ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1547 by gezelter, Mon Apr 11 18:44:16 2011 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 > #include "UseTheForce/doForces_interface.h"
59 > #include "utils/MemoryUtils.hpp"
60 > #include "utils/simError.h"
61 > #include "selection/SelectionManager.hpp"
62 > #include "io/ForceFieldOptions.hpp"
63 > #include "UseTheForce/ForceField.hpp"
64 > #include "nonbonded/SwitchingFunction.hpp"
65  
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
66   #ifdef IS_MPI
67 < #include "mpiSimulation.hpp"
68 < #endif
67 > #include "UseTheForce/mpiComponentPlan.h"
68 > #include "UseTheForce/DarkSide/simParallel_interface.h"
69 > #endif
70  
71 < inline double roundMe( double x ){
72 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
73 < }
74 <          
75 < inline double min( double a, double b ){
76 <  return (a < b ) ? a : b;
77 < }
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128 >    }
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    std::cerr << "nGA = " << nGlobalAtoms_ << "\n";
136 >    std::cerr << "nCA = " << nCutoffAtoms << "\n";
137 >    std::cerr << "nG = " << nGroups << "\n";
138  
139 < SimInfo* currentInfo;
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140  
141 < SimInfo::SimInfo(){
141 >    std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n";
142 >    
143 >    //every free atom (atom does not belong to rigid bodies) is an
144 >    //integrable object therefore the total number of integrable objects
145 >    //in the system is equal to the total number of atoms minus number of
146 >    //atoms belong to rigid body defined in meta-data file plus the number
147 >    //of rigid bodies defined in meta-data file
148 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
149 >      + nGlobalRigidBodies_;
150 >    
151 >    nGlobalMols_ = molStampIds_.size();
152 >    molToProcMap_.resize(nGlobalMols_);
153 >  }
154 >  
155 >  SimInfo::~SimInfo() {
156 >    map<int, Molecule*>::iterator i;
157 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
158 >      delete i->second;
159 >    }
160 >    molecules_.clear();
161 >      
162 >    delete sman_;
163 >    delete simParams_;
164 >    delete forceField_;
165 >  }
166  
33  n_constraints = 0;
34  nZconstraints = 0;
35  n_oriented = 0;
36  n_dipoles = 0;
37  ndf = 0;
38  ndfRaw = 0;
39  nZconstraints = 0;
40  the_integrator = NULL;
41  setTemp = 0;
42  thermalTime = 0.0;
43  currentTime = 0.0;
44  rCut = 0.0;
45  rSw = 0.0;
167  
168 <  haveRcut = 0;
169 <  haveRsw = 0;
170 <  boxIsInit = 0;
168 >  bool SimInfo::addMolecule(Molecule* mol) {
169 >    MoleculeIterator i;
170 >    
171 >    i = molecules_.find(mol->getGlobalIndex());
172 >    if (i == molecules_.end() ) {
173 >      
174 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
175 >      
176 >      nAtoms_ += mol->getNAtoms();
177 >      nBonds_ += mol->getNBonds();
178 >      nBends_ += mol->getNBends();
179 >      nTorsions_ += mol->getNTorsions();
180 >      nInversions_ += mol->getNInversions();
181 >      nRigidBodies_ += mol->getNRigidBodies();
182 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
183 >      nCutoffGroups_ += mol->getNCutoffGroups();
184 >      nConstraints_ += mol->getNConstraintPairs();
185 >      
186 >      addInteractionPairs(mol);
187 >      
188 >      return true;
189 >    } else {
190 >      return false;
191 >    }
192 >  }
193    
194 <  resetTime = 1e99;
194 >  bool SimInfo::removeMolecule(Molecule* mol) {
195 >    MoleculeIterator i;
196 >    i = molecules_.find(mol->getGlobalIndex());
197  
198 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
198 >    if (i != molecules_.end() ) {
199  
200 <  usePBC = 0;
201 <  useLJ = 0;
202 <  useSticky = 0;
203 <  useCharges = 0;
204 <  useDipoles = 0;
205 <  useReactionField = 0;
206 <  useGB = 0;
207 <  useEAM = 0;
208 <  useSolidThermInt = 0;
209 <  useLiquidThermInt = 0;
210 <
68 <  haveCutoffGroups = false;
69 <
70 <  excludes = Exclude::Instance();
71 <
72 <  myConfiguration = new SimState();
200 >      assert(mol == i->second);
201 >        
202 >      nAtoms_ -= mol->getNAtoms();
203 >      nBonds_ -= mol->getNBonds();
204 >      nBends_ -= mol->getNBends();
205 >      nTorsions_ -= mol->getNTorsions();
206 >      nInversions_ -= mol->getNInversions();
207 >      nRigidBodies_ -= mol->getNRigidBodies();
208 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
209 >      nCutoffGroups_ -= mol->getNCutoffGroups();
210 >      nConstraints_ -= mol->getNConstraintPairs();
211  
212 <  has_minimizer = false;
213 <  the_minimizer =NULL;
212 >      removeInteractionPairs(mol);
213 >      molecules_.erase(mol->getGlobalIndex());
214  
215 <  ngroup = 0;
215 >      delete mol;
216 >        
217 >      return true;
218 >    } else {
219 >      return false;
220 >    }
221 >  }    
222  
223 <  wrapMeSimInfo( this );
224 < }
223 >        
224 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
225 >    i = molecules_.begin();
226 >    return i == molecules_.end() ? NULL : i->second;
227 >  }    
228  
229 +  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
230 +    ++i;
231 +    return i == molecules_.end() ? NULL : i->second;    
232 +  }
233  
83 SimInfo::~SimInfo(){
234  
235 <  delete myConfiguration;
235 >  void SimInfo::calcNdf() {
236 >    int ndf_local;
237 >    MoleculeIterator i;
238 >    vector<StuntDouble*>::iterator j;
239 >    Molecule* mol;
240 >    StuntDouble* integrableObject;
241  
242 <  map<string, GenericData*>::iterator i;
243 <  
244 <  for(i = properties.begin(); i != properties.end(); i++)
245 <    delete (*i).second;
242 >    ndf_local = 0;
243 >    
244 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
245 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
246 >           integrableObject = mol->nextIntegrableObject(j)) {
247  
248 < }
248 >        ndf_local += 3;
249  
250 < void SimInfo::setBox(double newBox[3]) {
251 <  
252 <  int i, j;
253 <  double tempMat[3][3];
250 >        if (integrableObject->isDirectional()) {
251 >          if (integrableObject->isLinear()) {
252 >            ndf_local += 2;
253 >          } else {
254 >            ndf_local += 3;
255 >          }
256 >        }
257 >            
258 >      }
259 >    }
260 >    
261 >    // n_constraints is local, so subtract them on each processor
262 >    ndf_local -= nConstraints_;
263  
264 <  for(i=0; i<3; i++)
265 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
264 > #ifdef IS_MPI
265 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
266 > #else
267 >    ndf_ = ndf_local;
268 > #endif
269  
270 <  tempMat[0][0] = newBox[0];
271 <  tempMat[1][1] = newBox[1];
272 <  tempMat[2][2] = newBox[2];
270 >    // nZconstraints_ is global, as are the 3 COM translations for the
271 >    // entire system:
272 >    ndf_ = ndf_ - 3 - nZconstraint_;
273  
274 <  setBoxM( tempMat );
274 >  }
275  
276 < }
277 <
278 < void SimInfo::setBoxM( double theBox[3][3] ){
279 <  
280 <  int i, j;
281 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
282 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
119 <
120 <  if( !boxIsInit ) boxIsInit = 1;
121 <
122 <  for(i=0; i < 3; i++)
123 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
124 <  
125 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
132 <    }
276 >  int SimInfo::getFdf() {
277 > #ifdef IS_MPI
278 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
279 > #else
280 >    fdf_ = fdf_local;
281 > #endif
282 >    return fdf_;
283    }
284 +    
285 +  void SimInfo::calcNdfRaw() {
286 +    int ndfRaw_local;
287  
288 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
289 <
290 < }
291 <
288 >    MoleculeIterator i;
289 >    vector<StuntDouble*>::iterator j;
290 >    Molecule* mol;
291 >    StuntDouble* integrableObject;
292  
293 < void SimInfo::getBoxM (double theBox[3][3]) {
293 >    // Raw degrees of freedom that we have to set
294 >    ndfRaw_local = 0;
295 >    
296 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
297 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
298 >           integrableObject = mol->nextIntegrableObject(j)) {
299  
300 <  int i, j;
143 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
300 >        ndfRaw_local += 3;
301  
302 <
303 < void SimInfo::scaleBox(double scale) {
304 <  double theBox[3][3];
305 <  int i, j;
306 <
307 <  // cerr << "Scaling box by " << scale << "\n";
308 <
309 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
156 <
157 <  setBoxM(theBox);
158 <
159 < }
160 <
161 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
302 >        if (integrableObject->isDirectional()) {
303 >          if (integrableObject->isLinear()) {
304 >            ndfRaw_local += 2;
305 >          } else {
306 >            ndfRaw_local += 3;
307 >          }
308 >        }
309 >            
310        }
311      }
312 +    
313 + #ifdef IS_MPI
314 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
315 + #else
316 +    ndfRaw_ = ndfRaw_local;
317 + #endif
318    }
319  
320 <  if( oldOrtho != orthoRhombic ){
321 <    
194 <    if( orthoRhombic ) {
195 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
320 >  void SimInfo::calcNdfTrans() {
321 >    int ndfTrans_local;
322  
323 < void SimInfo::calcBoxL( void ){
323 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
324  
222  double dx, dy, dz, dsq;
325  
326 <  // boxVol = Determinant of Hmat
326 > #ifdef IS_MPI
327 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
328 > #else
329 >    ndfTrans_ = ndfTrans_local;
330 > #endif
331  
332 <  boxVol = matDet3( Hmat );
332 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
333 >
334 >  }
335  
336 <  // boxLx
337 <  
338 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
339 <  dsq = dx*dx + dy*dy + dz*dz;
340 <  boxL[0] = sqrt( dsq );
341 <  //maxCutoff = 0.5 * boxL[0];
336 >  void SimInfo::addInteractionPairs(Molecule* mol) {
337 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
338 >    vector<Bond*>::iterator bondIter;
339 >    vector<Bend*>::iterator bendIter;
340 >    vector<Torsion*>::iterator torsionIter;
341 >    vector<Inversion*>::iterator inversionIter;
342 >    Bond* bond;
343 >    Bend* bend;
344 >    Torsion* torsion;
345 >    Inversion* inversion;
346 >    int a;
347 >    int b;
348 >    int c;
349 >    int d;
350  
351 <  // boxLy
352 <  
353 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
354 <  dsq = dx*dx + dy*dy + dz*dz;
355 <  boxL[1] = sqrt( dsq );
356 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
351 >    // atomGroups can be used to add special interaction maps between
352 >    // groups of atoms that are in two separate rigid bodies.
353 >    // However, most site-site interactions between two rigid bodies
354 >    // are probably not special, just the ones between the physically
355 >    // bonded atoms.  Interactions *within* a single rigid body should
356 >    // always be excluded.  These are done at the bottom of this
357 >    // function.
358  
359 +    map<int, set<int> > atomGroups;
360 +    Molecule::RigidBodyIterator rbIter;
361 +    RigidBody* rb;
362 +    Molecule::IntegrableObjectIterator ii;
363 +    StuntDouble* integrableObject;
364 +    
365 +    for (integrableObject = mol->beginIntegrableObject(ii);
366 +         integrableObject != NULL;
367 +         integrableObject = mol->nextIntegrableObject(ii)) {
368 +      
369 +      if (integrableObject->isRigidBody()) {
370 +        rb = static_cast<RigidBody*>(integrableObject);
371 +        vector<Atom*> atoms = rb->getAtoms();
372 +        set<int> rigidAtoms;
373 +        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
374 +          rigidAtoms.insert(atoms[i]->getGlobalIndex());
375 +        }
376 +        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
377 +          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
378 +        }      
379 +      } else {
380 +        set<int> oneAtomSet;
381 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
382 +        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
383 +      }
384 +    }  
385 +          
386 +    for (bond= mol->beginBond(bondIter); bond != NULL;
387 +         bond = mol->nextBond(bondIter)) {
388  
389 <  // boxLz
390 <  
391 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
392 <  dsq = dx*dx + dy*dy + dz*dz;
393 <  boxL[2] = sqrt( dsq );
394 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
389 >      a = bond->getAtomA()->getGlobalIndex();
390 >      b = bond->getAtomB()->getGlobalIndex();  
391 >    
392 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
393 >        oneTwoInteractions_.addPair(a, b);
394 >      } else {
395 >        excludedInteractions_.addPair(a, b);
396 >      }
397 >    }
398  
399 <  //calculate the max cutoff
400 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
399 >    for (bend= mol->beginBend(bendIter); bend != NULL;
400 >         bend = mol->nextBend(bendIter)) {
401  
402 < }
402 >      a = bend->getAtomA()->getGlobalIndex();
403 >      b = bend->getAtomB()->getGlobalIndex();        
404 >      c = bend->getAtomC()->getGlobalIndex();
405 >      
406 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
407 >        oneTwoInteractions_.addPair(a, b);      
408 >        oneTwoInteractions_.addPair(b, c);
409 >      } else {
410 >        excludedInteractions_.addPair(a, b);
411 >        excludedInteractions_.addPair(b, c);
412 >      }
413  
414 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
415 +        oneThreeInteractions_.addPair(a, c);      
416 +      } else {
417 +        excludedInteractions_.addPair(a, c);
418 +      }
419 +    }
420  
421 < double SimInfo::calcMaxCutOff(){
421 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
422 >         torsion = mol->nextTorsion(torsionIter)) {
423  
424 <  double ri[3], rj[3], rk[3];
425 <  double rij[3], rjk[3], rki[3];
426 <  double minDist;
424 >      a = torsion->getAtomA()->getGlobalIndex();
425 >      b = torsion->getAtomB()->getGlobalIndex();        
426 >      c = torsion->getAtomC()->getGlobalIndex();        
427 >      d = torsion->getAtomD()->getGlobalIndex();      
428  
429 <  ri[0] = Hmat[0][0];
430 <  ri[1] = Hmat[1][0];
431 <  ri[2] = Hmat[2][0];
429 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
430 >        oneTwoInteractions_.addPair(a, b);      
431 >        oneTwoInteractions_.addPair(b, c);
432 >        oneTwoInteractions_.addPair(c, d);
433 >      } else {
434 >        excludedInteractions_.addPair(a, b);
435 >        excludedInteractions_.addPair(b, c);
436 >        excludedInteractions_.addPair(c, d);
437 >      }
438  
439 <  rj[0] = Hmat[0][1];
440 <  rj[1] = Hmat[1][1];
441 <  rj[2] = Hmat[2][1];
439 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
440 >        oneThreeInteractions_.addPair(a, c);      
441 >        oneThreeInteractions_.addPair(b, d);      
442 >      } else {
443 >        excludedInteractions_.addPair(a, c);
444 >        excludedInteractions_.addPair(b, d);
445 >      }
446  
447 <  rk[0] = Hmat[0][2];
448 <  rk[1] = Hmat[1][2];
449 <  rk[2] = Hmat[2][2];
450 <    
451 <  crossProduct3(ri, rj, rij);
452 <  distXY = dotProduct3(rk,rij) / norm3(rij);
447 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
448 >        oneFourInteractions_.addPair(a, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, d);
451 >      }
452 >    }
453  
454 <  crossProduct3(rj,rk, rjk);
455 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
454 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
455 >         inversion = mol->nextInversion(inversionIter)) {
456  
457 <  crossProduct3(rk,ri, rki);
458 <  distZX = dotProduct3(rj,rki) / norm3(rki);
457 >      a = inversion->getAtomA()->getGlobalIndex();
458 >      b = inversion->getAtomB()->getGlobalIndex();        
459 >      c = inversion->getAtomC()->getGlobalIndex();        
460 >      d = inversion->getAtomD()->getGlobalIndex();        
461  
462 <  minDist = min(min(distXY, distYZ), distZX);
463 <  return minDist/2;
464 <  
465 < }
462 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
463 >        oneTwoInteractions_.addPair(a, b);      
464 >        oneTwoInteractions_.addPair(a, c);
465 >        oneTwoInteractions_.addPair(a, d);
466 >      } else {
467 >        excludedInteractions_.addPair(a, b);
468 >        excludedInteractions_.addPair(a, c);
469 >        excludedInteractions_.addPair(a, d);
470 >      }
471  
472 < void SimInfo::wrapVector( double thePos[3] ){
472 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
473 >        oneThreeInteractions_.addPair(b, c);    
474 >        oneThreeInteractions_.addPair(b, d);    
475 >        oneThreeInteractions_.addPair(c, d);      
476 >      } else {
477 >        excludedInteractions_.addPair(b, c);
478 >        excludedInteractions_.addPair(b, d);
479 >        excludedInteractions_.addPair(c, d);
480 >      }
481 >    }
482  
483 <  int i;
484 <  double scaled[3];
483 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
484 >         rb = mol->nextRigidBody(rbIter)) {
485 >      vector<Atom*> atoms = rb->getAtoms();
486 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
487 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
488 >          a = atoms[i]->getGlobalIndex();
489 >          b = atoms[j]->getGlobalIndex();
490 >          excludedInteractions_.addPair(a, b);
491 >        }
492 >      }
493 >    }        
494  
495 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
495 >  }
496  
497 <    matVecMul3(HmatInv, thePos, scaled);
497 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
498 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
499 >    vector<Bond*>::iterator bondIter;
500 >    vector<Bend*>::iterator bendIter;
501 >    vector<Torsion*>::iterator torsionIter;
502 >    vector<Inversion*>::iterator inversionIter;
503 >    Bond* bond;
504 >    Bend* bend;
505 >    Torsion* torsion;
506 >    Inversion* inversion;
507 >    int a;
508 >    int b;
509 >    int c;
510 >    int d;
511 >
512 >    map<int, set<int> > atomGroups;
513 >    Molecule::RigidBodyIterator rbIter;
514 >    RigidBody* rb;
515 >    Molecule::IntegrableObjectIterator ii;
516 >    StuntDouble* integrableObject;
517      
518 <    for(i=0; i<3; i++)
519 <      scaled[i] -= roundMe(scaled[i]);
520 <    
521 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
522 <    
523 <    matVecMul3(Hmat, scaled, thePos);
518 >    for (integrableObject = mol->beginIntegrableObject(ii);
519 >         integrableObject != NULL;
520 >         integrableObject = mol->nextIntegrableObject(ii)) {
521 >      
522 >      if (integrableObject->isRigidBody()) {
523 >        rb = static_cast<RigidBody*>(integrableObject);
524 >        vector<Atom*> atoms = rb->getAtoms();
525 >        set<int> rigidAtoms;
526 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
527 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
528 >        }
529 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
530 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
531 >        }      
532 >      } else {
533 >        set<int> oneAtomSet;
534 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
535 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
536 >      }
537 >    }  
538  
539 <  }
540 <  else{
541 <    // calc the scaled coordinates.
539 >    for (bond= mol->beginBond(bondIter); bond != NULL;
540 >         bond = mol->nextBond(bondIter)) {
541 >      
542 >      a = bond->getAtomA()->getGlobalIndex();
543 >      b = bond->getAtomB()->getGlobalIndex();  
544      
545 <    for(i=0; i<3; i++)
546 <      scaled[i] = thePos[i]*HmatInv[i][i];
547 <    
548 <    // wrap the scaled coordinates
549 <    
550 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
545 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
546 >        oneTwoInteractions_.removePair(a, b);
547 >      } else {
548 >        excludedInteractions_.removePair(a, b);
549 >      }
550 >    }
551  
552 +    for (bend= mol->beginBend(bendIter); bend != NULL;
553 +         bend = mol->nextBend(bendIter)) {
554  
555 < int SimInfo::getNDF(){
556 <  int ndf_local;
555 >      a = bend->getAtomA()->getGlobalIndex();
556 >      b = bend->getAtomB()->getGlobalIndex();        
557 >      c = bend->getAtomC()->getGlobalIndex();
558 >      
559 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
560 >        oneTwoInteractions_.removePair(a, b);      
561 >        oneTwoInteractions_.removePair(b, c);
562 >      } else {
563 >        excludedInteractions_.removePair(a, b);
564 >        excludedInteractions_.removePair(b, c);
565 >      }
566  
567 <  ndf_local = 0;
568 <  
569 <  for(int i = 0; i < integrableObjects.size(); i++){
570 <    ndf_local += 3;
571 <    if (integrableObjects[i]->isDirectional()) {
337 <      if (integrableObjects[i]->isLinear())
338 <        ndf_local += 2;
339 <      else
340 <        ndf_local += 3;
567 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
568 >        oneThreeInteractions_.removePair(a, c);      
569 >      } else {
570 >        excludedInteractions_.removePair(a, c);
571 >      }
572      }
342  }
573  
574 <  // n_constraints is local, so subtract them on each processor:
574 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
575 >         torsion = mol->nextTorsion(torsionIter)) {
576  
577 <  ndf_local -= n_constraints;
577 >      a = torsion->getAtomA()->getGlobalIndex();
578 >      b = torsion->getAtomB()->getGlobalIndex();        
579 >      c = torsion->getAtomC()->getGlobalIndex();        
580 >      d = torsion->getAtomD()->getGlobalIndex();      
581 >  
582 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
583 >        oneTwoInteractions_.removePair(a, b);      
584 >        oneTwoInteractions_.removePair(b, c);
585 >        oneTwoInteractions_.removePair(c, d);
586 >      } else {
587 >        excludedInteractions_.removePair(a, b);
588 >        excludedInteractions_.removePair(b, c);
589 >        excludedInteractions_.removePair(c, d);
590 >      }
591  
592 < #ifdef IS_MPI
593 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
594 < #else
595 <  ndf = ndf_local;
596 < #endif
592 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
593 >        oneThreeInteractions_.removePair(a, c);      
594 >        oneThreeInteractions_.removePair(b, d);      
595 >      } else {
596 >        excludedInteractions_.removePair(a, c);
597 >        excludedInteractions_.removePair(b, d);
598 >      }
599  
600 <  // nZconstraints is global, as are the 3 COM translations for the
601 <  // entire system:
600 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
601 >        oneFourInteractions_.removePair(a, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, d);
604 >      }
605 >    }
606  
607 <  ndf = ndf - 3 - nZconstraints;
607 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
608 >         inversion = mol->nextInversion(inversionIter)) {
609  
610 <  return ndf;
611 < }
610 >      a = inversion->getAtomA()->getGlobalIndex();
611 >      b = inversion->getAtomB()->getGlobalIndex();        
612 >      c = inversion->getAtomC()->getGlobalIndex();        
613 >      d = inversion->getAtomD()->getGlobalIndex();        
614  
615 < int SimInfo::getNDFraw() {
616 <  int ndfRaw_local;
615 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
616 >        oneTwoInteractions_.removePair(a, b);      
617 >        oneTwoInteractions_.removePair(a, c);
618 >        oneTwoInteractions_.removePair(a, d);
619 >      } else {
620 >        excludedInteractions_.removePair(a, b);
621 >        excludedInteractions_.removePair(a, c);
622 >        excludedInteractions_.removePair(a, d);
623 >      }
624  
625 <  // Raw degrees of freedom that we have to set
626 <  ndfRaw_local = 0;
627 <
628 <  for(int i = 0; i < integrableObjects.size(); i++){
629 <    ndfRaw_local += 3;
630 <    if (integrableObjects[i]->isDirectional()) {
631 <       if (integrableObjects[i]->isLinear())
632 <        ndfRaw_local += 2;
633 <      else
374 <        ndfRaw_local += 3;
625 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
626 >        oneThreeInteractions_.removePair(b, c);    
627 >        oneThreeInteractions_.removePair(b, d);    
628 >        oneThreeInteractions_.removePair(c, d);      
629 >      } else {
630 >        excludedInteractions_.removePair(b, c);
631 >        excludedInteractions_.removePair(b, d);
632 >        excludedInteractions_.removePair(c, d);
633 >      }
634      }
635 +
636 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
637 +         rb = mol->nextRigidBody(rbIter)) {
638 +      vector<Atom*> atoms = rb->getAtoms();
639 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
640 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
641 +          a = atoms[i]->getGlobalIndex();
642 +          b = atoms[j]->getGlobalIndex();
643 +          excludedInteractions_.removePair(a, b);
644 +        }
645 +      }
646 +    }        
647 +    
648    }
649 +  
650 +  
651 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
652 +    int curStampId;
653      
654 < #ifdef IS_MPI
655 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
654 >    //index from 0
655 >    curStampId = moleculeStamps_.size();
656  
657 <  return ndfRaw;
658 < }
657 >    moleculeStamps_.push_back(molStamp);
658 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
659 >  }
660  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
661  
662 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
662 >  /**
663 >   * update
664 >   *
665 >   *  Performs the global checks and variable settings after the
666 >   *  objects have been created.
667 >   *
668 >   */
669 >  void SimInfo::update() {  
670 >    setupSimVariables();
671 >    calcNdf();
672 >    calcNdfRaw();
673 >    calcNdfTrans();
674 >  }
675 >  
676 >  /**
677 >   * getSimulatedAtomTypes
678 >   *
679 >   * Returns an STL set of AtomType* that are actually present in this
680 >   * simulation.  Must query all processors to assemble this information.
681 >   *
682 >   */
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684 >    SimInfo::MoleculeIterator mi;
685 >    Molecule* mol;
686 >    Molecule::AtomIterator ai;
687 >    Atom* atom;
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692 >        atomTypes.insert(atom->getAtomType());
693 >      }      
694 >    }    
695  
392
696   #ifdef IS_MPI
394  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 #else
396  ndfTrans = ndfTrans_local;
397 #endif
697  
698 <  ndfTrans = ndfTrans - 3 - nZconstraints;
698 >    // loop over the found atom types on this processor, and add their
699 >    // numerical idents to a vector:
700  
701 <  return ndfTrans;
702 < }
701 >    vector<int> foundTypes;
702 >    set<AtomType*>::iterator i;
703 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
704 >      foundTypes.push_back( (*i)->getIdent() );
705  
706 < int SimInfo::getTotIntegrableObjects() {
707 <  int nObjs_local;
406 <  int nObjs;
706 >    // count_local holds the number of found types on this processor
707 >    int count_local = foundTypes.size();
708  
709 <  nObjs_local =  integrableObjects.size();
709 >    // count holds the total number of found types on all processors
710 >    // (some will be redundant with the ones found locally):
711 >    int count;
712 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
713  
714 +    // create a vector to hold the globally found types, and resize it:
715 +    vector<int> ftGlobal;
716 +    ftGlobal.resize(count);
717 +    vector<int> counts;
718  
719 < #ifdef IS_MPI
720 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
721 < #else
722 <  nObjs = nObjs_local;
415 < #endif
719 >    int nproc = MPI::COMM_WORLD.Get_size();
720 >    counts.resize(nproc);
721 >    vector<int> disps;
722 >    disps.resize(nproc);
723  
724 +    // now spray out the foundTypes to all the other processors:
725 +    
726 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
727 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
728  
729 <  return nObjs;
730 < }
729 >    // foundIdents is a stl set, so inserting an already found ident
730 >    // will have no effect.
731 >    set<int> foundIdents;
732 >    vector<int>::iterator j;
733 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
734 >      foundIdents.insert((*j));
735 >    
736 >    // now iterate over the foundIdents and get the actual atom types
737 >    // that correspond to these:
738 >    set<int>::iterator it;
739 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
740 >      atomTypes.insert( forceField_->getAtomType((*it)) );
741 >
742 > #endif
743 >    
744 >    return atomTypes;        
745 >  }
746  
747 < void SimInfo::refreshSim(){
747 >  void SimInfo::setupSimVariables() {
748 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
749 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
750 >    calcBoxDipole_ = false;
751 >    if ( simParams_->haveAccumulateBoxDipole() )
752 >      if ( simParams_->getAccumulateBoxDipole() ) {
753 >        calcBoxDipole_ = true;      
754 >      }
755  
756 <  simtype fInfo;
757 <  int isError;
758 <  int n_global;
759 <  int* excl;
756 >    set<AtomType*>::iterator i;
757 >    set<AtomType*> atomTypes;
758 >    atomTypes = getSimulatedAtomTypes();    
759 >    int usesElectrostatic = 0;
760 >    int usesMetallic = 0;
761 >    int usesDirectional = 0;
762 >    //loop over all of the atom types
763 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
764 >      usesElectrostatic |= (*i)->isElectrostatic();
765 >      usesMetallic |= (*i)->isMetal();
766 >      usesDirectional |= (*i)->isDirectional();
767 >    }
768  
769 <  fInfo.dielect = 0.0;
769 > #ifdef IS_MPI    
770 >    int temp;
771 >    temp = usesDirectional;
772 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
773  
774 <  if( useDipoles ){
775 <    if( useReactionField )fInfo.dielect = dielectric;
774 >    temp = usesMetallic;
775 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
776 >
777 >    temp = usesElectrostatic;
778 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
779 > #endif
780 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
781 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
782 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
783 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
784 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
785 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
786    }
787  
788 <  fInfo.SIM_uses_PBC = usePBC;
789 <  //fInfo.SIM_uses_LJ = 0;
790 <  fInfo.SIM_uses_LJ = useLJ;
791 <  fInfo.SIM_uses_sticky = useSticky;
792 <  //fInfo.SIM_uses_sticky = 0;
793 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
788 >  void SimInfo::setupFortran() {
789 >    int isError;
790 >    int nExclude, nOneTwo, nOneThree, nOneFour;
791 >    vector<int> fortranGlobalGroupMembership;
792 >    
793 >    isError = 0;
794  
795 <  n_exclude = excludes->getSize();
796 <  excl = excludes->getFortranArray();
797 <  
798 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
454 < #endif
455 <  
456 <  isError = 0;
457 <  
458 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
795 >    //globalGroupMembership_ is filled by SimCreator    
796 >    for (int i = 0; i < nGlobalAtoms_; i++) {
797 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
798 >    }
799  
800 <  if( isError ){
800 >    //calculate mass ratio of cutoff group
801 >    vector<RealType> mfact;
802 >    SimInfo::MoleculeIterator mi;
803 >    Molecule* mol;
804 >    Molecule::CutoffGroupIterator ci;
805 >    CutoffGroup* cg;
806 >    Molecule::AtomIterator ai;
807 >    Atom* atom;
808 >    RealType totalMass;
809 >
810 >    //to avoid memory reallocation, reserve enough space for mfact
811 >    mfact.reserve(getNCutoffGroups());
812      
813 <    sprintf( painCave.errMsg,
814 <             "There was an error setting the simulation information in fortran.\n" );
470 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
813 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
814 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
815  
816 < void SimInfo::setDefaultRcut( double theRcut ){
817 <  
818 <  haveRcut = 1;
819 <  rCut = theRcut;
820 <  rList = rCut + 1.0;
821 <  
822 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
823 < }
816 >        totalMass = cg->getMass();
817 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
818 >          // Check for massless groups - set mfact to 1 if true
819 >          if (totalMass != 0)
820 >            mfact.push_back(atom->getMass()/totalMass);
821 >          else
822 >            mfact.push_back( 1.0 );
823 >        }
824 >      }      
825 >    }
826  
827 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
827 >    // Build the identArray_
828  
829 <  rSw = theRsw;
830 <  setDefaultRcut( theRcut );
831 < }
829 >    identArray_.clear();
830 >    identArray_.reserve(getNAtoms());    
831 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
832 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
833 >        identArray_.push_back(atom->getIdent());
834 >      }
835 >    }    
836  
837 +    //fill molMembershipArray
838 +    //molMembershipArray is filled by SimCreator    
839 +    vector<int> molMembershipArray(nGlobalAtoms_);
840 +    for (int i = 0; i < nGlobalAtoms_; i++) {
841 +      molMembershipArray[i] = globalMolMembership_[i] + 1;
842 +    }
843 +    
844 +    //setup fortran simulation
845  
846 < void SimInfo::checkCutOffs( void ){
847 <  
848 <  if( boxIsInit ){
846 >    nExclude = excludedInteractions_.getSize();
847 >    nOneTwo = oneTwoInteractions_.getSize();
848 >    nOneThree = oneThreeInteractions_.getSize();
849 >    nOneFour = oneFourInteractions_.getSize();
850 >
851 >    int* excludeList = excludedInteractions_.getPairList();
852 >    int* oneTwoList = oneTwoInteractions_.getPairList();
853 >    int* oneThreeList = oneThreeInteractions_.getPairList();
854 >    int* oneFourList = oneFourInteractions_.getPairList();
855 >
856 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
857 >                   &nExclude, excludeList,
858 >                   &nOneTwo, oneTwoList,
859 >                   &nOneThree, oneThreeList,
860 >                   &nOneFour, oneFourList,
861 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 >                   &fortranGlobalGroupMembership[0], &isError);
863      
864 <    //we need to check cutOffs against the box
865 <    
508 <    if( rCut > maxCutoff ){
864 >    if( isError ){
865 >      
866        sprintf( painCave.errMsg,
867 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
867 >               "There was an error setting the simulation information in fortran.\n" );
868        painCave.isFatal = 1;
869 +      painCave.severity = OPENMD_ERROR;
870        simError();
871 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
537 <
538 < void SimInfo::addProperty(GenericData* prop){
539 <
540 <  map<string, GenericData*>::iterator result;
541 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
871 >    }
872      
873 <    delete (*result).second;
874 <    (*result).second = prop;
875 <      
876 <  }
877 <  else{
873 >    
874 >    sprintf( checkPointMsg,
875 >             "succesfully sent the simulation information to fortran.\n");
876 >    
877 >    errorCheckPoint();
878 >    
879 >    // Setup number of neighbors in neighbor list if present
880 >    if (simParams_->haveNeighborListNeighbors()) {
881 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 >      setNeighbors(&nlistNeighbors);
883 >    }
884 >  
885 > #ifdef IS_MPI    
886 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
887 >    //localToGlobalGroupIndex
888 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
889 >    vector<int> localToGlobalCutoffGroupIndex;
890 >    mpiSimData parallelData;
891  
892 <    properties[prop->getID()] = prop;
892 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
893  
894 <  }
895 <    
896 < }
894 >      //local index(index in DataStorge) of atom is important
895 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
896 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
897 >      }
898  
899 < GenericData* SimInfo::getProperty(const string& propName){
900 <
901 <  map<string, GenericData*>::iterator result;
902 <  
903 <  //string lowerCaseName = ();
904 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
899 >      //local index of cutoff group is trivial, it only depends on the order of travesing
900 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
901 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
902 >      }        
903 >        
904 >    }
905  
906 +    //fill up mpiSimData struct
907 +    parallelData.nMolGlobal = getNGlobalMolecules();
908 +    parallelData.nMolLocal = getNMolecules();
909 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
910 +    parallelData.nAtomsLocal = getNAtoms();
911 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
912 +    parallelData.nGroupsLocal = getNCutoffGroups();
913 +    parallelData.myNode = worldRank;
914 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
915  
916 < void SimInfo::getFortranGroupArrays(SimInfo* info,
917 <                                    vector<int>& FglobalGroupMembership,
918 <                                    vector<double>& mfact){
919 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
916 >    //pass mpiSimData struct and index arrays to fortran
917 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
918 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
919 >                    &localToGlobalCutoffGroupIndex[0], &isError);
920  
921 <  // Fix the silly fortran indexing problem
921 >    if (isError) {
922 >      sprintf(painCave.errMsg,
923 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
924 >      painCave.isFatal = 1;
925 >      simError();
926 >    }
927 >
928 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
929 >    errorCheckPoint();
930 > #endif
931 >
932 >    initFortranFF(&isError);
933 >    if (isError) {
934 >      sprintf(painCave.errMsg,
935 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
936 >      painCave.isFatal = 1;
937 >      simError();
938 >    }
939 >    fortranInitialized_ = true;
940 >  }
941 >
942 >  void SimInfo::addProperty(GenericData* genData) {
943 >    properties_.addProperty(genData);  
944 >  }
945 >
946 >  void SimInfo::removeProperty(const string& propName) {
947 >    properties_.removeProperty(propName);  
948 >  }
949 >
950 >  void SimInfo::clearProperties() {
951 >    properties_.clearProperties();
952 >  }
953 >
954 >  vector<string> SimInfo::getPropertyNames() {
955 >    return properties_.getPropertyNames();  
956 >  }
957 >      
958 >  vector<GenericData*> SimInfo::getProperties() {
959 >    return properties_.getProperties();
960 >  }
961 >
962 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
963 >    return properties_.getPropertyByName(propName);
964 >  }
965 >
966 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
967 >    if (sman_ == sman) {
968 >      return;
969 >    }    
970 >    delete sman_;
971 >    sman_ = sman;
972 >
973 >    Molecule* mol;
974 >    RigidBody* rb;
975 >    Atom* atom;
976 >    CutoffGroup* cg;
977 >    SimInfo::MoleculeIterator mi;
978 >    Molecule::RigidBodyIterator rbIter;
979 >    Molecule::AtomIterator atomIter;
980 >    Molecule::CutoffGroupIterator cgIter;
981 >
982 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
983 >        
984 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
985 >        atom->setSnapshotManager(sman_);
986 >      }
987 >        
988 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
989 >        rb->setSnapshotManager(sman_);
990 >      }
991 >
992 >      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
993 >        cg->setSnapshotManager(sman_);
994 >      }
995 >    }    
996 >    
997 >  }
998 >
999 >  Vector3d SimInfo::getComVel(){
1000 >    SimInfo::MoleculeIterator i;
1001 >    Molecule* mol;
1002 >
1003 >    Vector3d comVel(0.0);
1004 >    RealType totalMass = 0.0;
1005 >    
1006 >
1007 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1008 >      RealType mass = mol->getMass();
1009 >      totalMass += mass;
1010 >      comVel += mass * mol->getComVel();
1011 >    }  
1012 >
1013   #ifdef IS_MPI
1014 <  numAtom = mpiSim->getNAtomsGlobal();
1015 < #else
1016 <  numAtom = n_atoms;
1014 >    RealType tmpMass = totalMass;
1015 >    Vector3d tmpComVel(comVel);    
1016 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1017 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1018   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
1019  
1020 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1020 >    comVel /= totalMass;
1021  
1022 <      totalMass = myCutoffGroup->getMass();
1022 >    return comVel;
1023 >  }
1024 >
1025 >  Vector3d SimInfo::getCom(){
1026 >    SimInfo::MoleculeIterator i;
1027 >    Molecule* mol;
1028 >
1029 >    Vector3d com(0.0);
1030 >    RealType totalMass = 0.0;
1031 >    
1032 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1033 >      RealType mass = mol->getMass();
1034 >      totalMass += mass;
1035 >      com += mass * mol->getCom();
1036 >    }  
1037 >
1038 > #ifdef IS_MPI
1039 >    RealType tmpMass = totalMass;
1040 >    Vector3d tmpCom(com);    
1041 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1042 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1043 > #endif
1044 >
1045 >    com /= totalMass;
1046 >
1047 >    return com;
1048 >
1049 >  }        
1050 >
1051 >  ostream& operator <<(ostream& o, SimInfo& info) {
1052 >
1053 >    return o;
1054 >  }
1055 >  
1056 >  
1057 >   /*
1058 >   Returns center of mass and center of mass velocity in one function call.
1059 >   */
1060 >  
1061 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1062 >      SimInfo::MoleculeIterator i;
1063 >      Molecule* mol;
1064        
1065 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1066 <          cutoffAtom != NULL;
1067 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1068 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1065 >    
1066 >      RealType totalMass = 0.0;
1067 >    
1068 >
1069 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1070 >         RealType mass = mol->getMass();
1071 >         totalMass += mass;
1072 >         com += mass * mol->getCom();
1073 >         comVel += mass * mol->getComVel();          
1074        }  
1075 +      
1076 + #ifdef IS_MPI
1077 +      RealType tmpMass = totalMass;
1078 +      Vector3d tmpCom(com);  
1079 +      Vector3d tmpComVel(comVel);
1080 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1081 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1082 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1083 + #endif
1084 +      
1085 +      com /= totalMass;
1086 +      comVel /= totalMass;
1087 +   }        
1088 +  
1089 +   /*
1090 +   Return intertia tensor for entire system and angular momentum Vector.
1091 +
1092 +
1093 +       [  Ixx -Ixy  -Ixz ]
1094 +    J =| -Iyx  Iyy  -Iyz |
1095 +       [ -Izx -Iyz   Izz ]
1096 +    */
1097 +
1098 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1099 +      
1100 +
1101 +      RealType xx = 0.0;
1102 +      RealType yy = 0.0;
1103 +      RealType zz = 0.0;
1104 +      RealType xy = 0.0;
1105 +      RealType xz = 0.0;
1106 +      RealType yz = 0.0;
1107 +      Vector3d com(0.0);
1108 +      Vector3d comVel(0.0);
1109 +      
1110 +      getComAll(com, comVel);
1111 +      
1112 +      SimInfo::MoleculeIterator i;
1113 +      Molecule* mol;
1114 +      
1115 +      Vector3d thisq(0.0);
1116 +      Vector3d thisv(0.0);
1117 +
1118 +      RealType thisMass = 0.0;
1119 +    
1120 +      
1121 +      
1122 +  
1123 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1124 +        
1125 +         thisq = mol->getCom()-com;
1126 +         thisv = mol->getComVel()-comVel;
1127 +         thisMass = mol->getMass();
1128 +         // Compute moment of intertia coefficients.
1129 +         xx += thisq[0]*thisq[0]*thisMass;
1130 +         yy += thisq[1]*thisq[1]*thisMass;
1131 +         zz += thisq[2]*thisq[2]*thisMass;
1132 +        
1133 +         // compute products of intertia
1134 +         xy += thisq[0]*thisq[1]*thisMass;
1135 +         xz += thisq[0]*thisq[2]*thisMass;
1136 +         yz += thisq[1]*thisq[2]*thisMass;
1137 +            
1138 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1139 +            
1140 +      }  
1141 +      
1142 +      
1143 +      inertiaTensor(0,0) = yy + zz;
1144 +      inertiaTensor(0,1) = -xy;
1145 +      inertiaTensor(0,2) = -xz;
1146 +      inertiaTensor(1,0) = -xy;
1147 +      inertiaTensor(1,1) = xx + zz;
1148 +      inertiaTensor(1,2) = -yz;
1149 +      inertiaTensor(2,0) = -xz;
1150 +      inertiaTensor(2,1) = -yz;
1151 +      inertiaTensor(2,2) = xx + yy;
1152 +      
1153 + #ifdef IS_MPI
1154 +      Mat3x3d tmpI(inertiaTensor);
1155 +      Vector3d tmpAngMom;
1156 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1157 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1158 + #endif
1159 +              
1160 +      return;
1161 +   }
1162 +
1163 +   //Returns the angular momentum of the system
1164 +   Vector3d SimInfo::getAngularMomentum(){
1165 +      
1166 +      Vector3d com(0.0);
1167 +      Vector3d comVel(0.0);
1168 +      Vector3d angularMomentum(0.0);
1169 +      
1170 +      getComAll(com,comVel);
1171 +      
1172 +      SimInfo::MoleculeIterator i;
1173 +      Molecule* mol;
1174 +      
1175 +      Vector3d thisr(0.0);
1176 +      Vector3d thisp(0.0);
1177 +      
1178 +      RealType thisMass;
1179 +      
1180 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1181 +        thisMass = mol->getMass();
1182 +        thisr = mol->getCom()-com;
1183 +        thisp = (mol->getComVel()-comVel)*thisMass;
1184 +        
1185 +        angularMomentum += cross( thisr, thisp );
1186 +        
1187 +      }  
1188 +      
1189 + #ifdef IS_MPI
1190 +      Vector3d tmpAngMom;
1191 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1192 + #endif
1193 +      
1194 +      return angularMomentum;
1195 +   }
1196 +  
1197 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1198 +    return IOIndexToIntegrableObject.at(index);
1199 +  }
1200 +  
1201 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1202 +    IOIndexToIntegrableObject= v;
1203 +  }
1204 +
1205 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1206 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1207 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1208 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1209 +  */
1210 +  void SimInfo::getGyrationalVolume(RealType &volume){
1211 +    Mat3x3d intTensor;
1212 +    RealType det;
1213 +    Vector3d dummyAngMom;
1214 +    RealType sysconstants;
1215 +    RealType geomCnst;
1216 +
1217 +    geomCnst = 3.0/2.0;
1218 +    /* Get the inertial tensor and angular momentum for free*/
1219 +    getInertiaTensor(intTensor,dummyAngMom);
1220 +    
1221 +    det = intTensor.determinant();
1222 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1223 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1224 +    return;
1225 +  }
1226 +
1227 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1228 +    Mat3x3d intTensor;
1229 +    Vector3d dummyAngMom;
1230 +    RealType sysconstants;
1231 +    RealType geomCnst;
1232 +
1233 +    geomCnst = 3.0/2.0;
1234 +    /* Get the inertial tensor and angular momentum for free*/
1235 +    getInertiaTensor(intTensor,dummyAngMom);
1236 +    
1237 +    detI = intTensor.determinant();
1238 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1239 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1240 +    return;
1241 +  }
1242 + /*
1243 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1244 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1245 +      sdByGlobalIndex_ = v;
1246      }
1247 +
1248 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1249 +      //assert(index < nAtoms_ + nRigidBodies_);
1250 +      return sdByGlobalIndex_.at(index);
1251 +    }  
1252 + */  
1253 +  int SimInfo::getNGlobalConstraints() {
1254 +    int nGlobalConstraints;
1255 + #ifdef IS_MPI
1256 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1257 +                  MPI_COMM_WORLD);    
1258 + #else
1259 +    nGlobalConstraints =  nConstraints_;
1260 + #endif
1261 +    return nGlobalConstraints;
1262    }
1263  
1264 < }
1264 > }//end namespace OpenMD
1265 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1547 by gezelter, Mon Apr 11 18:44:16 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines