free atom (atom does not belong to rigid bodies) is an integrable object
142 <    //therefore the total number of  integrable objects in the system is equal to
143 <    //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
144 <    //file plus the number of  rigid bodies defined in meta-data file
145 <    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
146 <
141 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151      nGlobalMols_ = molStampIds_.size();
137
138 #ifdef IS_MPI    
152      molToProcMap_.resize(nGlobalMols_);
153 < #endif
154 <
155 <    selectMan_ = new SelectionManager(this);
156 <    selectMan_->selectAll();
157 < }
158 <
159 < SimInfo::~SimInfo() {
160 <    //MemoryUtils::deleteVectorOfPointer(molecules_);
161 <
149 <    MemoryUtils::deleteVectorOfPointer(moleculeStamps_);
150 <    
153 >  }
154 >  
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 >      delete i->second;
159 >    }
160 >    molecules_.clear();
161 >      
162      delete sman_;
163      delete simParams_;
164      delete forceField_;
165 <    delete selectMan_;
155 < }
165 >  }
166  
157 int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166 }
167  
168 < bool SimInfo::addMolecule(Molecule* mol) {
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169      MoleculeIterator i;
170 <
170 >    
171      i = molecules_.find(mol->getGlobalIndex());
172      if (i == molecules_.end() ) {
173 <
174 <        molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
175 <        
176 <        nAtoms_ += mol->getNAtoms();
177 <        nBonds_ += mol->getNBonds();
178 <        nBends_ += mol->getNBends();
179 <        nTorsions_ += mol->getNTorsions();
180 <        nRigidBodies_ += mol->getNRigidBodies();
181 <        nIntegrableObjects_ += mol->getNIntegrableObjects();
182 <        nCutoffGroups_ += mol->getNCutoffGroups();
183 <        nConstraints_ += mol->getNConstraintPairs();
184 <
185 <        addExcludePairs(mol);
186 <        
187 <        return true;
188 <    } else {
189 <        return false;
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189 >    } else {
190 >      return false;
191      }
192 < }
193 <
194 < bool SimInfo::removeMolecule(Molecule* mol) {
192 >  }
193 >  
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195      MoleculeIterator i;
196      i = molecules_.find(mol->getGlobalIndex());
197  
198      if (i != molecules_.end() ) {
199  
200 <        assert(mol == i->second);
200 >      assert(mol == i->second);
201          
202 <        nAtoms_ -= mol->getNAtoms();
203 <        nBonds_ -= mol->getNBonds();
204 <        nBends_ -= mol->getNBends();
205 <        nTorsions_ -= mol->getNTorsions();
206 <        nRigidBodies_ -= mol->getNRigidBodies();
207 <        nIntegrableObjects_ -= mol->getNIntegrableObjects();
208 <        nCutoffGroups_ -= mol->getNCutoffGroups();
209 <        nConstraints_ -= mol->getNConstraintPairs();
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <        removeExcludePairs(mol);
213 <        molecules_.erase(mol->getGlobalIndex());
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <        delete mol;
215 >      delete mol;
216          
217 <        return true;
217 >      return true;
218      } else {
219 <        return false;
219 >      return false;
220      }
221 +  }    
222  
220
221 }    
222
223          
224 < Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225      i = molecules_.begin();
226      return i == molecules_.end() ? NULL : i->second;
227 < }    
227 >  }    
228  
229 < Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
229 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230      ++i;
231      return i == molecules_.end() ? NULL : i->second;    
232 < }
232 >  }
233  
234  
235 < void SimInfo::calcNdf() {
235 >  void SimInfo::calcNdf() {
236      int ndf_local;
237      MoleculeIterator i;
238 <    std::vector<StuntDouble*>::iterator j;
238 >    vector<StuntDouble*>::iterator j;
239      Molecule* mol;
240      StuntDouble* integrableObject;
241  
242      ndf_local = 0;
243      
244      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 <               integrableObject = mol->nextIntegrableObject(j)) {
245 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 >           integrableObject = mol->nextIntegrableObject(j)) {
247  
248 <            ndf_local += 3;
248 >        ndf_local += 3;
249  
250 <            if (integrableObject->isDirectional()) {
251 <                if (integrableObject->isLinear()) {
252 <                    ndf_local += 2;
253 <                } else {
254 <                    ndf_local += 3;
255 <                }
256 <            }
250 >        if (integrableObject->isDirectional()) {
251 >          if (integrableObject->isLinear()) {
252 >            ndf_local += 2;
253 >          } else {
254 >            ndf_local += 3;
255 >          }
256 >        }
257              
258 <        }//end for (integrableObject)
259 <    }// end for (mol)
258 >      }
259 >    }
260      
261      // n_constraints is local, so subtract them on each processor
262      ndf_local -= nConstraints_;
# Line 271 | Line 271 | void SimInfo::calcNdf() {
271      // entire system:
272      ndf_ = ndf_ - 3 - nZconstraint_;
273  
274 < }
274 >  }
275  
276 < void SimInfo::calcNdfRaw() {
276 >  int SimInfo::getFdf() {
277 > #ifdef IS_MPI
278 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 > #else
280 >    fdf_ = fdf_local;
281 > #endif
282 >    return fdf_;
283 >  }
284 >    
285 >  void SimInfo::calcNdfRaw() {
286      int ndfRaw_local;
287  
288      MoleculeIterator i;
289 <    std::vector<StuntDouble*>::iterator j;
289 >    vector<StuntDouble*>::iterator j;
290      Molecule* mol;
291      StuntDouble* integrableObject;
292  
# Line 285 | Line 294 | void SimInfo::calcNdfRaw() {
294      ndfRaw_local = 0;
295      
296      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
297 <        for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298 <               integrableObject = mol->nextIntegrableObject(j)) {
297 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298 >           integrableObject = mol->nextIntegrableObject(j)) {
299  
300 <            ndfRaw_local += 3;
300 >        ndfRaw_local += 3;
301  
302 <            if (integrableObject->isDirectional()) {
303 <                if (integrableObject->isLinear()) {
304 <                    ndfRaw_local += 2;
305 <                } else {
306 <                    ndfRaw_local += 3;
307 <                }
308 <            }
302 >        if (integrableObject->isDirectional()) {
303 >          if (integrableObject->isLinear()) {
304 >            ndfRaw_local += 2;
305 >          } else {
306 >            ndfRaw_local += 3;
307 >          }
308 >        }
309              
310 <        }
310 >      }
311      }
312      
313   #ifdef IS_MPI
# Line 306 | Line 315 | void SimInfo::calcNdfRaw() {
315   #else
316      ndfRaw_ = ndfRaw_local;
317   #endif
318 < }
318 >  }
319  
320 < void SimInfo::calcNdfTrans() {
320 >  void SimInfo::calcNdfTrans() {
321      int ndfTrans_local;
322  
323      ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
# Line 322 | Line 331 | void SimInfo::calcNdfTrans() {
331  
332      ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
333  
334 < }
334 >  }
335  
336 < void SimInfo::addExcludePairs(Molecule* mol) {
337 <    std::vector<Bond*>::iterator bondIter;
338 <    std::vector<Bend*>::iterator bendIter;
339 <    std::vector<Torsion*>::iterator torsionIter;
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342      Bond* bond;
343      Bend* bend;
344      Torsion* torsion;
345 +    Inversion* inversion;
346      int a;
347      int b;
348      int c;
349      int d;
338    
339    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
340        a = bond->getAtomA()->getGlobalIndex();
341        b = bond->getAtomB()->getGlobalIndex();        
342        exclude_.addPair(a, b);
343    }
350  
351 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
352 <        a = bend->getAtomA()->getGlobalIndex();
353 <        b = bend->getAtomB()->getGlobalIndex();        
354 <        c = bend->getAtomC()->getGlobalIndex();
351 >    // atomGroups can be used to add special interaction maps between
352 >    // groups of atoms that are in two separate rigid bodies.
353 >    // However, most site-site interactions between two rigid bodies
354 >    // are probably not special, just the ones between the physically
355 >    // bonded atoms.  Interactions *within* a single rigid body should
356 >    // always be excluded.  These are done at the bottom of this
357 >    // function.
358  
359 <        exclude_.addPair(a, b);
360 <        exclude_.addPair(a, c);
361 <        exclude_.addPair(b, c);        
362 <    }
359 >    map<int, set<int> > atomGroups;
360 >    Molecule::RigidBodyIterator rbIter;
361 >    RigidBody* rb;
362 >    Molecule::IntegrableObjectIterator ii;
363 >    StuntDouble* integrableObject;
364 >    
365 >    for (integrableObject = mol->beginIntegrableObject(ii);
366 >         integrableObject != NULL;
367 >         integrableObject = mol->nextIntegrableObject(ii)) {
368 >      
369 >      if (integrableObject->isRigidBody()) {
370 >        rb = static_cast<RigidBody*>(integrableObject);
371 >        vector<Atom*> atoms = rb->getAtoms();
372 >        set<int> rigidAtoms;
373 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 >        }
376 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 >        }      
379 >      } else {
380 >        set<int> oneAtomSet;
381 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
382 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383 >      }
384 >    }  
385 >          
386 >    for (bond= mol->beginBond(bondIter); bond != NULL;
387 >         bond = mol->nextBond(bondIter)) {
388  
389 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
390 <        a = torsion->getAtomA()->getGlobalIndex();
391 <        b = torsion->getAtomB()->getGlobalIndex();        
392 <        c = torsion->getAtomC()->getGlobalIndex();        
393 <        d = torsion->getAtomD()->getGlobalIndex();        
389 >      a = bond->getAtomA()->getGlobalIndex();
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397 >    }
398  
399 <        exclude_.addPair(a, b);
400 <        exclude_.addPair(a, c);
401 <        exclude_.addPair(a, d);
402 <        exclude_.addPair(b, c);
403 <        exclude_.addPair(b, d);
404 <        exclude_.addPair(c, d);        
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401 >
402 >      a = bend->getAtomA()->getGlobalIndex();
403 >      b = bend->getAtomB()->getGlobalIndex();        
404 >      c = bend->getAtomC()->getGlobalIndex();
405 >      
406 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 >        oneTwoInteractions_.addPair(a, b);      
408 >        oneTwoInteractions_.addPair(b, c);
409 >      } else {
410 >        excludedInteractions_.addPair(a, b);
411 >        excludedInteractions_.addPair(b, c);
412 >      }
413 >
414 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 >        oneThreeInteractions_.addPair(a, c);      
416 >      } else {
417 >        excludedInteractions_.addPair(a, c);
418 >      }
419      }
420  
421 <    
422 < }
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423  
424 < void SimInfo::removeExcludePairs(Molecule* mol) {
425 <    std::vector<Bond*>::iterator bondIter;
426 <    std::vector<Bend*>::iterator bendIter;
427 <    std::vector<Torsion*>::iterator torsionIter;
424 >      a = torsion->getAtomA()->getGlobalIndex();
425 >      b = torsion->getAtomB()->getGlobalIndex();        
426 >      c = torsion->getAtomC()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428 >
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438 >
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446 >
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452 >    }
453 >
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456 >
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461 >
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471 >
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482 >
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488 >          a = atoms[i]->getGlobalIndex();
489 >          b = atoms[j]->getGlobalIndex();
490 >          excludedInteractions_.addPair(a, b);
491 >        }
492 >      }
493 >    }        
494 >
495 >  }
496 >
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503      Bond* bond;
504      Bend* bend;
505      Torsion* torsion;
506 +    Inversion* inversion;
507      int a;
508      int b;
509      int c;
510      int d;
511 +
512 +    map<int, set<int> > atomGroups;
513 +    Molecule::RigidBodyIterator rbIter;
514 +    RigidBody* rb;
515 +    Molecule::IntegrableObjectIterator ii;
516 +    StuntDouble* integrableObject;
517      
518 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
519 <        a = bond->getAtomA()->getGlobalIndex();
520 <        b = bond->getAtomB()->getGlobalIndex();        
521 <        exclude_.removePair(a, b);
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522 >      if (integrableObject->isRigidBody()) {
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532 >      } else {
533 >        set<int> oneAtomSet;
534 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536 >      }
537 >    }  
538 >
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542 >      a = bond->getAtomA()->getGlobalIndex();
543 >      b = bond->getAtomB()->getGlobalIndex();  
544 >    
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550      }
551  
552 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
553 <        a = bend->getAtomA()->getGlobalIndex();
392 <        b = bend->getAtomB()->getGlobalIndex();        
393 <        c = bend->getAtomC()->getGlobalIndex();
552 >    for (bend= mol->beginBend(bendIter); bend != NULL;
553 >         bend = mol->nextBend(bendIter)) {
554  
555 <        exclude_.removePair(a, b);
556 <        exclude_.removePair(a, c);
557 <        exclude_.removePair(b, c);        
555 >      a = bend->getAtomA()->getGlobalIndex();
556 >      b = bend->getAtomB()->getGlobalIndex();        
557 >      c = bend->getAtomC()->getGlobalIndex();
558 >      
559 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 >        oneTwoInteractions_.removePair(a, b);      
561 >        oneTwoInteractions_.removePair(b, c);
562 >      } else {
563 >        excludedInteractions_.removePair(a, b);
564 >        excludedInteractions_.removePair(b, c);
565 >      }
566 >
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
573  
574 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
575 <        a = torsion->getAtomA()->getGlobalIndex();
402 <        b = torsion->getAtomB()->getGlobalIndex();        
403 <        c = torsion->getAtomC()->getGlobalIndex();        
404 <        d = torsion->getAtomD()->getGlobalIndex();        
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576  
577 <        exclude_.removePair(a, b);
578 <        exclude_.removePair(a, c);
579 <        exclude_.removePair(a, d);
580 <        exclude_.removePair(b, c);
581 <        exclude_.removePair(b, d);
582 <        exclude_.removePair(c, d);        
577 >      a = torsion->getAtomA()->getGlobalIndex();
578 >      b = torsion->getAtomB()->getGlobalIndex();        
579 >      c = torsion->getAtomC()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591 >
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599 >
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605      }
606  
607 < }
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609  
610 +      a = inversion->getAtomA()->getGlobalIndex();
611 +      b = inversion->getAtomB()->getGlobalIndex();        
612 +      c = inversion->getAtomC()->getGlobalIndex();        
613 +      d = inversion->getAtomD()->getGlobalIndex();        
614  
615 < void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
616 <    int curStampId;
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624  
625 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 +        oneThreeInteractions_.removePair(b, c);    
627 +        oneThreeInteractions_.removePair(b, d);    
628 +        oneThreeInteractions_.removePair(c, d);      
629 +      } else {
630 +        excludedInteractions_.removePair(b, c);
631 +        excludedInteractions_.removePair(b, d);
632 +        excludedInteractions_.removePair(c, d);
633 +      }
634 +    }
635 +
636 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 +         rb = mol->nextRigidBody(rbIter)) {
638 +      vector<Atom*> atoms = rb->getAtoms();
639 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641 +          a = atoms[i]->getGlobalIndex();
642 +          b = atoms[j]->getGlobalIndex();
643 +          excludedInteractions_.removePair(a, b);
644 +        }
645 +      }
646 +    }        
647 +    
648 +  }
649 +  
650 +  
651 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652 +    int curStampId;
653 +    
654      //index from 0
655      curStampId = moleculeStamps_.size();
656  
657      moleculeStamps_.push_back(molStamp);
658      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659 < }
659 >  }
660  
427 void SimInfo::update() {
661  
662 <    setupSimType();
663 <
664 < #ifdef IS_MPI
665 <    setupFortranParallel();
666 < #endif
667 <
668 <    setupFortranSim();
669 <
670 <    //setup fortran force field
438 <    /** @deprecate */    
439 <    int isError = 0;
440 <    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
441 <    if(isError){
442 <        sprintf( painCave.errMsg,
443 <         "ForceField error: There was an error initializing the forceField in fortran.\n" );
444 <        painCave.isFatal = 1;
445 <        simError();
446 <    }
447 <  
448 <    
449 <    setupCutoff();
450 <
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671      calcNdf();
672      calcNdfRaw();
673      calcNdfTrans();
674 <
675 <    fortranInitialized_ = true;
676 < }
677 <
678 < std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
674 >  }
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 >        atomTypes.insert(atom->getAtomType());
693 >      }      
694 >    }    
695  
696 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
696 > #ifdef IS_MPI
697  
698 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
699 <            atomTypes.insert(atom->getAtomType());
469 <        }
470 <        
471 <    }
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <    return atomTypes;        
702 < }
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 < void SimInfo::setupSimType() {
707 <    std::set<AtomType*>::iterator i;
478 <    std::set<AtomType*> atomTypes;
479 <    atomTypes = getUniqueAtomTypes();
480 <    
481 <    int useLennardJones = 0;
482 <    int useElectrostatic = 0;
483 <    int useEAM = 0;
484 <    int useCharge = 0;
485 <    int useDirectional = 0;
486 <    int useDipole = 0;
487 <    int useGayBerne = 0;
488 <    int useSticky = 0;
489 <    int useShape = 0;
490 <    int useFLARB = 0; //it is not in AtomType yet
491 <    int useDirectionalAtom = 0;    
492 <    int useElectrostatics = 0;
493 <    //usePBC and useRF are from simParams
494 <    int usePBC = simParams_->getPBC();
495 <    int useRF = simParams_->getUseRF();
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 +    // count holds the total number of found types on all processors
710 +    // (some will be redundant with the ones found locally):
711 +    int count;
712 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713 +
714 +    // create a vector to hold the globally found types, and resize it:
715 +    vector<int> ftGlobal;
716 +    ftGlobal.resize(count);
717 +    vector<int> counts;
718 +
719 +    int nproc = MPI::COMM_WORLD.Get_size();
720 +    counts.resize(nproc);
721 +    vector<int> disps;
722 +    disps.resize(nproc);
723 +
724 +    // now spray out the foundTypes to all the other processors:
725 +    
726 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728 +
729 +    // foundIdents is a stl set, so inserting an already found ident
730 +    // will have no effect.
731 +    set<int> foundIdents;
732 +    vector<int>::iterator j;
733 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 +      foundIdents.insert((*j));
735 +    
736 +    // now iterate over the foundIdents and get the actual atom types
737 +    // that correspond to these:
738 +    set<int>::iterator it;
739 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 +      atomTypes.insert( forceField_->getAtomType((*it)) );
741 +
742 + #endif
743 +    
744 +    return atomTypes;        
745 +  }
746 +
747 +  void SimInfo::setupSimVariables() {
748 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 +    calcBoxDipole_ = false;
751 +    if ( simParams_->haveAccumulateBoxDipole() )
752 +      if ( simParams_->getAccumulateBoxDipole() ) {
753 +        calcBoxDipole_ = true;      
754 +      }
755 +
756 +    set<AtomType*>::iterator i;
757 +    set<AtomType*> atomTypes;
758 +    atomTypes = getSimulatedAtomTypes();    
759 +    int usesElectrostatic = 0;
760 +    int usesMetallic = 0;
761 +    int usesDirectional = 0;
762      //loop over all of the atom types
763      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 <        useLennardJones |= (*i)->isLennardJones();
765 <        useElectrostatic |= (*i)->isElectrostatic();
766 <        useEAM |= (*i)->isEAM();
502 <        useCharge |= (*i)->isCharge();
503 <        useDirectional |= (*i)->isDirectional();
504 <        useDipole |= (*i)->isDipole();
505 <        useGayBerne |= (*i)->isGayBerne();
506 <        useSticky |= (*i)->isSticky();
507 <        useShape |= (*i)->isShape();
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767      }
768  
510    if (useSticky || useDipole || useGayBerne || useShape) {
511        useDirectionalAtom = 1;
512    }
513
514    if (useCharge || useDipole) {
515        useElectrostatics = 1;
516    }
517
769   #ifdef IS_MPI    
770      int temp;
771 +    temp = usesDirectional;
772 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 <    temp = usePBC;
775 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776  
777 <    temp = useDirectionalAtom;
778 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
777 >    temp = usesElectrostatic;
778 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779 > #endif
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786 >  }
787  
527    temp = useLennardJones;
528    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
788  
789 <    temp = useElectrostatics;
790 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
789 >  vector<int> SimInfo::getGlobalAtomIndices() {
790 >    SimInfo::MoleculeIterator mi;
791 >    Molecule* mol;
792 >    Molecule::AtomIterator ai;
793 >    Atom* atom;
794  
795 <    temp = useCharge;
534 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
535 <
536 <    temp = useDipole;
537 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
538 <
539 <    temp = useSticky;
540 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
541 <
542 <    temp = useGayBerne;
543 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
544 <
545 <    temp = useEAM;
546 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
547 <
548 <    temp = useShape;
549 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
550 <
551 <    temp = useFLARB;
552 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
553 <
554 <    temp = useRF;
555 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
795 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
796      
797 < #endif
797 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
798 >      
799 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
800 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
801 >      }
802 >    }
803 >    return GlobalAtomIndices;
804 >  }
805  
559    fInfo_.SIM_uses_PBC = usePBC;    
560    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
561    fInfo_.SIM_uses_LennardJones = useLennardJones;
562    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
563    fInfo_.SIM_uses_Charges = useCharge;
564    fInfo_.SIM_uses_Dipoles = useDipole;
565    fInfo_.SIM_uses_Sticky = useSticky;
566    fInfo_.SIM_uses_GayBerne = useGayBerne;
567    fInfo_.SIM_uses_EAM = useEAM;
568    fInfo_.SIM_uses_Shapes = useShape;
569    fInfo_.SIM_uses_FLARB = useFLARB;
570    fInfo_.SIM_uses_RF = useRF;
806  
807 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
807 >  vector<int> SimInfo::getGlobalGroupIndices() {
808 >    SimInfo::MoleculeIterator mi;
809 >    Molecule* mol;
810 >    Molecule::CutoffGroupIterator ci;
811 >    CutoffGroup* cg;
812  
813 <        if (simParams_->haveDielectric()) {
814 <            fInfo_.dielect = simParams_->getDielectric();
815 <        } else {
816 <            sprintf(painCave.errMsg,
817 <                    "SimSetup Error: No Dielectric constant was set.\n"
818 <                    "\tYou are trying to use Reaction Field without"
819 <                    "\tsetting a dielectric constant!\n");
820 <            painCave.isFatal = 1;
821 <            simError();
822 <        }
584 <        
585 <    } else {
586 <        fInfo_.dielect = 0.0;
813 >    vector<int> GlobalGroupIndices;
814 >    
815 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
816 >      
817 >      //local index of cutoff group is trivial, it only depends on the
818 >      //order of travesing
819 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
820 >           cg = mol->nextCutoffGroup(ci)) {
821 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
822 >      }        
823      }
824 +    return GlobalGroupIndices;
825 +  }
826  
589 }
827  
828 < void SimInfo::setupFortranSim() {
828 >  void SimInfo::setupFortran() {
829      int isError;
830 <    int nExclude;
831 <    std::vector<int> fortranGlobalGroupMembership;
830 >    int nExclude, nOneTwo, nOneThree, nOneFour;
831 >    vector<int> fortranGlobalGroupMembership;
832      
596    nExclude = exclude_.getSize();
833      isError = 0;
834  
835      //globalGroupMembership_ is filled by SimCreator    
836      for (int i = 0; i < nGlobalAtoms_; i++) {
837 <        fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
837 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
838      }
839  
840      //calculate mass ratio of cutoff group
841 <    std::vector<double> mfact;
841 >    vector<RealType> mfact;
842      SimInfo::MoleculeIterator mi;
843      Molecule* mol;
844      Molecule::CutoffGroupIterator ci;
845      CutoffGroup* cg;
846      Molecule::AtomIterator ai;
847      Atom* atom;
848 <    double totalMass;
848 >    RealType totalMass;
849  
850      //to avoid memory reallocation, reserve enough space for mfact
851      mfact.reserve(getNCutoffGroups());
852      
853      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
854 <        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
854 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
855  
856 <            totalMass = cg->getMass();
857 <            for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
858 <                        mfact.push_back(atom->getMass()/totalMass);
859 <            }
860 <
861 <        }      
856 >        totalMass = cg->getMass();
857 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
858 >          // Check for massless groups - set mfact to 1 if true
859 >          if (totalMass != 0)
860 >            mfact.push_back(atom->getMass()/totalMass);
861 >          else
862 >            mfact.push_back( 1.0 );
863 >        }
864 >      }      
865      }
866  
867 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
629 <    std::vector<int> identArray;
867 >    // Build the identArray_
868  
869 <    //to avoid memory reallocation, reserve enough space identArray
870 <    identArray.reserve(getNAtoms());
633 <    
869 >    identArray_.clear();
870 >    identArray_.reserve(getNAtoms());    
871      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
872 <        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
873 <            identArray.push_back(atom->getIdent());
874 <        }
872 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
873 >        identArray_.push_back(atom->getIdent());
874 >      }
875      }    
876  
877      //fill molMembershipArray
878      //molMembershipArray is filled by SimCreator    
879 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
879 >    vector<int> molMembershipArray(nGlobalAtoms_);
880      for (int i = 0; i < nGlobalAtoms_; i++) {
881 <        molMembershipArray[i] = globalMolMembership_[i] + 1;
881 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
882      }
883      
884      //setup fortran simulation
648    //gloalExcludes and molMembershipArray should go away (They are never used)
649    //why the hell fortran need to know molecule?
650    //OOPSE = Object-Obfuscated Parallel Simulation Engine
651    int nGlobalExcludes = 0;
652    int* globalExcludes = NULL;
653    int* excludeList = exclude_.getExcludeList();
654    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
655                  &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
656                  &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
885  
886 <    if( isError ){
886 >    nExclude = excludedInteractions_.getSize();
887 >    nOneTwo = oneTwoInteractions_.getSize();
888 >    nOneThree = oneThreeInteractions_.getSize();
889 >    nOneFour = oneFourInteractions_.getSize();
890  
891 <        sprintf( painCave.errMsg,
892 <                 "There was an error setting the simulation information in fortran.\n" );
893 <        painCave.isFatal = 1;
894 <        painCave.severity = OOPSE_ERROR;
664 <        simError();
665 <    }
891 >    int* excludeList = excludedInteractions_.getPairList();
892 >    int* oneTwoList = oneTwoInteractions_.getPairList();
893 >    int* oneThreeList = oneThreeInteractions_.getPairList();
894 >    int* oneFourList = oneFourInteractions_.getPairList();
895  
896 < #ifdef IS_MPI
896 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
897 >                   &nExclude, excludeList,
898 >                   &nOneTwo, oneTwoList,
899 >                   &nOneThree, oneThreeList,
900 >                   &nOneFour, oneFourList,
901 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
902 >                   &fortranGlobalGroupMembership[0], &isError);
903 >    
904 >    if( isError ){
905 >      
906 >      sprintf( painCave.errMsg,
907 >               "There was an error setting the simulation information in fortran.\n" );
908 >      painCave.isFatal = 1;
909 >      painCave.severity = OPENMD_ERROR;
910 >      simError();
911 >    }
912 >    
913 >    
914      sprintf( checkPointMsg,
915 <       "succesfully sent the simulation information to fortran.\n");
670 <    MPIcheckPoint();
671 < #endif // is_mpi
672 < }
673 <
674 <
675 < #ifdef IS_MPI
676 < void SimInfo::setupFortranParallel() {
915 >             "succesfully sent the simulation information to fortran.\n");
916      
917 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
918 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
919 <    std::vector<int> localToGlobalCutoffGroupIndex;
920 <    SimInfo::MoleculeIterator mi;
921 <    Molecule::AtomIterator ai;
922 <    Molecule::CutoffGroupIterator ci;
923 <    Molecule* mol;
924 <    Atom* atom;
925 <    CutoffGroup* cg;
917 >    errorCheckPoint();
918 >    
919 >    // Setup number of neighbors in neighbor list if present
920 >    if (simParams_->haveNeighborListNeighbors()) {
921 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
922 >      setNeighbors(&nlistNeighbors);
923 >    }
924 >  
925 > #ifdef IS_MPI    
926      mpiSimData parallelData;
688    int isError;
927  
690    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
691
692        //local index(index in DataStorge) of atom is important
693        for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
694            localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
695        }
696
697        //local index of cutoff group is trivial, it only depends on the order of travesing
698        for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
699            localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
700        }        
701        
702    }
703
928      //fill up mpiSimData struct
929      parallelData.nMolGlobal = getNGlobalMolecules();
930      parallelData.nMolLocal = getNMolecules();
# Line 712 | Line 936 | void SimInfo::setupFortranParallel() {
936      MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
937  
938      //pass mpiSimData struct and index arrays to fortran
939 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
940 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
941 <                    &localToGlobalCutoffGroupIndex[0], &isError);
939 >    //setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
940 >    //                &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
941 >    //                &localToGlobalCutoffGroupIndex[0], &isError);
942  
943      if (isError) {
944 <        sprintf(painCave.errMsg,
945 <                "mpiRefresh errror: fortran didn't like something we gave it.\n");
946 <        painCave.isFatal = 1;
947 <        simError();
944 >      sprintf(painCave.errMsg,
945 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
946 >      painCave.isFatal = 1;
947 >      simError();
948      }
949  
950      sprintf(checkPointMsg, " mpiRefresh successful.\n");
951 <    MPIcheckPoint();
728 <
729 <
730 < }
731 <
951 >    errorCheckPoint();
952   #endif
953  
954 < double SimInfo::calcMaxCutoffRadius() {
954 >    initFortranFF(&isError);
955 >    if (isError) {
956 >      sprintf(painCave.errMsg,
957 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
958 >      painCave.isFatal = 1;
959 >      simError();
960 >    }
961 >    fortranInitialized_ = true;
962 >  }
963  
964 +  void SimInfo::addProperty(GenericData* genData) {
965 +    properties_.addProperty(genData);  
966 +  }
967  
968 <    std::set<AtomType*> atomTypes;
969 <    std::set<AtomType*>::iterator i;
970 <    std::vector<double> cutoffRadius;
968 >  void SimInfo::removeProperty(const string& propName) {
969 >    properties_.removeProperty(propName);  
970 >  }
971  
972 <    //get the unique atom types
973 <    atomTypes = getUniqueAtomTypes();
972 >  void SimInfo::clearProperties() {
973 >    properties_.clearProperties();
974 >  }
975  
976 <    //query the max cutoff radius among these atom types
977 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
978 <        cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
979 <    }
976 >  vector<string> SimInfo::getPropertyNames() {
977 >    return properties_.getPropertyNames();  
978 >  }
979 >      
980 >  vector<GenericData*> SimInfo::getProperties() {
981 >    return properties_.getProperties();
982 >  }
983  
984 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
985 < #ifdef IS_MPI
986 <    //pick the max cutoff radius among the processors
752 < #endif
984 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
985 >    return properties_.getPropertyByName(propName);
986 >  }
987  
988 <    return maxCutoffRadius;
989 < }
990 <
991 < void SimInfo::getCutoff(double& rcut, double& rsw) {
992 <    
759 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
760 <        
761 <        if (!simParams_->haveRcut()){
762 <            sprintf(painCave.errMsg,
763 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
764 <                "\tOOPSE will use a default value of 15.0 angstroms"
765 <                "\tfor the cutoffRadius.\n");
766 <            painCave.isFatal = 0;
767 <            simError();
768 <            rcut = 15.0;
769 <        } else{
770 <            rcut = simParams_->getRcut();
771 <        }
772 <
773 <        if (!simParams_->haveRsw()){
774 <            sprintf(painCave.errMsg,
775 <                "SimCreator Warning: No value was set for switchingRadius.\n"
776 <                "\tOOPSE will use a default value of\n"
777 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
778 <            painCave.isFatal = 0;
779 <            simError();
780 <            rsw = 0.95 * rcut;
781 <        } else{
782 <            rsw = simParams_->getRsw();
783 <        }
784 <
785 <    } else {
786 <        // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
787 <        //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
788 <        
789 <        if (simParams_->haveRcut()) {
790 <            rcut = simParams_->getRcut();
791 <        } else {
792 <            //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
793 <            rcut = calcMaxCutoffRadius();
794 <        }
795 <
796 <        if (simParams_->haveRsw()) {
797 <            rsw  = simParams_->getRsw();
798 <        } else {
799 <            rsw = rcut;
800 <        }
801 <    
802 <    }
803 < }
804 <
805 < void SimInfo::setupCutoff() {
806 <    getCutoff(rcut_, rsw_);    
807 <    double rnblist = rcut_ + 1; // skin of neighbor list
808 <
809 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
810 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
811 < }
812 <
813 < void SimInfo::addProperty(GenericData* genData) {
814 <    properties_.addProperty(genData);  
815 < }
816 <
817 < void SimInfo::removeProperty(const std::string& propName) {
818 <    properties_.removeProperty(propName);  
819 < }
820 <
821 < void SimInfo::clearProperties() {
822 <    properties_.clearProperties();
823 < }
824 <
825 < std::vector<std::string> SimInfo::getPropertyNames() {
826 <    return properties_.getPropertyNames();  
827 < }
828 <      
829 < std::vector<GenericData*> SimInfo::getProperties() {
830 <    return properties_.getProperties();
831 < }
832 <
833 < GenericData* SimInfo::getPropertyByName(const std::string& propName) {
834 <    return properties_.getPropertyByName(propName);
835 < }
836 <
837 < void SimInfo::setSnapshotManager(SnapshotManager* sman) {
988 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
989 >    if (sman_ == sman) {
990 >      return;
991 >    }    
992 >    delete sman_;
993      sman_ = sman;
994  
995      Molecule* mol;
996      RigidBody* rb;
997      Atom* atom;
998 +    CutoffGroup* cg;
999      SimInfo::MoleculeIterator mi;
1000      Molecule::RigidBodyIterator rbIter;
1001 <    Molecule::AtomIterator atomIter;;
1001 >    Molecule::AtomIterator atomIter;
1002 >    Molecule::CutoffGroupIterator cgIter;
1003  
1004      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1005          
1006 <        for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1007 <            atom->setSnapshotManager(sman_);
1008 <        }
1006 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1007 >        atom->setSnapshotManager(sman_);
1008 >      }
1009          
1010 <        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1011 <            rb->setSnapshotManager(sman_);
1012 <        }
1010 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1011 >        rb->setSnapshotManager(sman_);
1012 >      }
1013 >
1014 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
1015 >        cg->setSnapshotManager(sman_);
1016 >      }
1017      }    
1018      
1019 < }
1019 >  }
1020  
1021 < Vector3d SimInfo::getComVel(){
1021 >  Vector3d SimInfo::getComVel(){
1022      SimInfo::MoleculeIterator i;
1023      Molecule* mol;
1024  
1025      Vector3d comVel(0.0);
1026 <    double totalMass = 0.0;
1026 >    RealType totalMass = 0.0;
1027      
1028  
1029      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1030 <        double mass = mol->getMass();
1031 <        totalMass += mass;
1032 <        comVel += mass * mol->getComVel();
1030 >      RealType mass = mol->getMass();
1031 >      totalMass += mass;
1032 >      comVel += mass * mol->getComVel();
1033      }  
1034  
1035   #ifdef IS_MPI
1036 <    double tmpMass = totalMass;
1036 >    RealType tmpMass = totalMass;
1037      Vector3d tmpComVel(comVel);    
1038 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1039 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1038 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1039 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1040   #endif
1041  
1042      comVel /= totalMass;
1043  
1044      return comVel;
1045 < }
1045 >  }
1046  
1047 < Vector3d SimInfo::getCom(){
1047 >  Vector3d SimInfo::getCom(){
1048      SimInfo::MoleculeIterator i;
1049      Molecule* mol;
1050  
1051      Vector3d com(0.0);
1052 <    double totalMass = 0.0;
1052 >    RealType totalMass = 0.0;
1053      
1054      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1055 <        double mass = mol->getMass();
1056 <        totalMass += mass;
1057 <        com += mass * mol->getCom();
1055 >      RealType mass = mol->getMass();
1056 >      totalMass += mass;
1057 >      com += mass * mol->getCom();
1058      }  
1059  
1060   #ifdef IS_MPI
1061 <    double tmpMass = totalMass;
1061 >    RealType tmpMass = totalMass;
1062      Vector3d tmpCom(com);    
1063 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1064 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1063 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1064 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1065   #endif
1066  
1067      com /= totalMass;
1068  
1069      return com;
1070  
1071 < }        
1071 >  }        
1072  
1073 < std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1073 >  ostream& operator <<(ostream& o, SimInfo& info) {
1074  
1075      return o;
1076 < }
1076 >  }
1077 >  
1078 >  
1079 >   /*
1080 >   Returns center of mass and center of mass velocity in one function call.
1081 >   */
1082 >  
1083 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1084 >      SimInfo::MoleculeIterator i;
1085 >      Molecule* mol;
1086 >      
1087 >    
1088 >      RealType totalMass = 0.0;
1089 >    
1090  
1091 < }//end namespace oopse
1091 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1092 >         RealType mass = mol->getMass();
1093 >         totalMass += mass;
1094 >         com += mass * mol->getCom();
1095 >         comVel += mass * mol->getComVel();          
1096 >      }  
1097 >      
1098 > #ifdef IS_MPI
1099 >      RealType tmpMass = totalMass;
1100 >      Vector3d tmpCom(com);  
1101 >      Vector3d tmpComVel(comVel);
1102 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1103 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1104 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1105 > #endif
1106 >      
1107 >      com /= totalMass;
1108 >      comVel /= totalMass;
1109 >   }        
1110 >  
1111 >   /*
1112 >   Return intertia tensor for entire system and angular momentum Vector.
1113  
1114 +
1115 +       [  Ixx -Ixy  -Ixz ]
1116 +    J =| -Iyx  Iyy  -Iyz |
1117 +       [ -Izx -Iyz   Izz ]
1118 +    */
1119 +
1120 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1121 +      
1122 +
1123 +      RealType xx = 0.0;
1124 +      RealType yy = 0.0;
1125 +      RealType zz = 0.0;
1126 +      RealType xy = 0.0;
1127 +      RealType xz = 0.0;
1128 +      RealType yz = 0.0;
1129 +      Vector3d com(0.0);
1130 +      Vector3d comVel(0.0);
1131 +      
1132 +      getComAll(com, comVel);
1133 +      
1134 +      SimInfo::MoleculeIterator i;
1135 +      Molecule* mol;
1136 +      
1137 +      Vector3d thisq(0.0);
1138 +      Vector3d thisv(0.0);
1139 +
1140 +      RealType thisMass = 0.0;
1141 +    
1142 +      
1143 +      
1144 +  
1145 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1146 +        
1147 +         thisq = mol->getCom()-com;
1148 +         thisv = mol->getComVel()-comVel;
1149 +         thisMass = mol->getMass();
1150 +         // Compute moment of intertia coefficients.
1151 +         xx += thisq[0]*thisq[0]*thisMass;
1152 +         yy += thisq[1]*thisq[1]*thisMass;
1153 +         zz += thisq[2]*thisq[2]*thisMass;
1154 +        
1155 +         // compute products of intertia
1156 +         xy += thisq[0]*thisq[1]*thisMass;
1157 +         xz += thisq[0]*thisq[2]*thisMass;
1158 +         yz += thisq[1]*thisq[2]*thisMass;
1159 +            
1160 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1161 +            
1162 +      }  
1163 +      
1164 +      
1165 +      inertiaTensor(0,0) = yy + zz;
1166 +      inertiaTensor(0,1) = -xy;
1167 +      inertiaTensor(0,2) = -xz;
1168 +      inertiaTensor(1,0) = -xy;
1169 +      inertiaTensor(1,1) = xx + zz;
1170 +      inertiaTensor(1,2) = -yz;
1171 +      inertiaTensor(2,0) = -xz;
1172 +      inertiaTensor(2,1) = -yz;
1173 +      inertiaTensor(2,2) = xx + yy;
1174 +      
1175 + #ifdef IS_MPI
1176 +      Mat3x3d tmpI(inertiaTensor);
1177 +      Vector3d tmpAngMom;
1178 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1179 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1180 + #endif
1181 +              
1182 +      return;
1183 +   }
1184 +
1185 +   //Returns the angular momentum of the system
1186 +   Vector3d SimInfo::getAngularMomentum(){
1187 +      
1188 +      Vector3d com(0.0);
1189 +      Vector3d comVel(0.0);
1190 +      Vector3d angularMomentum(0.0);
1191 +      
1192 +      getComAll(com,comVel);
1193 +      
1194 +      SimInfo::MoleculeIterator i;
1195 +      Molecule* mol;
1196 +      
1197 +      Vector3d thisr(0.0);
1198 +      Vector3d thisp(0.0);
1199 +      
1200 +      RealType thisMass;
1201 +      
1202 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1203 +        thisMass = mol->getMass();
1204 +        thisr = mol->getCom()-com;
1205 +        thisp = (mol->getComVel()-comVel)*thisMass;
1206 +        
1207 +        angularMomentum += cross( thisr, thisp );
1208 +        
1209 +      }  
1210 +      
1211 + #ifdef IS_MPI
1212 +      Vector3d tmpAngMom;
1213 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214 + #endif
1215 +      
1216 +      return angularMomentum;
1217 +   }
1218 +  
1219 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1220 +    return IOIndexToIntegrableObject.at(index);
1221 +  }
1222 +  
1223 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1224 +    IOIndexToIntegrableObject= v;
1225 +  }
1226 +
1227 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1228 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1229 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1230 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1231 +  */
1232 +  void SimInfo::getGyrationalVolume(RealType &volume){
1233 +    Mat3x3d intTensor;
1234 +    RealType det;
1235 +    Vector3d dummyAngMom;
1236 +    RealType sysconstants;
1237 +    RealType geomCnst;
1238 +
1239 +    geomCnst = 3.0/2.0;
1240 +    /* Get the inertial tensor and angular momentum for free*/
1241 +    getInertiaTensor(intTensor,dummyAngMom);
1242 +    
1243 +    det = intTensor.determinant();
1244 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1245 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1246 +    return;
1247 +  }
1248 +
1249 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1250 +    Mat3x3d intTensor;
1251 +    Vector3d dummyAngMom;
1252 +    RealType sysconstants;
1253 +    RealType geomCnst;
1254 +
1255 +    geomCnst = 3.0/2.0;
1256 +    /* Get the inertial tensor and angular momentum for free*/
1257 +    getInertiaTensor(intTensor,dummyAngMom);
1258 +    
1259 +    detI = intTensor.determinant();
1260 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1261 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1262 +    return;
1263 +  }
1264 + /*
1265 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1266 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1267 +      sdByGlobalIndex_ = v;
1268 +    }
1269 +
1270 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1271 +      //assert(index < nAtoms_ + nRigidBodies_);
1272 +      return sdByGlobalIndex_.at(index);
1273 +    }  
1274 + */  
1275 +  int SimInfo::getNGlobalConstraints() {
1276 +    int nGlobalConstraints;
1277 + #ifdef IS_MPI
1278 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1279 +                  MPI_COMM_WORLD);    
1280 + #else
1281 +    nGlobalConstraints =  nConstraints_;
1282 + #endif
1283 +    return nGlobalConstraints;
1284 +  }
1285 +
1286 + }//end namespace OpenMD
1287 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 328 by tim, Sun Feb 13 20:36:24 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1549 by gezelter, Wed Apr 27 18:38:15 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines