ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
58 > #include "UseTheForce/doForces_interface.h"
59 > #include "utils/MemoryUtils.hpp"
60 > #include "utils/simError.h"
61 > #include "selection/SelectionManager.hpp"
62 > #include "io/ForceFieldOptions.hpp"
63 > #include "UseTheForce/ForceField.hpp"
64 > #include "nonbonded/SwitchingFunction.hpp"
65  
13 #include "fortranWrappers.hpp"
14
15 #include "MatVec3.h"
16
66   #ifdef IS_MPI
67 < #include "mpiSimulation.hpp"
68 < #endif
67 > #include "UseTheForce/mpiComponentPlan.h"
68 > #include "UseTheForce/DarkSide/simParallel_interface.h"
69 > #endif
70  
71 < inline double roundMe( double x ){
72 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
73 < }
74 <          
75 < inline double min( double a, double b ){
76 <  return (a < b ) ? a : b;
77 < }
71 > using namespace std;
72 > namespace OpenMD {
73 >  
74 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
75 >    forceField_(ff), simParams_(simParams),
76 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
77 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
78 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
79 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
80 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
81 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
82 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
83 >    
84 >    MoleculeStamp* molStamp;
85 >    int nMolWithSameStamp;
86 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
87 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
88 >    CutoffGroupStamp* cgStamp;    
89 >    RigidBodyStamp* rbStamp;
90 >    int nRigidAtoms = 0;
91 >    
92 >    vector<Component*> components = simParams->getComponents();
93 >    
94 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
95 >      molStamp = (*i)->getMoleculeStamp();
96 >      nMolWithSameStamp = (*i)->getNMol();
97 >      
98 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
99 >      
100 >      //calculate atoms in molecules
101 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
102 >      
103 >      //calculate atoms in cutoff groups
104 >      int nAtomsInGroups = 0;
105 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
106 >      
107 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
108 >        cgStamp = molStamp->getCutoffGroupStamp(j);
109 >        nAtomsInGroups += cgStamp->getNMembers();
110 >      }
111 >      
112 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
113 >      
114 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
115 >      
116 >      //calculate atoms in rigid bodies
117 >      int nAtomsInRigidBodies = 0;
118 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
119 >      
120 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
121 >        rbStamp = molStamp->getRigidBodyStamp(j);
122 >        nAtomsInRigidBodies += rbStamp->getNMembers();
123 >      }
124 >      
125 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
126 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
127 >      
128 >    }
129 >    
130 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
131 >    //group therefore the total number of cutoff groups in the system is
132 >    //equal to the total number of atoms minus number of atoms belong to
133 >    //cutoff group defined in meta-data file plus the number of cutoff
134 >    //groups defined in meta-data file
135 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
136 >    
137 >    //every free atom (atom does not belong to rigid bodies) is an
138 >    //integrable object therefore the total number of integrable objects
139 >    //in the system is equal to the total number of atoms minus number of
140 >    //atoms belong to rigid body defined in meta-data file plus the number
141 >    //of rigid bodies defined in meta-data file
142 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
143 >      + nGlobalRigidBodies_;
144 >    
145 >    nGlobalMols_ = molStampIds_.size();
146 >    molToProcMap_.resize(nGlobalMols_);
147 >  }
148 >  
149 >  SimInfo::~SimInfo() {
150 >    map<int, Molecule*>::iterator i;
151 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
152 >      delete i->second;
153 >    }
154 >    molecules_.clear();
155 >      
156 >    delete sman_;
157 >    delete simParams_;
158 >    delete forceField_;
159 >  }
160  
29 SimInfo* currentInfo;
161  
162 < SimInfo::SimInfo(){
163 <
164 <  n_constraints = 0;
165 <  nZconstraints = 0;
166 <  n_oriented = 0;
167 <  n_dipoles = 0;
168 <  ndf = 0;
169 <  ndfRaw = 0;
170 <  nZconstraints = 0;
171 <  the_integrator = NULL;
172 <  setTemp = 0;
173 <  thermalTime = 0.0;
174 <  currentTime = 0.0;
175 <  rCut = 0.0;
176 <  rSw = 0.0;
177 <
178 <  haveRcut = 0;
179 <  haveRsw = 0;
180 <  boxIsInit = 0;
162 >  bool SimInfo::addMolecule(Molecule* mol) {
163 >    MoleculeIterator i;
164 >    
165 >    i = molecules_.find(mol->getGlobalIndex());
166 >    if (i == molecules_.end() ) {
167 >      
168 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
169 >      
170 >      nAtoms_ += mol->getNAtoms();
171 >      nBonds_ += mol->getNBonds();
172 >      nBends_ += mol->getNBends();
173 >      nTorsions_ += mol->getNTorsions();
174 >      nInversions_ += mol->getNInversions();
175 >      nRigidBodies_ += mol->getNRigidBodies();
176 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
177 >      nCutoffGroups_ += mol->getNCutoffGroups();
178 >      nConstraints_ += mol->getNConstraintPairs();
179 >      
180 >      addInteractionPairs(mol);
181 >      
182 >      return true;
183 >    } else {
184 >      return false;
185 >    }
186 >  }
187    
188 <  resetTime = 1e99;
188 >  bool SimInfo::removeMolecule(Molecule* mol) {
189 >    MoleculeIterator i;
190 >    i = molecules_.find(mol->getGlobalIndex());
191  
192 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
192 >    if (i != molecules_.end() ) {
193  
194 <  usePBC = 0;
195 <  useLJ = 0;
196 <  useSticky = 0;
197 <  useCharges = 0;
198 <  useDipoles = 0;
199 <  useReactionField = 0;
200 <  useGB = 0;
201 <  useEAM = 0;
202 <  useSolidThermInt = 0;
203 <  useLiquidThermInt = 0;
204 <
68 <  haveCutoffGroups = false;
69 <
70 <  excludes = Exclude::Instance();
71 <
72 <  myConfiguration = new SimState();
194 >      assert(mol == i->second);
195 >        
196 >      nAtoms_ -= mol->getNAtoms();
197 >      nBonds_ -= mol->getNBonds();
198 >      nBends_ -= mol->getNBends();
199 >      nTorsions_ -= mol->getNTorsions();
200 >      nInversions_ -= mol->getNInversions();
201 >      nRigidBodies_ -= mol->getNRigidBodies();
202 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
203 >      nCutoffGroups_ -= mol->getNCutoffGroups();
204 >      nConstraints_ -= mol->getNConstraintPairs();
205  
206 <  has_minimizer = false;
207 <  the_minimizer =NULL;
206 >      removeInteractionPairs(mol);
207 >      molecules_.erase(mol->getGlobalIndex());
208  
209 <  ngroup = 0;
209 >      delete mol;
210 >        
211 >      return true;
212 >    } else {
213 >      return false;
214 >    }
215 >  }    
216  
217 <  wrapMeSimInfo( this );
218 < }
217 >        
218 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
219 >    i = molecules_.begin();
220 >    return i == molecules_.end() ? NULL : i->second;
221 >  }    
222  
223 +  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
224 +    ++i;
225 +    return i == molecules_.end() ? NULL : i->second;    
226 +  }
227  
83 SimInfo::~SimInfo(){
228  
229 <  delete myConfiguration;
229 >  void SimInfo::calcNdf() {
230 >    int ndf_local;
231 >    MoleculeIterator i;
232 >    vector<StuntDouble*>::iterator j;
233 >    Molecule* mol;
234 >    StuntDouble* integrableObject;
235  
236 <  map<string, GenericData*>::iterator i;
237 <  
238 <  for(i = properties.begin(); i != properties.end(); i++)
239 <    delete (*i).second;
236 >    ndf_local = 0;
237 >    
238 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
239 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
240 >           integrableObject = mol->nextIntegrableObject(j)) {
241  
242 < }
242 >        ndf_local += 3;
243  
244 < void SimInfo::setBox(double newBox[3]) {
245 <  
246 <  int i, j;
247 <  double tempMat[3][3];
244 >        if (integrableObject->isDirectional()) {
245 >          if (integrableObject->isLinear()) {
246 >            ndf_local += 2;
247 >          } else {
248 >            ndf_local += 3;
249 >          }
250 >        }
251 >            
252 >      }
253 >    }
254 >    
255 >    // n_constraints is local, so subtract them on each processor
256 >    ndf_local -= nConstraints_;
257  
258 <  for(i=0; i<3; i++)
259 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
258 > #ifdef IS_MPI
259 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
260 > #else
261 >    ndf_ = ndf_local;
262 > #endif
263  
264 <  tempMat[0][0] = newBox[0];
265 <  tempMat[1][1] = newBox[1];
266 <  tempMat[2][2] = newBox[2];
264 >    // nZconstraints_ is global, as are the 3 COM translations for the
265 >    // entire system:
266 >    ndf_ = ndf_ - 3 - nZconstraint_;
267  
268 <  setBoxM( tempMat );
268 >  }
269  
270 < }
271 <
272 < void SimInfo::setBoxM( double theBox[3][3] ){
273 <  
274 <  int i, j;
275 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
276 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
119 <
120 <  if( !boxIsInit ) boxIsInit = 1;
121 <
122 <  for(i=0; i < 3; i++)
123 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
124 <  
125 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
132 <    }
270 >  int SimInfo::getFdf() {
271 > #ifdef IS_MPI
272 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
273 > #else
274 >    fdf_ = fdf_local;
275 > #endif
276 >    return fdf_;
277    }
278 +    
279 +  void SimInfo::calcNdfRaw() {
280 +    int ndfRaw_local;
281  
282 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
283 <
284 < }
285 <
282 >    MoleculeIterator i;
283 >    vector<StuntDouble*>::iterator j;
284 >    Molecule* mol;
285 >    StuntDouble* integrableObject;
286  
287 < void SimInfo::getBoxM (double theBox[3][3]) {
287 >    // Raw degrees of freedom that we have to set
288 >    ndfRaw_local = 0;
289 >    
290 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
291 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
292 >           integrableObject = mol->nextIntegrableObject(j)) {
293  
294 <  int i, j;
143 <  for(i=0; i<3; i++)
144 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 < }
294 >        ndfRaw_local += 3;
295  
296 <
297 < void SimInfo::scaleBox(double scale) {
298 <  double theBox[3][3];
299 <  int i, j;
300 <
301 <  // cerr << "Scaling box by " << scale << "\n";
302 <
303 <  for(i=0; i<3; i++)
155 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
156 <
157 <  setBoxM(theBox);
158 <
159 < }
160 <
161 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
296 >        if (integrableObject->isDirectional()) {
297 >          if (integrableObject->isLinear()) {
298 >            ndfRaw_local += 2;
299 >          } else {
300 >            ndfRaw_local += 3;
301 >          }
302 >        }
303 >            
304        }
305      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
306      
307 <    if( orthoRhombic ) {
308 <      sprintf( painCave.errMsg,
309 <               "OOPSE is switching from the default Non-Orthorhombic\n"
310 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
311 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
307 > #ifdef IS_MPI
308 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
309 > #else
310 >    ndfRaw_ = ndfRaw_local;
311 > #endif
312    }
218 }
313  
314 < void SimInfo::calcBoxL( void ){
314 >  void SimInfo::calcNdfTrans() {
315 >    int ndfTrans_local;
316  
317 <  double dx, dy, dz, dsq;
317 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
318  
224  // boxVol = Determinant of Hmat
319  
320 <  boxVol = matDet3( Hmat );
320 > #ifdef IS_MPI
321 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 > #else
323 >    ndfTrans_ = ndfTrans_local;
324 > #endif
325  
326 <  // boxLx
327 <  
328 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
326 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
327 >
328 >  }
329  
330 <  // boxLy
331 <  
332 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
333 <  dsq = dx*dx + dy*dy + dz*dz;
334 <  boxL[1] = sqrt( dsq );
335 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
330 >  void SimInfo::addInteractionPairs(Molecule* mol) {
331 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
332 >    vector<Bond*>::iterator bondIter;
333 >    vector<Bend*>::iterator bendIter;
334 >    vector<Torsion*>::iterator torsionIter;
335 >    vector<Inversion*>::iterator inversionIter;
336 >    Bond* bond;
337 >    Bend* bend;
338 >    Torsion* torsion;
339 >    Inversion* inversion;
340 >    int a;
341 >    int b;
342 >    int c;
343 >    int d;
344  
345 +    // atomGroups can be used to add special interaction maps between
346 +    // groups of atoms that are in two separate rigid bodies.
347 +    // However, most site-site interactions between two rigid bodies
348 +    // are probably not special, just the ones between the physically
349 +    // bonded atoms.  Interactions *within* a single rigid body should
350 +    // always be excluded.  These are done at the bottom of this
351 +    // function.
352  
353 <  // boxLz
354 <  
355 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
356 <  dsq = dx*dx + dy*dy + dz*dz;
357 <  boxL[2] = sqrt( dsq );
358 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
353 >    map<int, set<int> > atomGroups;
354 >    Molecule::RigidBodyIterator rbIter;
355 >    RigidBody* rb;
356 >    Molecule::IntegrableObjectIterator ii;
357 >    StuntDouble* integrableObject;
358 >    
359 >    for (integrableObject = mol->beginIntegrableObject(ii);
360 >         integrableObject != NULL;
361 >         integrableObject = mol->nextIntegrableObject(ii)) {
362 >      
363 >      if (integrableObject->isRigidBody()) {
364 >        rb = static_cast<RigidBody*>(integrableObject);
365 >        vector<Atom*> atoms = rb->getAtoms();
366 >        set<int> rigidAtoms;
367 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
368 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
369 >        }
370 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
371 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
372 >        }      
373 >      } else {
374 >        set<int> oneAtomSet;
375 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
376 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
377 >      }
378 >    }  
379 >          
380 >    for (bond= mol->beginBond(bondIter); bond != NULL;
381 >         bond = mol->nextBond(bondIter)) {
382  
383 <  //calculate the max cutoff
384 <  maxCutoff =  calcMaxCutOff();
385 <  
386 <  checkCutOffs();
383 >      a = bond->getAtomA()->getGlobalIndex();
384 >      b = bond->getAtomB()->getGlobalIndex();  
385 >    
386 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
387 >        oneTwoInteractions_.addPair(a, b);
388 >      } else {
389 >        excludedInteractions_.addPair(a, b);
390 >      }
391 >    }
392  
393 < }
393 >    for (bend= mol->beginBend(bendIter); bend != NULL;
394 >         bend = mol->nextBend(bendIter)) {
395  
396 +      a = bend->getAtomA()->getGlobalIndex();
397 +      b = bend->getAtomB()->getGlobalIndex();        
398 +      c = bend->getAtomC()->getGlobalIndex();
399 +      
400 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
401 +        oneTwoInteractions_.addPair(a, b);      
402 +        oneTwoInteractions_.addPair(b, c);
403 +      } else {
404 +        excludedInteractions_.addPair(a, b);
405 +        excludedInteractions_.addPair(b, c);
406 +      }
407  
408 < double SimInfo::calcMaxCutOff(){
408 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
409 >        oneThreeInteractions_.addPair(a, c);      
410 >      } else {
411 >        excludedInteractions_.addPair(a, c);
412 >      }
413 >    }
414  
415 <  double ri[3], rj[3], rk[3];
416 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
415 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
416 >         torsion = mol->nextTorsion(torsionIter)) {
417  
418 <  ri[0] = Hmat[0][0];
419 <  ri[1] = Hmat[1][0];
420 <  ri[2] = Hmat[2][0];
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();      
422  
423 <  rj[0] = Hmat[0][1];
424 <  rj[1] = Hmat[1][1];
425 <  rj[2] = Hmat[2][1];
423 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
424 >        oneTwoInteractions_.addPair(a, b);      
425 >        oneTwoInteractions_.addPair(b, c);
426 >        oneTwoInteractions_.addPair(c, d);
427 >      } else {
428 >        excludedInteractions_.addPair(a, b);
429 >        excludedInteractions_.addPair(b, c);
430 >        excludedInteractions_.addPair(c, d);
431 >      }
432  
433 <  rk[0] = Hmat[0][2];
434 <  rk[1] = Hmat[1][2];
435 <  rk[2] = Hmat[2][2];
436 <    
437 <  crossProduct3(ri, rj, rij);
438 <  distXY = dotProduct3(rk,rij) / norm3(rij);
433 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
434 >        oneThreeInteractions_.addPair(a, c);      
435 >        oneThreeInteractions_.addPair(b, d);      
436 >      } else {
437 >        excludedInteractions_.addPair(a, c);
438 >        excludedInteractions_.addPair(b, d);
439 >      }
440  
441 <  crossProduct3(rj,rk, rjk);
442 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
441 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
442 >        oneFourInteractions_.addPair(a, d);      
443 >      } else {
444 >        excludedInteractions_.addPair(a, d);
445 >      }
446 >    }
447  
448 <  crossProduct3(rk,ri, rki);
449 <  distZX = dotProduct3(rj,rki) / norm3(rki);
448 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
449 >         inversion = mol->nextInversion(inversionIter)) {
450  
451 <  minDist = min(min(distXY, distYZ), distZX);
452 <  return minDist/2;
453 <  
454 < }
451 >      a = inversion->getAtomA()->getGlobalIndex();
452 >      b = inversion->getAtomB()->getGlobalIndex();        
453 >      c = inversion->getAtomC()->getGlobalIndex();        
454 >      d = inversion->getAtomD()->getGlobalIndex();        
455  
456 < void SimInfo::wrapVector( double thePos[3] ){
456 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
457 >        oneTwoInteractions_.addPair(a, b);      
458 >        oneTwoInteractions_.addPair(a, c);
459 >        oneTwoInteractions_.addPair(a, d);
460 >      } else {
461 >        excludedInteractions_.addPair(a, b);
462 >        excludedInteractions_.addPair(a, c);
463 >        excludedInteractions_.addPair(a, d);
464 >      }
465  
466 <  int i;
467 <  double scaled[3];
466 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
467 >        oneThreeInteractions_.addPair(b, c);    
468 >        oneThreeInteractions_.addPair(b, d);    
469 >        oneThreeInteractions_.addPair(c, d);      
470 >      } else {
471 >        excludedInteractions_.addPair(b, c);
472 >        excludedInteractions_.addPair(b, d);
473 >        excludedInteractions_.addPair(c, d);
474 >      }
475 >    }
476  
477 <  if( !orthoRhombic ){
478 <    // calc the scaled coordinates.
479 <  
477 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
478 >         rb = mol->nextRigidBody(rbIter)) {
479 >      vector<Atom*> atoms = rb->getAtoms();
480 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
481 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
482 >          a = atoms[i]->getGlobalIndex();
483 >          b = atoms[j]->getGlobalIndex();
484 >          excludedInteractions_.addPair(a, b);
485 >        }
486 >      }
487 >    }        
488  
299    matVecMul3(HmatInv, thePos, scaled);
300    
301    for(i=0; i<3; i++)
302      scaled[i] -= roundMe(scaled[i]);
303    
304    // calc the wrapped real coordinates from the wrapped scaled coordinates
305    
306    matVecMul3(Hmat, scaled, thePos);
307
489    }
309  else{
310    // calc the scaled coordinates.
311    
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
324  }
325    
326 }
490  
491 +  void SimInfo::removeInteractionPairs(Molecule* mol) {
492 +    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
493 +    vector<Bond*>::iterator bondIter;
494 +    vector<Bend*>::iterator bendIter;
495 +    vector<Torsion*>::iterator torsionIter;
496 +    vector<Inversion*>::iterator inversionIter;
497 +    Bond* bond;
498 +    Bend* bend;
499 +    Torsion* torsion;
500 +    Inversion* inversion;
501 +    int a;
502 +    int b;
503 +    int c;
504 +    int d;
505  
506 < int SimInfo::getNDF(){
507 <  int ndf_local;
506 >    map<int, set<int> > atomGroups;
507 >    Molecule::RigidBodyIterator rbIter;
508 >    RigidBody* rb;
509 >    Molecule::IntegrableObjectIterator ii;
510 >    StuntDouble* integrableObject;
511 >    
512 >    for (integrableObject = mol->beginIntegrableObject(ii);
513 >         integrableObject != NULL;
514 >         integrableObject = mol->nextIntegrableObject(ii)) {
515 >      
516 >      if (integrableObject->isRigidBody()) {
517 >        rb = static_cast<RigidBody*>(integrableObject);
518 >        vector<Atom*> atoms = rb->getAtoms();
519 >        set<int> rigidAtoms;
520 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
521 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
522 >        }
523 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
524 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
525 >        }      
526 >      } else {
527 >        set<int> oneAtomSet;
528 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
529 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
530 >      }
531 >    }  
532  
533 <  ndf_local = 0;
534 <  
535 <  for(int i = 0; i < integrableObjects.size(); i++){
536 <    ndf_local += 3;
537 <    if (integrableObjects[i]->isDirectional()) {
538 <      if (integrableObjects[i]->isLinear())
539 <        ndf_local += 2;
540 <      else
541 <        ndf_local += 3;
533 >    for (bond= mol->beginBond(bondIter); bond != NULL;
534 >         bond = mol->nextBond(bondIter)) {
535 >      
536 >      a = bond->getAtomA()->getGlobalIndex();
537 >      b = bond->getAtomB()->getGlobalIndex();  
538 >    
539 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
540 >        oneTwoInteractions_.removePair(a, b);
541 >      } else {
542 >        excludedInteractions_.removePair(a, b);
543 >      }
544      }
342  }
545  
546 <  // n_constraints is local, so subtract them on each processor:
546 >    for (bend= mol->beginBend(bendIter); bend != NULL;
547 >         bend = mol->nextBend(bendIter)) {
548  
549 <  ndf_local -= n_constraints;
549 >      a = bend->getAtomA()->getGlobalIndex();
550 >      b = bend->getAtomB()->getGlobalIndex();        
551 >      c = bend->getAtomC()->getGlobalIndex();
552 >      
553 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
554 >        oneTwoInteractions_.removePair(a, b);      
555 >        oneTwoInteractions_.removePair(b, c);
556 >      } else {
557 >        excludedInteractions_.removePair(a, b);
558 >        excludedInteractions_.removePair(b, c);
559 >      }
560  
561 < #ifdef IS_MPI
562 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
563 < #else
564 <  ndf = ndf_local;
565 < #endif
561 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
562 >        oneThreeInteractions_.removePair(a, c);      
563 >      } else {
564 >        excludedInteractions_.removePair(a, c);
565 >      }
566 >    }
567  
568 <  // nZconstraints is global, as are the 3 COM translations for the
569 <  // entire system:
568 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
569 >         torsion = mol->nextTorsion(torsionIter)) {
570  
571 <  ndf = ndf - 3 - nZconstraints;
571 >      a = torsion->getAtomA()->getGlobalIndex();
572 >      b = torsion->getAtomB()->getGlobalIndex();        
573 >      c = torsion->getAtomC()->getGlobalIndex();        
574 >      d = torsion->getAtomD()->getGlobalIndex();      
575 >  
576 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
577 >        oneTwoInteractions_.removePair(a, b);      
578 >        oneTwoInteractions_.removePair(b, c);
579 >        oneTwoInteractions_.removePair(c, d);
580 >      } else {
581 >        excludedInteractions_.removePair(a, b);
582 >        excludedInteractions_.removePair(b, c);
583 >        excludedInteractions_.removePair(c, d);
584 >      }
585  
586 <  return ndf;
587 < }
586 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
587 >        oneThreeInteractions_.removePair(a, c);      
588 >        oneThreeInteractions_.removePair(b, d);      
589 >      } else {
590 >        excludedInteractions_.removePair(a, c);
591 >        excludedInteractions_.removePair(b, d);
592 >      }
593  
594 < int SimInfo::getNDFraw() {
595 <  int ndfRaw_local;
594 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
595 >        oneFourInteractions_.removePair(a, d);      
596 >      } else {
597 >        excludedInteractions_.removePair(a, d);
598 >      }
599 >    }
600  
601 <  // Raw degrees of freedom that we have to set
602 <  ndfRaw_local = 0;
601 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
602 >         inversion = mol->nextInversion(inversionIter)) {
603  
604 <  for(int i = 0; i < integrableObjects.size(); i++){
605 <    ndfRaw_local += 3;
606 <    if (integrableObjects[i]->isDirectional()) {
607 <       if (integrableObjects[i]->isLinear())
608 <        ndfRaw_local += 2;
609 <      else
610 <        ndfRaw_local += 3;
604 >      a = inversion->getAtomA()->getGlobalIndex();
605 >      b = inversion->getAtomB()->getGlobalIndex();        
606 >      c = inversion->getAtomC()->getGlobalIndex();        
607 >      d = inversion->getAtomD()->getGlobalIndex();        
608 >
609 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
610 >        oneTwoInteractions_.removePair(a, b);      
611 >        oneTwoInteractions_.removePair(a, c);
612 >        oneTwoInteractions_.removePair(a, d);
613 >      } else {
614 >        excludedInteractions_.removePair(a, b);
615 >        excludedInteractions_.removePair(a, c);
616 >        excludedInteractions_.removePair(a, d);
617 >      }
618 >
619 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
620 >        oneThreeInteractions_.removePair(b, c);    
621 >        oneThreeInteractions_.removePair(b, d);    
622 >        oneThreeInteractions_.removePair(c, d);      
623 >      } else {
624 >        excludedInteractions_.removePair(b, c);
625 >        excludedInteractions_.removePair(b, d);
626 >        excludedInteractions_.removePair(c, d);
627 >      }
628      }
629 +
630 +    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
631 +         rb = mol->nextRigidBody(rbIter)) {
632 +      vector<Atom*> atoms = rb->getAtoms();
633 +      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
634 +        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
635 +          a = atoms[i]->getGlobalIndex();
636 +          b = atoms[j]->getGlobalIndex();
637 +          excludedInteractions_.removePair(a, b);
638 +        }
639 +      }
640 +    }        
641 +    
642    }
643 +  
644 +  
645 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
646 +    int curStampId;
647      
648 < #ifdef IS_MPI
649 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
648 >    //index from 0
649 >    curStampId = moleculeStamps_.size();
650  
651 <  return ndfRaw;
652 < }
651 >    moleculeStamps_.push_back(molStamp);
652 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
653 >  }
654  
387 int SimInfo::getNDFtranslational() {
388  int ndfTrans_local;
655  
656 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
656 >  /**
657 >   * update
658 >   *
659 >   *  Performs the global checks and variable settings after the
660 >   *  objects have been created.
661 >   *
662 >   */
663 >  void SimInfo::update() {  
664 >    setupSimVariables();
665 >    calcNdf();
666 >    calcNdfRaw();
667 >    calcNdfTrans();
668 >  }
669 >  
670 >  /**
671 >   * getSimulatedAtomTypes
672 >   *
673 >   * Returns an STL set of AtomType* that are actually present in this
674 >   * simulation.  Must query all processors to assemble this information.
675 >   *
676 >   */
677 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
678 >    SimInfo::MoleculeIterator mi;
679 >    Molecule* mol;
680 >    Molecule::AtomIterator ai;
681 >    Atom* atom;
682 >    set<AtomType*> atomTypes;
683 >    
684 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
685 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
686 >        atomTypes.insert(atom->getAtomType());
687 >      }      
688 >    }    
689  
392
690   #ifdef IS_MPI
394  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 #else
396  ndfTrans = ndfTrans_local;
397 #endif
691  
692 <  ndfTrans = ndfTrans - 3 - nZconstraints;
692 >    // loop over the found atom types on this processor, and add their
693 >    // numerical idents to a vector:
694  
695 <  return ndfTrans;
696 < }
695 >    vector<int> foundTypes;
696 >    set<AtomType*>::iterator i;
697 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
698 >      foundTypes.push_back( (*i)->getIdent() );
699  
700 < int SimInfo::getTotIntegrableObjects() {
701 <  int nObjs_local;
406 <  int nObjs;
700 >    // count_local holds the number of found types on this processor
701 >    int count_local = foundTypes.size();
702  
703 <  nObjs_local =  integrableObjects.size();
703 >    // count holds the total number of found types on all processors
704 >    // (some will be redundant with the ones found locally):
705 >    int count;
706 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
707  
708 +    // create a vector to hold the globally found types, and resize it:
709 +    vector<int> ftGlobal;
710 +    ftGlobal.resize(count);
711 +    vector<int> counts;
712  
713 < #ifdef IS_MPI
714 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
715 < #else
716 <  nObjs = nObjs_local;
415 < #endif
713 >    int nproc = MPI::COMM_WORLD.Get_size();
714 >    counts.resize(nproc);
715 >    vector<int> disps;
716 >    disps.resize(nproc);
717  
718 +    // now spray out the foundTypes to all the other processors:
719 +    
720 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
721 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
722  
723 <  return nObjs;
724 < }
723 >    // foundIdents is a stl set, so inserting an already found ident
724 >    // will have no effect.
725 >    set<int> foundIdents;
726 >    vector<int>::iterator j;
727 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
728 >      foundIdents.insert((*j));
729 >    
730 >    // now iterate over the foundIdents and get the actual atom types
731 >    // that correspond to these:
732 >    set<int>::iterator it;
733 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
734 >      atomTypes.insert( forceField_->getAtomType((*it)) );
735 >
736 > #endif
737 >    
738 >    return atomTypes;        
739 >  }
740  
741 < void SimInfo::refreshSim(){
741 >  void SimInfo::setupSimVariables() {
742 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
743 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
744 >    calcBoxDipole_ = false;
745 >    if ( simParams_->haveAccumulateBoxDipole() )
746 >      if ( simParams_->getAccumulateBoxDipole() ) {
747 >        calcBoxDipole_ = true;      
748 >      }
749  
750 <  simtype fInfo;
751 <  int isError;
752 <  int n_global;
753 <  int* excl;
750 >    set<AtomType*>::iterator i;
751 >    set<AtomType*> atomTypes;
752 >    atomTypes = getSimulatedAtomTypes();    
753 >    int usesElectrostatic = 0;
754 >    int usesMetallic = 0;
755 >    int usesDirectional = 0;
756 >    //loop over all of the atom types
757 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
758 >      usesElectrostatic |= (*i)->isElectrostatic();
759 >      usesMetallic |= (*i)->isMetal();
760 >      usesDirectional |= (*i)->isDirectional();
761 >    }
762  
763 <  fInfo.dielect = 0.0;
763 > #ifdef IS_MPI    
764 >    int temp;
765 >    temp = usesDirectional;
766 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
767  
768 <  if( useDipoles ){
769 <    if( useReactionField )fInfo.dielect = dielectric;
432 <  }
768 >    temp = usesMetallic;
769 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
770  
771 <  fInfo.SIM_uses_PBC = usePBC;
772 <  //fInfo.SIM_uses_LJ = 0;
436 <  fInfo.SIM_uses_LJ = useLJ;
437 <  fInfo.SIM_uses_sticky = useSticky;
438 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
446 <
447 <  n_exclude = excludes->getSize();
448 <  excl = excludes->getFortranArray();
449 <  
450 < #ifdef IS_MPI
451 <  n_global = mpiSim->getNAtomsGlobal();
452 < #else
453 <  n_global = n_atoms;
771 >    temp = usesElectrostatic;
772 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773   #endif
774 <  
775 <  isError = 0;
776 <  
777 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
778 <  //it may not be a good idea to pass the address of first element in vector
779 <  //since c++ standard does not require vector to be stored continuously in meomory
780 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
774 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
775 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
776 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
777 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
778 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
779 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
780 >  }
781  
782 <  if( isError ){
782 >  void SimInfo::setupFortran() {
783 >    int isError;
784 >    int nExclude, nOneTwo, nOneThree, nOneFour;
785 >    vector<int> fortranGlobalGroupMembership;
786      
787 <    sprintf( painCave.errMsg,
469 <             "There was an error setting the simulation information in fortran.\n" );
470 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
787 >    isError = 0;
788  
789 < void SimInfo::setDefaultRcut( double theRcut ){
790 <  
791 <  haveRcut = 1;
792 <  rCut = theRcut;
490 <  rList = rCut + 1.0;
491 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
789 >    //globalGroupMembership_ is filled by SimCreator    
790 >    for (int i = 0; i < nGlobalAtoms_; i++) {
791 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
792 >    }
793  
794 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
794 >    //calculate mass ratio of cutoff group
795 >    vector<RealType> mfact;
796 >    SimInfo::MoleculeIterator mi;
797 >    Molecule* mol;
798 >    Molecule::CutoffGroupIterator ci;
799 >    CutoffGroup* cg;
800 >    Molecule::AtomIterator ai;
801 >    Atom* atom;
802 >    RealType totalMass;
803  
804 <  rSw = theRsw;
805 <  setDefaultRcut( theRcut );
806 < }
804 >    //to avoid memory reallocation, reserve enough space for mfact
805 >    mfact.reserve(getNCutoffGroups());
806 >    
807 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
808 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
809  
810 +        totalMass = cg->getMass();
811 +        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
812 +          // Check for massless groups - set mfact to 1 if true
813 +          if (totalMass != 0)
814 +            mfact.push_back(atom->getMass()/totalMass);
815 +          else
816 +            mfact.push_back( 1.0 );
817 +        }
818 +      }      
819 +    }
820  
821 < void SimInfo::checkCutOffs( void ){
822 <  
823 <  if( boxIsInit ){
821 >    //fill ident array of local atoms (it is actually ident of
822 >    //AtomType, it is so confusing !!!)
823 >    vector<int> identArray;
824 >
825 >    //to avoid memory reallocation, reserve enough space identArray
826 >    identArray.reserve(getNAtoms());
827      
828 <    //we need to check cutOffs against the box
829 <    
830 <    if( rCut > maxCutoff ){
831 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
523 <      painCave.isFatal = 1;
524 <      simError();
828 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
829 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
830 >        identArray.push_back(atom->getIdent());
831 >      }
832      }    
526  } else {
527    // initialize this stuff before using it, OK?
528    sprintf( painCave.errMsg,
529             "Trying to check cutoffs without a box.\n"
530             "\tOOPSE should have better programmers than that.\n" );
531    painCave.severity = OOPSE_ERROR;
532    painCave.isFatal = 1;
533    simError();      
534  }
535  
536 }
833  
834 < void SimInfo::addProperty(GenericData* prop){
834 >    //fill molMembershipArray
835 >    //molMembershipArray is filled by SimCreator    
836 >    vector<int> molMembershipArray(nGlobalAtoms_);
837 >    for (int i = 0; i < nGlobalAtoms_; i++) {
838 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
839 >    }
840 >    
841 >    //setup fortran simulation
842  
843 <  map<string, GenericData*>::iterator result;
844 <  result = properties.find(prop->getID());
845 <  
846 <  //we can't simply use  properties[prop->getID()] = prop,
847 <  //it will cause memory leak if we already contain a propery which has the same name of prop
848 <  
849 <  if(result != properties.end()){
843 >    nExclude = excludedInteractions_.getSize();
844 >    nOneTwo = oneTwoInteractions_.getSize();
845 >    nOneThree = oneThreeInteractions_.getSize();
846 >    nOneFour = oneFourInteractions_.getSize();
847 >
848 >    int* excludeList = excludedInteractions_.getPairList();
849 >    int* oneTwoList = oneTwoInteractions_.getPairList();
850 >    int* oneThreeList = oneThreeInteractions_.getPairList();
851 >    int* oneFourList = oneFourInteractions_.getPairList();
852 >
853 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
854 >                   &nExclude, excludeList,
855 >                   &nOneTwo, oneTwoList,
856 >                   &nOneThree, oneThreeList,
857 >                   &nOneFour, oneFourList,
858 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
859 >                   &fortranGlobalGroupMembership[0], &isError);
860      
861 <    delete (*result).second;
549 <    (*result).second = prop;
861 >    if( isError ){
862        
863 <  }
864 <  else{
863 >      sprintf( painCave.errMsg,
864 >               "There was an error setting the simulation information in fortran.\n" );
865 >      painCave.isFatal = 1;
866 >      painCave.severity = OPENMD_ERROR;
867 >      simError();
868 >    }
869 >    
870 >    
871 >    sprintf( checkPointMsg,
872 >             "succesfully sent the simulation information to fortran.\n");
873 >    
874 >    errorCheckPoint();
875 >    
876 >    // Setup number of neighbors in neighbor list if present
877 >    if (simParams_->haveNeighborListNeighbors()) {
878 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
879 >      setNeighbors(&nlistNeighbors);
880 >    }
881 >  
882 > #ifdef IS_MPI    
883 >    //SimInfo is responsible for creating localToGlobalAtomIndex and
884 >    //localToGlobalGroupIndex
885 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
886 >    vector<int> localToGlobalCutoffGroupIndex;
887 >    mpiSimData parallelData;
888  
889 <    properties[prop->getID()] = prop;
889 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
890  
891 <  }
892 <    
893 < }
891 >      //local index(index in DataStorge) of atom is important
892 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
893 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
894 >      }
895  
896 < GenericData* SimInfo::getProperty(const string& propName){
897 <
898 <  map<string, GenericData*>::iterator result;
899 <  
900 <  //string lowerCaseName = ();
901 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
896 >      //local index of cutoff group is trivial, it only depends on the order of travesing
897 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
898 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
899 >      }        
900 >        
901 >    }
902  
903 +    //fill up mpiSimData struct
904 +    parallelData.nMolGlobal = getNGlobalMolecules();
905 +    parallelData.nMolLocal = getNMolecules();
906 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
907 +    parallelData.nAtomsLocal = getNAtoms();
908 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
909 +    parallelData.nGroupsLocal = getNCutoffGroups();
910 +    parallelData.myNode = worldRank;
911 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
912  
913 < void SimInfo::getFortranGroupArrays(SimInfo* info,
914 <                                    vector<int>& FglobalGroupMembership,
915 <                                    vector<double>& mfact){
916 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
913 >    //pass mpiSimData struct and index arrays to fortran
914 >    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
915 >                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
916 >                    &localToGlobalCutoffGroupIndex[0], &isError);
917  
918 <  // Fix the silly fortran indexing problem
918 >    if (isError) {
919 >      sprintf(painCave.errMsg,
920 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
921 >      painCave.isFatal = 1;
922 >      simError();
923 >    }
924 >
925 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
926 >    errorCheckPoint();
927 > #endif
928 >
929 >    initFortranFF(&isError);
930 >    if (isError) {
931 >      sprintf(painCave.errMsg,
932 >              "initFortranFF errror: fortran didn't like something we gave it.\n");
933 >      painCave.isFatal = 1;
934 >      simError();
935 >    }
936 >    fortranInitialized_ = true;
937 >  }
938 >
939 >  void SimInfo::addProperty(GenericData* genData) {
940 >    properties_.addProperty(genData);  
941 >  }
942 >
943 >  void SimInfo::removeProperty(const string& propName) {
944 >    properties_.removeProperty(propName);  
945 >  }
946 >
947 >  void SimInfo::clearProperties() {
948 >    properties_.clearProperties();
949 >  }
950 >
951 >  vector<string> SimInfo::getPropertyNames() {
952 >    return properties_.getPropertyNames();  
953 >  }
954 >      
955 >  vector<GenericData*> SimInfo::getProperties() {
956 >    return properties_.getProperties();
957 >  }
958 >
959 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
960 >    return properties_.getPropertyByName(propName);
961 >  }
962 >
963 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
964 >    if (sman_ == sman) {
965 >      return;
966 >    }    
967 >    delete sman_;
968 >    sman_ = sman;
969 >
970 >    Molecule* mol;
971 >    RigidBody* rb;
972 >    Atom* atom;
973 >    SimInfo::MoleculeIterator mi;
974 >    Molecule::RigidBodyIterator rbIter;
975 >    Molecule::AtomIterator atomIter;;
976 >
977 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
978 >        
979 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
980 >        atom->setSnapshotManager(sman_);
981 >      }
982 >        
983 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
984 >        rb->setSnapshotManager(sman_);
985 >      }
986 >    }    
987 >    
988 >  }
989 >
990 >  Vector3d SimInfo::getComVel(){
991 >    SimInfo::MoleculeIterator i;
992 >    Molecule* mol;
993 >
994 >    Vector3d comVel(0.0);
995 >    RealType totalMass = 0.0;
996 >    
997 >
998 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
999 >      RealType mass = mol->getMass();
1000 >      totalMass += mass;
1001 >      comVel += mass * mol->getComVel();
1002 >    }  
1003 >
1004   #ifdef IS_MPI
1005 <  numAtom = mpiSim->getNAtomsGlobal();
1006 < #else
1007 <  numAtom = n_atoms;
1005 >    RealType tmpMass = totalMass;
1006 >    Vector3d tmpComVel(comVel);    
1007 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1008 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1009   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
1010  
1011 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1011 >    comVel /= totalMass;
1012  
1013 <      totalMass = myCutoffGroup->getMass();
1013 >    return comVel;
1014 >  }
1015 >
1016 >  Vector3d SimInfo::getCom(){
1017 >    SimInfo::MoleculeIterator i;
1018 >    Molecule* mol;
1019 >
1020 >    Vector3d com(0.0);
1021 >    RealType totalMass = 0.0;
1022 >    
1023 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1024 >      RealType mass = mol->getMass();
1025 >      totalMass += mass;
1026 >      com += mass * mol->getCom();
1027 >    }  
1028 >
1029 > #ifdef IS_MPI
1030 >    RealType tmpMass = totalMass;
1031 >    Vector3d tmpCom(com);    
1032 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034 > #endif
1035 >
1036 >    com /= totalMass;
1037 >
1038 >    return com;
1039 >
1040 >  }        
1041 >
1042 >  ostream& operator <<(ostream& o, SimInfo& info) {
1043 >
1044 >    return o;
1045 >  }
1046 >  
1047 >  
1048 >   /*
1049 >   Returns center of mass and center of mass velocity in one function call.
1050 >   */
1051 >  
1052 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1053 >      SimInfo::MoleculeIterator i;
1054 >      Molecule* mol;
1055        
1056 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1057 <          cutoffAtom != NULL;
1058 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1059 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1056 >    
1057 >      RealType totalMass = 0.0;
1058 >    
1059 >
1060 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1061 >         RealType mass = mol->getMass();
1062 >         totalMass += mass;
1063 >         com += mass * mol->getCom();
1064 >         comVel += mass * mol->getComVel();          
1065        }  
1066 +      
1067 + #ifdef IS_MPI
1068 +      RealType tmpMass = totalMass;
1069 +      Vector3d tmpCom(com);  
1070 +      Vector3d tmpComVel(comVel);
1071 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1072 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1073 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1074 + #endif
1075 +      
1076 +      com /= totalMass;
1077 +      comVel /= totalMass;
1078 +   }        
1079 +  
1080 +   /*
1081 +   Return intertia tensor for entire system and angular momentum Vector.
1082 +
1083 +
1084 +       [  Ixx -Ixy  -Ixz ]
1085 +    J =| -Iyx  Iyy  -Iyz |
1086 +       [ -Izx -Iyz   Izz ]
1087 +    */
1088 +
1089 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1090 +      
1091 +
1092 +      RealType xx = 0.0;
1093 +      RealType yy = 0.0;
1094 +      RealType zz = 0.0;
1095 +      RealType xy = 0.0;
1096 +      RealType xz = 0.0;
1097 +      RealType yz = 0.0;
1098 +      Vector3d com(0.0);
1099 +      Vector3d comVel(0.0);
1100 +      
1101 +      getComAll(com, comVel);
1102 +      
1103 +      SimInfo::MoleculeIterator i;
1104 +      Molecule* mol;
1105 +      
1106 +      Vector3d thisq(0.0);
1107 +      Vector3d thisv(0.0);
1108 +
1109 +      RealType thisMass = 0.0;
1110 +    
1111 +      
1112 +      
1113 +  
1114 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1115 +        
1116 +         thisq = mol->getCom()-com;
1117 +         thisv = mol->getComVel()-comVel;
1118 +         thisMass = mol->getMass();
1119 +         // Compute moment of intertia coefficients.
1120 +         xx += thisq[0]*thisq[0]*thisMass;
1121 +         yy += thisq[1]*thisq[1]*thisMass;
1122 +         zz += thisq[2]*thisq[2]*thisMass;
1123 +        
1124 +         // compute products of intertia
1125 +         xy += thisq[0]*thisq[1]*thisMass;
1126 +         xz += thisq[0]*thisq[2]*thisMass;
1127 +         yz += thisq[1]*thisq[2]*thisMass;
1128 +            
1129 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1130 +            
1131 +      }  
1132 +      
1133 +      
1134 +      inertiaTensor(0,0) = yy + zz;
1135 +      inertiaTensor(0,1) = -xy;
1136 +      inertiaTensor(0,2) = -xz;
1137 +      inertiaTensor(1,0) = -xy;
1138 +      inertiaTensor(1,1) = xx + zz;
1139 +      inertiaTensor(1,2) = -yz;
1140 +      inertiaTensor(2,0) = -xz;
1141 +      inertiaTensor(2,1) = -yz;
1142 +      inertiaTensor(2,2) = xx + yy;
1143 +      
1144 + #ifdef IS_MPI
1145 +      Mat3x3d tmpI(inertiaTensor);
1146 +      Vector3d tmpAngMom;
1147 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1148 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149 + #endif
1150 +              
1151 +      return;
1152 +   }
1153 +
1154 +   //Returns the angular momentum of the system
1155 +   Vector3d SimInfo::getAngularMomentum(){
1156 +      
1157 +      Vector3d com(0.0);
1158 +      Vector3d comVel(0.0);
1159 +      Vector3d angularMomentum(0.0);
1160 +      
1161 +      getComAll(com,comVel);
1162 +      
1163 +      SimInfo::MoleculeIterator i;
1164 +      Molecule* mol;
1165 +      
1166 +      Vector3d thisr(0.0);
1167 +      Vector3d thisp(0.0);
1168 +      
1169 +      RealType thisMass;
1170 +      
1171 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1172 +        thisMass = mol->getMass();
1173 +        thisr = mol->getCom()-com;
1174 +        thisp = (mol->getComVel()-comVel)*thisMass;
1175 +        
1176 +        angularMomentum += cross( thisr, thisp );
1177 +        
1178 +      }  
1179 +      
1180 + #ifdef IS_MPI
1181 +      Vector3d tmpAngMom;
1182 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1183 + #endif
1184 +      
1185 +      return angularMomentum;
1186 +   }
1187 +  
1188 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1189 +    return IOIndexToIntegrableObject.at(index);
1190 +  }
1191 +  
1192 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1193 +    IOIndexToIntegrableObject= v;
1194 +  }
1195 +
1196 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1197 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1198 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1199 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1200 +  */
1201 +  void SimInfo::getGyrationalVolume(RealType &volume){
1202 +    Mat3x3d intTensor;
1203 +    RealType det;
1204 +    Vector3d dummyAngMom;
1205 +    RealType sysconstants;
1206 +    RealType geomCnst;
1207 +
1208 +    geomCnst = 3.0/2.0;
1209 +    /* Get the inertial tensor and angular momentum for free*/
1210 +    getInertiaTensor(intTensor,dummyAngMom);
1211 +    
1212 +    det = intTensor.determinant();
1213 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1214 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1215 +    return;
1216 +  }
1217 +
1218 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1219 +    Mat3x3d intTensor;
1220 +    Vector3d dummyAngMom;
1221 +    RealType sysconstants;
1222 +    RealType geomCnst;
1223 +
1224 +    geomCnst = 3.0/2.0;
1225 +    /* Get the inertial tensor and angular momentum for free*/
1226 +    getInertiaTensor(intTensor,dummyAngMom);
1227 +    
1228 +    detI = intTensor.determinant();
1229 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1230 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1231 +    return;
1232 +  }
1233 + /*
1234 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1235 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1236 +      sdByGlobalIndex_ = v;
1237      }
1238 +
1239 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1240 +      //assert(index < nAtoms_ + nRigidBodies_);
1241 +      return sdByGlobalIndex_.at(index);
1242 +    }  
1243 + */  
1244 +  int SimInfo::getNGlobalConstraints() {
1245 +    int nGlobalConstraints;
1246 + #ifdef IS_MPI
1247 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1248 +                  MPI_COMM_WORLD);    
1249 + #else
1250 +    nGlobalConstraints =  nConstraints_;
1251 + #endif
1252 +    return nGlobalConstraints;
1253    }
1254  
1255 < }
1255 > }//end namespace OpenMD
1256 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1536 by gezelter, Wed Jan 5 14:49:05 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines