ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 > #include "UseTheForce/doForces_interface.h"
60 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
61 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
62 > #include "utils/MemoryUtils.hpp"
63 > #include "utils/simError.h"
64 > #include "selection/SelectionManager.hpp"
65 > #include "io/ForceFieldOptions.hpp"
66 > #include "UseTheForce/ForceField.hpp"
67 > #include "nonbonded/InteractionManager.hpp"
68  
13 #include "fortranWrappers.hpp"
69  
15 #include "MatVec3.h"
16
70   #ifdef IS_MPI
71 < #include "mpiSimulation.hpp"
72 < #endif
71 > #include "UseTheForce/mpiComponentPlan.h"
72 > #include "UseTheForce/DarkSide/simParallel_interface.h"
73 > #endif
74  
75 < inline double roundMe( double x ){
76 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
77 < }
78 <          
79 < inline double min( double a, double b ){
80 <  return (a < b ) ? a : b;
81 < }
75 > using namespace std;
76 > namespace OpenMD {
77 >  
78 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
79 >    forceField_(ff), simParams_(simParams),
80 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
81 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
82 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
83 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
84 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
85 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
86 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
87 >    
88 >    MoleculeStamp* molStamp;
89 >    int nMolWithSameStamp;
90 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
91 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
92 >    CutoffGroupStamp* cgStamp;    
93 >    RigidBodyStamp* rbStamp;
94 >    int nRigidAtoms = 0;
95 >    
96 >    vector<Component*> components = simParams->getComponents();
97 >    
98 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
99 >      molStamp = (*i)->getMoleculeStamp();
100 >      nMolWithSameStamp = (*i)->getNMol();
101 >      
102 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
103 >      
104 >      //calculate atoms in molecules
105 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
106 >      
107 >      //calculate atoms in cutoff groups
108 >      int nAtomsInGroups = 0;
109 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
110 >      
111 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
112 >        cgStamp = molStamp->getCutoffGroupStamp(j);
113 >        nAtomsInGroups += cgStamp->getNMembers();
114 >      }
115 >      
116 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
117 >      
118 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
119 >      
120 >      //calculate atoms in rigid bodies
121 >      int nAtomsInRigidBodies = 0;
122 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
123 >      
124 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
125 >        rbStamp = molStamp->getRigidBodyStamp(j);
126 >        nAtomsInRigidBodies += rbStamp->getNMembers();
127 >      }
128 >      
129 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
130 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
131 >      
132 >    }
133 >    
134 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
135 >    //group therefore the total number of cutoff groups in the system is
136 >    //equal to the total number of atoms minus number of atoms belong to
137 >    //cutoff group defined in meta-data file plus the number of cutoff
138 >    //groups defined in meta-data file
139 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
140 >    
141 >    //every free atom (atom does not belong to rigid bodies) is an
142 >    //integrable object therefore the total number of integrable objects
143 >    //in the system is equal to the total number of atoms minus number of
144 >    //atoms belong to rigid body defined in meta-data file plus the number
145 >    //of rigid bodies defined in meta-data file
146 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
147 >      + nGlobalRigidBodies_;
148 >    
149 >    nGlobalMols_ = molStampIds_.size();
150 >    molToProcMap_.resize(nGlobalMols_);
151 >  }
152 >  
153 >  SimInfo::~SimInfo() {
154 >    map<int, Molecule*>::iterator i;
155 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
156 >      delete i->second;
157 >    }
158 >    molecules_.clear();
159 >      
160 >    delete sman_;
161 >    delete simParams_;
162 >    delete forceField_;
163 >  }
164  
29 SimInfo* currentInfo;
165  
166 < SimInfo::SimInfo(){
167 <
168 <  n_constraints = 0;
169 <  nZconstraints = 0;
170 <  n_oriented = 0;
171 <  n_dipoles = 0;
172 <  ndf = 0;
173 <  ndfRaw = 0;
174 <  nZconstraints = 0;
175 <  the_integrator = NULL;
176 <  setTemp = 0;
177 <  thermalTime = 0.0;
178 <  currentTime = 0.0;
179 <  rCut = 0.0;
180 <  rSw = 0.0;
181 <
182 <  haveRcut = 0;
183 <  haveRsw = 0;
184 <  boxIsInit = 0;
166 >  bool SimInfo::addMolecule(Molecule* mol) {
167 >    MoleculeIterator i;
168 >    
169 >    i = molecules_.find(mol->getGlobalIndex());
170 >    if (i == molecules_.end() ) {
171 >      
172 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
173 >      
174 >      nAtoms_ += mol->getNAtoms();
175 >      nBonds_ += mol->getNBonds();
176 >      nBends_ += mol->getNBends();
177 >      nTorsions_ += mol->getNTorsions();
178 >      nInversions_ += mol->getNInversions();
179 >      nRigidBodies_ += mol->getNRigidBodies();
180 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
181 >      nCutoffGroups_ += mol->getNCutoffGroups();
182 >      nConstraints_ += mol->getNConstraintPairs();
183 >      
184 >      addInteractionPairs(mol);
185 >      
186 >      return true;
187 >    } else {
188 >      return false;
189 >    }
190 >  }
191    
192 <  resetTime = 1e99;
192 >  bool SimInfo::removeMolecule(Molecule* mol) {
193 >    MoleculeIterator i;
194 >    i = molecules_.find(mol->getGlobalIndex());
195  
196 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
196 >    if (i != molecules_.end() ) {
197  
198 <  usePBC = 0;
199 <  useLJ = 0;
200 <  useSticky = 0;
201 <  useCharges = 0;
202 <  useDipoles = 0;
203 <  useReactionField = 0;
204 <  useGB = 0;
205 <  useEAM = 0;
206 <  useSolidThermInt = 0;
207 <  useLiquidThermInt = 0;
198 >      assert(mol == i->second);
199 >        
200 >      nAtoms_ -= mol->getNAtoms();
201 >      nBonds_ -= mol->getNBonds();
202 >      nBends_ -= mol->getNBends();
203 >      nTorsions_ -= mol->getNTorsions();
204 >      nInversions_ -= mol->getNInversions();
205 >      nRigidBodies_ -= mol->getNRigidBodies();
206 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
207 >      nCutoffGroups_ -= mol->getNCutoffGroups();
208 >      nConstraints_ -= mol->getNConstraintPairs();
209  
210 <  haveCutoffGroups = false;
210 >      removeInteractionPairs(mol);
211 >      molecules_.erase(mol->getGlobalIndex());
212  
213 <  excludes = Exclude::Instance();
214 <
215 <  myConfiguration = new SimState();
216 <
217 <  has_minimizer = false;
218 <  the_minimizer =NULL;
213 >      delete mol;
214 >        
215 >      return true;
216 >    } else {
217 >      return false;
218 >    }
219 >  }    
220  
221 <  ngroup = 0;
221 >        
222 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
223 >    i = molecules_.begin();
224 >    return i == molecules_.end() ? NULL : i->second;
225 >  }    
226  
227 <  wrapMeSimInfo( this );
228 < }
227 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
228 >    ++i;
229 >    return i == molecules_.end() ? NULL : i->second;    
230 >  }
231  
232  
233 < SimInfo::~SimInfo(){
233 >  void SimInfo::calcNdf() {
234 >    int ndf_local;
235 >    MoleculeIterator i;
236 >    vector<StuntDouble*>::iterator j;
237 >    Molecule* mol;
238 >    StuntDouble* integrableObject;
239  
240 <  delete myConfiguration;
240 >    ndf_local = 0;
241 >    
242 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
243 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
244 >           integrableObject = mol->nextIntegrableObject(j)) {
245  
246 <  map<string, GenericData*>::iterator i;
88 <  
89 <  for(i = properties.begin(); i != properties.end(); i++)
90 <    delete (*i).second;
246 >        ndf_local += 3;
247  
248 < }
248 >        if (integrableObject->isDirectional()) {
249 >          if (integrableObject->isLinear()) {
250 >            ndf_local += 2;
251 >          } else {
252 >            ndf_local += 3;
253 >          }
254 >        }
255 >            
256 >      }
257 >    }
258 >    
259 >    // n_constraints is local, so subtract them on each processor
260 >    ndf_local -= nConstraints_;
261  
262 < void SimInfo::setBox(double newBox[3]) {
263 <  
264 <  int i, j;
265 <  double tempMat[3][3];
262 > #ifdef IS_MPI
263 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
264 > #else
265 >    ndf_ = ndf_local;
266 > #endif
267  
268 <  for(i=0; i<3; i++)
269 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
268 >    // nZconstraints_ is global, as are the 3 COM translations for the
269 >    // entire system:
270 >    ndf_ = ndf_ - 3 - nZconstraint_;
271  
272 <  tempMat[0][0] = newBox[0];
103 <  tempMat[1][1] = newBox[1];
104 <  tempMat[2][2] = newBox[2];
272 >  }
273  
274 <  setBoxM( tempMat );
274 >  int SimInfo::getFdf() {
275 > #ifdef IS_MPI
276 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
277 > #else
278 >    fdf_ = fdf_local;
279 > #endif
280 >    return fdf_;
281 >  }
282 >    
283 >  void SimInfo::calcNdfRaw() {
284 >    int ndfRaw_local;
285  
286 < }
286 >    MoleculeIterator i;
287 >    vector<StuntDouble*>::iterator j;
288 >    Molecule* mol;
289 >    StuntDouble* integrableObject;
290  
291 < void SimInfo::setBoxM( double theBox[3][3] ){
292 <  
293 <  int i, j;
294 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
295 <                         // ordering in the array is as follows:
296 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
291 >    // Raw degrees of freedom that we have to set
292 >    ndfRaw_local = 0;
293 >    
294 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
295 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
296 >           integrableObject = mol->nextIntegrableObject(j)) {
297  
298 <  if( !boxIsInit ) boxIsInit = 1;
298 >        ndfRaw_local += 3;
299  
300 <  for(i=0; i < 3; i++)
301 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
302 <  
303 <  calcBoxL();
304 <  calcHmatInv();
305 <
306 <  for(i=0; i < 3; i++) {
307 <    for (j=0; j < 3; j++) {
308 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
300 >        if (integrableObject->isDirectional()) {
301 >          if (integrableObject->isLinear()) {
302 >            ndfRaw_local += 2;
303 >          } else {
304 >            ndfRaw_local += 3;
305 >          }
306 >        }
307 >            
308 >      }
309      }
310 +    
311 + #ifdef IS_MPI
312 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
313 + #else
314 +    ndfRaw_ = ndfRaw_local;
315 + #endif
316    }
317  
318 <  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
319 <
137 < }
138 <
318 >  void SimInfo::calcNdfTrans() {
319 >    int ndfTrans_local;
320  
321 < void SimInfo::getBoxM (double theBox[3][3]) {
321 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
322  
142  int i, j;
143  for(i=0; i<3; i++)
144    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 }
323  
324 + #ifdef IS_MPI
325 +    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
326 + #else
327 +    ndfTrans_ = ndfTrans_local;
328 + #endif
329  
330 < void SimInfo::scaleBox(double scale) {
331 <  double theBox[3][3];
332 <  int i, j;
330 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
331 >
332 >  }
333  
334 <  // cerr << "Scaling box by " << scale << "\n";
334 >  void SimInfo::addInteractionPairs(Molecule* mol) {
335 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
336 >    vector<Bond*>::iterator bondIter;
337 >    vector<Bend*>::iterator bendIter;
338 >    vector<Torsion*>::iterator torsionIter;
339 >    vector<Inversion*>::iterator inversionIter;
340 >    Bond* bond;
341 >    Bend* bend;
342 >    Torsion* torsion;
343 >    Inversion* inversion;
344 >    int a;
345 >    int b;
346 >    int c;
347 >    int d;
348  
349 <  for(i=0; i<3; i++)
350 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
349 >    // atomGroups can be used to add special interaction maps between
350 >    // groups of atoms that are in two separate rigid bodies.
351 >    // However, most site-site interactions between two rigid bodies
352 >    // are probably not special, just the ones between the physically
353 >    // bonded atoms.  Interactions *within* a single rigid body should
354 >    // always be excluded.  These are done at the bottom of this
355 >    // function.
356  
357 <  setBoxM(theBox);
357 >    map<int, set<int> > atomGroups;
358 >    Molecule::RigidBodyIterator rbIter;
359 >    RigidBody* rb;
360 >    Molecule::IntegrableObjectIterator ii;
361 >    StuntDouble* integrableObject;
362 >    
363 >    for (integrableObject = mol->beginIntegrableObject(ii);
364 >         integrableObject != NULL;
365 >         integrableObject = mol->nextIntegrableObject(ii)) {
366 >      
367 >      if (integrableObject->isRigidBody()) {
368 >        rb = static_cast<RigidBody*>(integrableObject);
369 >        vector<Atom*> atoms = rb->getAtoms();
370 >        set<int> rigidAtoms;
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
373 >        }
374 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
375 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
376 >        }      
377 >      } else {
378 >        set<int> oneAtomSet;
379 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
380 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
381 >      }
382 >    }  
383 >          
384 >    for (bond= mol->beginBond(bondIter); bond != NULL;
385 >         bond = mol->nextBond(bondIter)) {
386  
387 < }
387 >      a = bond->getAtomA()->getGlobalIndex();
388 >      b = bond->getAtomB()->getGlobalIndex();  
389 >    
390 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
391 >        oneTwoInteractions_.addPair(a, b);
392 >      } else {
393 >        excludedInteractions_.addPair(a, b);
394 >      }
395 >    }
396  
397 < void SimInfo::calcHmatInv( void ) {
398 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
397 >    for (bend= mol->beginBend(bendIter); bend != NULL;
398 >         bend = mol->nextBend(bendIter)) {
399  
400 <  invertMat3( Hmat, HmatInv );
400 >      a = bend->getAtomA()->getGlobalIndex();
401 >      b = bend->getAtomB()->getGlobalIndex();        
402 >      c = bend->getAtomC()->getGlobalIndex();
403 >      
404 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
405 >        oneTwoInteractions_.addPair(a, b);      
406 >        oneTwoInteractions_.addPair(b, c);
407 >      } else {
408 >        excludedInteractions_.addPair(a, b);
409 >        excludedInteractions_.addPair(b, c);
410 >      }
411  
412 <  // check to see if Hmat is orthorhombic
413 <  
414 <  oldOrtho = orthoRhombic;
415 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
412 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
413 >        oneThreeInteractions_.addPair(a, c);      
414 >      } else {
415 >        excludedInteractions_.addPair(a, c);
416        }
417      }
190  }
418  
419 <  if( oldOrtho != orthoRhombic ){
420 <    
194 <    if( orthoRhombic ) {
195 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
419 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
420 >         torsion = mol->nextTorsion(torsionIter)) {
421  
422 < void SimInfo::calcBoxL( void ){
422 >      a = torsion->getAtomA()->getGlobalIndex();
423 >      b = torsion->getAtomB()->getGlobalIndex();        
424 >      c = torsion->getAtomC()->getGlobalIndex();        
425 >      d = torsion->getAtomD()->getGlobalIndex();      
426  
427 <  double dx, dy, dz, dsq;
427 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
428 >        oneTwoInteractions_.addPair(a, b);      
429 >        oneTwoInteractions_.addPair(b, c);
430 >        oneTwoInteractions_.addPair(c, d);
431 >      } else {
432 >        excludedInteractions_.addPair(a, b);
433 >        excludedInteractions_.addPair(b, c);
434 >        excludedInteractions_.addPair(c, d);
435 >      }
436  
437 <  // boxVol = Determinant of Hmat
437 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
438 >        oneThreeInteractions_.addPair(a, c);      
439 >        oneThreeInteractions_.addPair(b, d);      
440 >      } else {
441 >        excludedInteractions_.addPair(a, c);
442 >        excludedInteractions_.addPair(b, d);
443 >      }
444  
445 <  boxVol = matDet3( Hmat );
445 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
446 >        oneFourInteractions_.addPair(a, d);      
447 >      } else {
448 >        excludedInteractions_.addPair(a, d);
449 >      }
450 >    }
451  
452 <  // boxLx
453 <  
230 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
452 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
453 >         inversion = mol->nextInversion(inversionIter)) {
454  
455 <  // boxLy
456 <  
457 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
458 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
455 >      a = inversion->getAtomA()->getGlobalIndex();
456 >      b = inversion->getAtomB()->getGlobalIndex();        
457 >      c = inversion->getAtomC()->getGlobalIndex();        
458 >      d = inversion->getAtomD()->getGlobalIndex();        
459  
460 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
461 +        oneTwoInteractions_.addPair(a, b);      
462 +        oneTwoInteractions_.addPair(a, c);
463 +        oneTwoInteractions_.addPair(a, d);
464 +      } else {
465 +        excludedInteractions_.addPair(a, b);
466 +        excludedInteractions_.addPair(a, c);
467 +        excludedInteractions_.addPair(a, d);
468 +      }
469  
470 <  // boxLz
471 <  
472 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
473 <  dsq = dx*dx + dy*dy + dz*dz;
474 <  boxL[2] = sqrt( dsq );
475 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
470 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
471 >        oneThreeInteractions_.addPair(b, c);    
472 >        oneThreeInteractions_.addPair(b, d);    
473 >        oneThreeInteractions_.addPair(c, d);      
474 >      } else {
475 >        excludedInteractions_.addPair(b, c);
476 >        excludedInteractions_.addPair(b, d);
477 >        excludedInteractions_.addPair(c, d);
478 >      }
479 >    }
480  
481 <  //calculate the max cutoff
482 <  maxCutoff =  calcMaxCutOff();
483 <  
484 <  checkCutOffs();
481 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
482 >         rb = mol->nextRigidBody(rbIter)) {
483 >      vector<Atom*> atoms = rb->getAtoms();
484 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
485 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
486 >          a = atoms[i]->getGlobalIndex();
487 >          b = atoms[j]->getGlobalIndex();
488 >          excludedInteractions_.addPair(a, b);
489 >        }
490 >      }
491 >    }        
492  
493 < }
493 >  }
494  
495 +  void SimInfo::removeInteractionPairs(Molecule* mol) {
496 +    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
497 +    vector<Bond*>::iterator bondIter;
498 +    vector<Bend*>::iterator bendIter;
499 +    vector<Torsion*>::iterator torsionIter;
500 +    vector<Inversion*>::iterator inversionIter;
501 +    Bond* bond;
502 +    Bend* bend;
503 +    Torsion* torsion;
504 +    Inversion* inversion;
505 +    int a;
506 +    int b;
507 +    int c;
508 +    int d;
509  
510 < double SimInfo::calcMaxCutOff(){
510 >    map<int, set<int> > atomGroups;
511 >    Molecule::RigidBodyIterator rbIter;
512 >    RigidBody* rb;
513 >    Molecule::IntegrableObjectIterator ii;
514 >    StuntDouble* integrableObject;
515 >    
516 >    for (integrableObject = mol->beginIntegrableObject(ii);
517 >         integrableObject != NULL;
518 >         integrableObject = mol->nextIntegrableObject(ii)) {
519 >      
520 >      if (integrableObject->isRigidBody()) {
521 >        rb = static_cast<RigidBody*>(integrableObject);
522 >        vector<Atom*> atoms = rb->getAtoms();
523 >        set<int> rigidAtoms;
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
526 >        }
527 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
528 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
529 >        }      
530 >      } else {
531 >        set<int> oneAtomSet;
532 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
533 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
534 >      }
535 >    }  
536  
537 <  double ri[3], rj[3], rk[3];
538 <  double rij[3], rjk[3], rki[3];
539 <  double minDist;
537 >    for (bond= mol->beginBond(bondIter); bond != NULL;
538 >         bond = mol->nextBond(bondIter)) {
539 >      
540 >      a = bond->getAtomA()->getGlobalIndex();
541 >      b = bond->getAtomB()->getGlobalIndex();  
542 >    
543 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
544 >        oneTwoInteractions_.removePair(a, b);
545 >      } else {
546 >        excludedInteractions_.removePair(a, b);
547 >      }
548 >    }
549  
550 <  ri[0] = Hmat[0][0];
551 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
550 >    for (bend= mol->beginBend(bendIter); bend != NULL;
551 >         bend = mol->nextBend(bendIter)) {
552  
553 <  rj[0] = Hmat[0][1];
554 <  rj[1] = Hmat[1][1];
555 <  rj[2] = Hmat[2][1];
553 >      a = bend->getAtomA()->getGlobalIndex();
554 >      b = bend->getAtomB()->getGlobalIndex();        
555 >      c = bend->getAtomC()->getGlobalIndex();
556 >      
557 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
558 >        oneTwoInteractions_.removePair(a, b);      
559 >        oneTwoInteractions_.removePair(b, c);
560 >      } else {
561 >        excludedInteractions_.removePair(a, b);
562 >        excludedInteractions_.removePair(b, c);
563 >      }
564  
565 <  rk[0] = Hmat[0][2];
566 <  rk[1] = Hmat[1][2];
567 <  rk[2] = Hmat[2][2];
568 <    
569 <  crossProduct3(ri, rj, rij);
570 <  distXY = dotProduct3(rk,rij) / norm3(rij);
565 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
566 >        oneThreeInteractions_.removePair(a, c);      
567 >      } else {
568 >        excludedInteractions_.removePair(a, c);
569 >      }
570 >    }
571  
572 <  crossProduct3(rj,rk, rjk);
573 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
572 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
573 >         torsion = mol->nextTorsion(torsionIter)) {
574  
575 <  crossProduct3(rk,ri, rki);
576 <  distZX = dotProduct3(rj,rki) / norm3(rki);
577 <
578 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
575 >      a = torsion->getAtomA()->getGlobalIndex();
576 >      b = torsion->getAtomB()->getGlobalIndex();        
577 >      c = torsion->getAtomC()->getGlobalIndex();        
578 >      d = torsion->getAtomD()->getGlobalIndex();      
579    
580 < }
580 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
581 >        oneTwoInteractions_.removePair(a, b);      
582 >        oneTwoInteractions_.removePair(b, c);
583 >        oneTwoInteractions_.removePair(c, d);
584 >      } else {
585 >        excludedInteractions_.removePair(a, b);
586 >        excludedInteractions_.removePair(b, c);
587 >        excludedInteractions_.removePair(c, d);
588 >      }
589  
590 < void SimInfo::wrapVector( double thePos[3] ){
590 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
591 >        oneThreeInteractions_.removePair(a, c);      
592 >        oneThreeInteractions_.removePair(b, d);      
593 >      } else {
594 >        excludedInteractions_.removePair(a, c);
595 >        excludedInteractions_.removePair(b, d);
596 >      }
597  
598 <  int i;
599 <  double scaled[3];
598 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
599 >        oneFourInteractions_.removePair(a, d);      
600 >      } else {
601 >        excludedInteractions_.removePair(a, d);
602 >      }
603 >    }
604  
605 <  if( !orthoRhombic ){
606 <    // calc the scaled coordinates.
297 <  
605 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
606 >         inversion = mol->nextInversion(inversionIter)) {
607  
608 <    matVecMul3(HmatInv, thePos, scaled);
609 <    
610 <    for(i=0; i<3; i++)
611 <      scaled[i] -= roundMe(scaled[i]);
303 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
608 >      a = inversion->getAtomA()->getGlobalIndex();
609 >      b = inversion->getAtomB()->getGlobalIndex();        
610 >      c = inversion->getAtomC()->getGlobalIndex();        
611 >      d = inversion->getAtomD()->getGlobalIndex();        
612  
613 <  }
614 <  else{
615 <    // calc the scaled coordinates.
613 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
614 >        oneTwoInteractions_.removePair(a, b);      
615 >        oneTwoInteractions_.removePair(a, c);
616 >        oneTwoInteractions_.removePair(a, d);
617 >      } else {
618 >        excludedInteractions_.removePair(a, b);
619 >        excludedInteractions_.removePair(a, c);
620 >        excludedInteractions_.removePair(a, d);
621 >      }
622 >
623 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
624 >        oneThreeInteractions_.removePair(b, c);    
625 >        oneThreeInteractions_.removePair(b, d);    
626 >        oneThreeInteractions_.removePair(c, d);      
627 >      } else {
628 >        excludedInteractions_.removePair(b, c);
629 >        excludedInteractions_.removePair(b, d);
630 >        excludedInteractions_.removePair(c, d);
631 >      }
632 >    }
633 >
634 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
635 >         rb = mol->nextRigidBody(rbIter)) {
636 >      vector<Atom*> atoms = rb->getAtoms();
637 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
638 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
639 >          a = atoms[i]->getGlobalIndex();
640 >          b = atoms[j]->getGlobalIndex();
641 >          excludedInteractions_.removePair(a, b);
642 >        }
643 >      }
644 >    }        
645      
312    for(i=0; i<3; i++)
313      scaled[i] = thePos[i]*HmatInv[i][i];
314    
315    // wrap the scaled coordinates
316    
317    for(i=0; i<3; i++)
318      scaled[i] -= roundMe(scaled[i]);
319    
320    // calc the wrapped real coordinates from the wrapped scaled coordinates
321    
322    for(i=0; i<3; i++)
323      thePos[i] = scaled[i]*Hmat[i][i];
646    }
647 +  
648 +  
649 +  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
650 +    int curStampId;
651      
652 < }
652 >    //index from 0
653 >    curStampId = moleculeStamps_.size();
654  
655 +    moleculeStamps_.push_back(molStamp);
656 +    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
657 +  }
658  
659 < int SimInfo::getNDF(){
330 <  int ndf_local;
659 >  void SimInfo::update() {
660  
661 <  ndf_local = 0;
661 >    setupSimType();
662 >    setupCutoffRadius();
663 >    setupSwitchingRadius();
664 >    setupCutoffMethod();
665 >    setupSkinThickness();
666 >    setupSwitchingFunction();
667 >    setupAccumulateBoxDipole();
668 >
669 > #ifdef IS_MPI
670 >    setupFortranParallel();
671 > #endif
672 >    setupFortranSim();
673 >    fortranInitialized_ = true;
674 >
675 >    calcNdf();
676 >    calcNdfRaw();
677 >    calcNdfTrans();
678 >  }
679    
680 <  for(int i = 0; i < integrableObjects.size(); i++){
681 <    ndf_local += 3;
682 <    if (integrableObjects[i]->isDirectional()) {
683 <      if (integrableObjects[i]->isLinear())
684 <        ndf_local += 2;
685 <      else
686 <        ndf_local += 3;
680 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
681 >    SimInfo::MoleculeIterator mi;
682 >    Molecule* mol;
683 >    Molecule::AtomIterator ai;
684 >    Atom* atom;
685 >    set<AtomType*> atomTypes;
686 >    
687 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
688 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
689 >        atomTypes.insert(atom->getAtomType());
690 >      }      
691 >    }    
692 >    return atomTypes;        
693 >  }
694 >
695 >  /**
696 >   * setupCutoffRadius
697 >   *
698 >   *  If the cutoffRadius was explicitly set, use that value.
699 >   *  If the cutoffRadius was not explicitly set:
700 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
701 >   *      No electrostatic atoms?  Poll the atom types present in the
702 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
703 >   *      Use the maximum suggested value that was found.
704 >   */
705 >  void SimInfo::setupCutoffRadius() {
706 >    
707 >    if (simParams_->haveCutoffRadius()) {
708 >      cutoffRadius_ = simParams_->getCutoffRadius();
709 >    } else {      
710 >      if (usesElectrostaticAtoms_) {
711 >        sprintf(painCave.errMsg,
712 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
713 >                "\tOpenMD will use a default value of 12.0 angstroms"
714 >                "\tfor the cutoffRadius.\n");
715 >        painCave.isFatal = 0;
716 >        simError();
717 >        cutoffRadius_ = 12.0;
718 >      } else {
719 >        RealType thisCut;
720 >        set<AtomType*>::iterator i;
721 >        set<AtomType*> atomTypes;
722 >        atomTypes = getSimulatedAtomTypes();        
723 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
724 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
725 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
726 >        }
727 >        sprintf(painCave.errMsg,
728 >                "SimInfo Warning: No value was set for the cutoffRadius.\n"
729 >                "\tOpenMD will use %lf angstroms.\n",
730 >                cutoffRadius_);
731 >        painCave.isFatal = 0;
732 >        simError();
733 >      }            
734      }
735 +
736 +    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
737    }
738 +  
739 +  /**
740 +   * setupSwitchingRadius
741 +   *
742 +   *  If the switchingRadius was explicitly set, use that value (but check it)
743 +   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
744 +   */
745 +  void SimInfo::setupSwitchingRadius() {
746 +    
747 +    if (simParams_->haveSwitchingRadius()) {
748 +      switchingRadius_ = simParams_->getSwitchingRadius();
749 +      if (switchingRadius_ > cutoffRadius_) {        
750 +        sprintf(painCave.errMsg,
751 +                "SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
752 +                switchingRadius_, cutoffRadius_);
753 +        painCave.isFatal = 1;
754 +        simError();
755  
756 <  // n_constraints is local, so subtract them on each processor:
756 >      }
757 >    } else {      
758 >      switchingRadius_ = 0.85 * cutoffRadius_;
759 >      sprintf(painCave.errMsg,
760 >              "SimInfo Warning: No value was set for the switchingRadius.\n"
761 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
762 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
763 >      painCave.isFatal = 0;
764 >      simError();
765 >    }            
766 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
767 >  }
768  
769 <  ndf_local -= n_constraints;
769 >  /**
770 >   * setupSkinThickness
771 >   *
772 >   *  If the skinThickness was explicitly set, use that value (but check it)
773 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
774 >   */
775 >  void SimInfo::setupSkinThickness() {    
776 >    if (simParams_->haveSkinThickness()) {
777 >      skinThickness_ = simParams_->getSkinThickness();
778 >    } else {      
779 >      skinThickness_ = 1.0;
780 >      sprintf(painCave.errMsg,
781 >              "SimInfo Warning: No value was set for the skinThickness.\n"
782 >              "\tOpenMD will use a default value of %f Angstroms\n"
783 >              "\tfor this simulation\n", skinThickness_);
784 >      painCave.isFatal = 0;
785 >      simError();
786 >    }            
787 >  }
788  
789 < #ifdef IS_MPI
790 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
791 < #else
792 <  ndf = ndf_local;
352 < #endif
789 >  void SimInfo::setupSimType() {
790 >    set<AtomType*>::iterator i;
791 >    set<AtomType*> atomTypes;
792 >    atomTypes = getSimulatedAtomTypes();
793  
794 <  // nZconstraints is global, as are the 3 COM translations for the
355 <  // entire system:
794 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
795  
796 <  ndf = ndf - 3 - nZconstraints;
796 >    int usesElectrostatic = 0;
797 >    int usesMetallic = 0;
798 >    int usesDirectional = 0;
799 >    //loop over all of the atom types
800 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
801 >      usesElectrostatic |= (*i)->isElectrostatic();
802 >      usesMetallic |= (*i)->isMetal();
803 >      usesDirectional |= (*i)->isDirectional();
804 >    }
805  
806 <  return ndf;
807 < }
806 > #ifdef IS_MPI    
807 >    int temp;
808 >    temp = usesDirectional;
809 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
810  
811 < int SimInfo::getNDFraw() {
812 <  int ndfRaw_local;
811 >    temp = usesMetallic;
812 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
813  
814 <  // Raw degrees of freedom that we have to set
815 <  ndfRaw_local = 0;
816 <
817 <  for(int i = 0; i < integrableObjects.size(); i++){
818 <    ndfRaw_local += 3;
819 <    if (integrableObjects[i]->isDirectional()) {
820 <       if (integrableObjects[i]->isLinear())
821 <        ndfRaw_local += 2;
822 <      else
374 <        ndfRaw_local += 3;
375 <    }
814 >    temp = usesElectrostatic;
815 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
816 > #endif
817 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
818 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
819 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
820 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
821 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
822 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
823    }
824 +
825 +  void SimInfo::setupFortranSim() {
826 +    int isError;
827 +    int nExclude, nOneTwo, nOneThree, nOneFour;
828 +    vector<int> fortranGlobalGroupMembership;
829      
830 < #ifdef IS_MPI
379 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 < #else
381 <  ndfRaw = ndfRaw_local;
382 < #endif
830 >    notifyFortranSkinThickness(&skinThickness_);
831  
832 <  return ndfRaw;
833 < }
832 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
833 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
834 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
835  
836 < int SimInfo::getNDFtranslational() {
388 <  int ndfTrans_local;
836 >    isError = 0;
837  
838 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
838 >    //globalGroupMembership_ is filled by SimCreator    
839 >    for (int i = 0; i < nGlobalAtoms_; i++) {
840 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
841 >    }
842  
843 +    //calculate mass ratio of cutoff group
844 +    vector<RealType> mfact;
845 +    SimInfo::MoleculeIterator mi;
846 +    Molecule* mol;
847 +    Molecule::CutoffGroupIterator ci;
848 +    CutoffGroup* cg;
849 +    Molecule::AtomIterator ai;
850 +    Atom* atom;
851 +    RealType totalMass;
852  
853 < #ifdef IS_MPI
854 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
855 < #else
856 <  ndfTrans = ndfTrans_local;
857 < #endif
853 >    //to avoid memory reallocation, reserve enough space for mfact
854 >    mfact.reserve(getNCutoffGroups());
855 >    
856 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
857 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
858  
859 <  ndfTrans = ndfTrans - 3 - nZconstraints;
859 >        totalMass = cg->getMass();
860 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
861 >          // Check for massless groups - set mfact to 1 if true
862 >          if (totalMass != 0)
863 >            mfact.push_back(atom->getMass()/totalMass);
864 >          else
865 >            mfact.push_back( 1.0 );
866 >        }
867 >      }      
868 >    }
869  
870 <  return ndfTrans;
871 < }
870 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
871 >    vector<int> identArray;
872  
873 < int SimInfo::getTotIntegrableObjects() {
874 <  int nObjs_local;
875 <  int nObjs;
873 >    //to avoid memory reallocation, reserve enough space identArray
874 >    identArray.reserve(getNAtoms());
875 >    
876 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
877 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
878 >        identArray.push_back(atom->getIdent());
879 >      }
880 >    }    
881  
882 <  nObjs_local =  integrableObjects.size();
882 >    //fill molMembershipArray
883 >    //molMembershipArray is filled by SimCreator    
884 >    vector<int> molMembershipArray(nGlobalAtoms_);
885 >    for (int i = 0; i < nGlobalAtoms_; i++) {
886 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
887 >    }
888 >    
889 >    //setup fortran simulation
890  
891 +    nExclude = excludedInteractions_.getSize();
892 +    nOneTwo = oneTwoInteractions_.getSize();
893 +    nOneThree = oneThreeInteractions_.getSize();
894 +    nOneFour = oneFourInteractions_.getSize();
895  
896 < #ifdef IS_MPI
897 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
898 < #else
899 <  nObjs = nObjs_local;
415 < #endif
896 >    int* excludeList = excludedInteractions_.getPairList();
897 >    int* oneTwoList = oneTwoInteractions_.getPairList();
898 >    int* oneThreeList = oneThreeInteractions_.getPairList();
899 >    int* oneFourList = oneFourInteractions_.getPairList();
900  
901 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
902 +                   &nExclude, excludeList,
903 +                   &nOneTwo, oneTwoList,
904 +                   &nOneThree, oneThreeList,
905 +                   &nOneFour, oneFourList,
906 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
907 +                   &fortranGlobalGroupMembership[0], &isError);
908 +    
909 +    if( isError ){
910 +      
911 +      sprintf( painCave.errMsg,
912 +               "There was an error setting the simulation information in fortran.\n" );
913 +      painCave.isFatal = 1;
914 +      painCave.severity = OPENMD_ERROR;
915 +      simError();
916 +    }
917 +    
918 +    
919 +    sprintf( checkPointMsg,
920 +             "succesfully sent the simulation information to fortran.\n");
921 +    
922 +    errorCheckPoint();
923 +    
924 +    // Setup number of neighbors in neighbor list if present
925 +    if (simParams_->haveNeighborListNeighbors()) {
926 +      int nlistNeighbors = simParams_->getNeighborListNeighbors();
927 +      setNeighbors(&nlistNeighbors);
928 +    }
929 +  
930  
418  return nObjs;
419 }
420
421 void SimInfo::refreshSim(){
422
423  simtype fInfo;
424  int isError;
425  int n_global;
426  int* excl;
427
428  fInfo.dielect = 0.0;
429
430  if( useDipoles ){
431    if( useReactionField )fInfo.dielect = dielectric;
931    }
932  
434  fInfo.SIM_uses_PBC = usePBC;
435  //fInfo.SIM_uses_LJ = 0;
436  fInfo.SIM_uses_LJ = useLJ;
437  fInfo.SIM_uses_sticky = useSticky;
438  //fInfo.SIM_uses_sticky = 0;
439  fInfo.SIM_uses_charges = useCharges;
440  fInfo.SIM_uses_dipoles = useDipoles;
441  //fInfo.SIM_uses_dipoles = 0;
442  fInfo.SIM_uses_RF = useReactionField;
443  //fInfo.SIM_uses_RF = 0;
444  fInfo.SIM_uses_GB = useGB;
445  fInfo.SIM_uses_EAM = useEAM;
933  
934 <  n_exclude = excludes->getSize();
935 <  excl = excludes->getFortranArray();
936 <  
937 < #ifdef IS_MPI
938 <  n_global = mpiSim->getNAtomsGlobal();
939 < #else
940 <  n_global = n_atoms;
941 < #endif
942 <  
943 <  isError = 0;
944 <  
945 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
946 <  //it may not be a good idea to pass the address of first element in vector
460 <  //since c++ standard does not require vector to be stored continuously in meomory
461 <  //Most of the compilers will organize the memory of vector continuously
462 <  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
934 >  void SimInfo::setupFortranParallel() {
935 > #ifdef IS_MPI    
936 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
937 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
938 >    vector<int> localToGlobalCutoffGroupIndex;
939 >    SimInfo::MoleculeIterator mi;
940 >    Molecule::AtomIterator ai;
941 >    Molecule::CutoffGroupIterator ci;
942 >    Molecule* mol;
943 >    Atom* atom;
944 >    CutoffGroup* cg;
945 >    mpiSimData parallelData;
946 >    int isError;
947  
948 <  if( isError ){
467 <    
468 <    sprintf( painCave.errMsg,
469 <             "There was an error setting the simulation information in fortran.\n" );
470 <    painCave.isFatal = 1;
471 <    painCave.severity = OOPSE_ERROR;
472 <    simError();
473 <  }
474 <  
475 < #ifdef IS_MPI
476 <  sprintf( checkPointMsg,
477 <           "succesfully sent the simulation information to fortran.\n");
478 <  MPIcheckPoint();
479 < #endif // is_mpi
480 <  
481 <  this->ndf = this->getNDF();
482 <  this->ndfRaw = this->getNDFraw();
483 <  this->ndfTrans = this->getNDFtranslational();
484 < }
948 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
949  
950 < void SimInfo::setDefaultRcut( double theRcut ){
951 <  
952 <  haveRcut = 1;
953 <  rCut = theRcut;
490 <  rList = rCut + 1.0;
491 <  
492 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
950 >      //local index(index in DataStorge) of atom is important
951 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
952 >        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
953 >      }
954  
955 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
955 >      //local index of cutoff group is trivial, it only depends on the order of travesing
956 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
957 >        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
958 >      }        
959 >        
960 >    }
961  
962 <  rSw = theRsw;
963 <  setDefaultRcut( theRcut );
964 < }
962 >    //fill up mpiSimData struct
963 >    parallelData.nMolGlobal = getNGlobalMolecules();
964 >    parallelData.nMolLocal = getNMolecules();
965 >    parallelData.nAtomsGlobal = getNGlobalAtoms();
966 >    parallelData.nAtomsLocal = getNAtoms();
967 >    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
968 >    parallelData.nGroupsLocal = getNCutoffGroups();
969 >    parallelData.myNode = worldRank;
970 >    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
971  
972 +    //pass mpiSimData struct and index arrays to fortran
973 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
974 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
975 +                    &localToGlobalCutoffGroupIndex[0], &isError);
976  
977 < void SimInfo::checkCutOffs( void ){
978 <  
979 <  if( boxIsInit ){
505 <    
506 <    //we need to check cutOffs against the box
507 <    
508 <    if( rCut > maxCutoff ){
509 <      sprintf( painCave.errMsg,
510 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
977 >    if (isError) {
978 >      sprintf(painCave.errMsg,
979 >              "mpiRefresh errror: fortran didn't like something we gave it.\n");
980        painCave.isFatal = 1;
981        simError();
982 <    }    
526 <  } else {
527 <    // initialize this stuff before using it, OK?
528 <    sprintf( painCave.errMsg,
529 <             "Trying to check cutoffs without a box.\n"
530 <             "\tOOPSE should have better programmers than that.\n" );
531 <    painCave.severity = OOPSE_ERROR;
532 <    painCave.isFatal = 1;
533 <    simError();      
534 <  }
535 <  
536 < }
982 >    }
983  
984 < void SimInfo::addProperty(GenericData* prop){
984 >    sprintf(checkPointMsg, " mpiRefresh successful.\n");
985 >    errorCheckPoint();
986  
987 <  map<string, GenericData*>::iterator result;
541 <  result = properties.find(prop->getID());
542 <  
543 <  //we can't simply use  properties[prop->getID()] = prop,
544 <  //it will cause memory leak if we already contain a propery which has the same name of prop
545 <  
546 <  if(result != properties.end()){
547 <    
548 <    delete (*result).second;
549 <    (*result).second = prop;
550 <      
987 > #endif
988    }
552  else{
989  
554    properties[prop->getID()] = prop;
990  
991 +  void SimInfo::setupSwitchingFunction() {    
992 +    int ft = CUBIC;
993 +    
994 +    if (simParams_->haveSwitchingFunctionType()) {
995 +      string funcType = simParams_->getSwitchingFunctionType();
996 +      toUpper(funcType);
997 +      if (funcType == "CUBIC") {
998 +        ft = CUBIC;
999 +      } else {
1000 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1001 +          ft = FIFTH_ORDER_POLY;
1002 +        } else {
1003 +          // throw error        
1004 +          sprintf( painCave.errMsg,
1005 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n"
1006 +                   "\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".",
1007 +                   funcType.c_str() );
1008 +          painCave.isFatal = 1;
1009 +          simError();
1010 +        }          
1011 +      }
1012 +    }
1013 +
1014 +    // send switching function notification to switcheroo
1015 +    setFunctionType(&ft);
1016 +
1017    }
1018 +
1019 +  void SimInfo::setupAccumulateBoxDipole() {    
1020 +
1021 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1022 +    if ( simParams_->haveAccumulateBoxDipole() )
1023 +      if ( simParams_->getAccumulateBoxDipole() ) {
1024 +        calcBoxDipole_ = true;
1025 +      }
1026 +
1027 +  }
1028 +
1029 +  void SimInfo::addProperty(GenericData* genData) {
1030 +    properties_.addProperty(genData);  
1031 +  }
1032 +
1033 +  void SimInfo::removeProperty(const string& propName) {
1034 +    properties_.removeProperty(propName);  
1035 +  }
1036 +
1037 +  void SimInfo::clearProperties() {
1038 +    properties_.clearProperties();
1039 +  }
1040 +
1041 +  vector<string> SimInfo::getPropertyNames() {
1042 +    return properties_.getPropertyNames();  
1043 +  }
1044 +      
1045 +  vector<GenericData*> SimInfo::getProperties() {
1046 +    return properties_.getProperties();
1047 +  }
1048 +
1049 +  GenericData* SimInfo::getPropertyByName(const string& propName) {
1050 +    return properties_.getPropertyByName(propName);
1051 +  }
1052 +
1053 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1054 +    if (sman_ == sman) {
1055 +      return;
1056 +    }    
1057 +    delete sman_;
1058 +    sman_ = sman;
1059 +
1060 +    Molecule* mol;
1061 +    RigidBody* rb;
1062 +    Atom* atom;
1063 +    SimInfo::MoleculeIterator mi;
1064 +    Molecule::RigidBodyIterator rbIter;
1065 +    Molecule::AtomIterator atomIter;;
1066 +
1067 +    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1068 +        
1069 +      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1070 +        atom->setSnapshotManager(sman_);
1071 +      }
1072 +        
1073 +      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1074 +        rb->setSnapshotManager(sman_);
1075 +      }
1076 +    }    
1077      
1078 < }
1078 >  }
1079  
1080 < GenericData* SimInfo::getProperty(const string& propName){
1080 >  Vector3d SimInfo::getComVel(){
1081 >    SimInfo::MoleculeIterator i;
1082 >    Molecule* mol;
1083 >
1084 >    Vector3d comVel(0.0);
1085 >    RealType totalMass = 0.0;
1086 >    
1087  
1088 <  map<string, GenericData*>::iterator result;
1089 <  
1090 <  //string lowerCaseName = ();
1091 <  
1092 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
1088 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1089 >      RealType mass = mol->getMass();
1090 >      totalMass += mass;
1091 >      comVel += mass * mol->getComVel();
1092 >    }  
1093  
1094 + #ifdef IS_MPI
1095 +    RealType tmpMass = totalMass;
1096 +    Vector3d tmpComVel(comVel);    
1097 +    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1098 +    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1099 + #endif
1100  
1101 < void SimInfo::getFortranGroupArrays(SimInfo* info,
576 <                                    vector<int>& FglobalGroupMembership,
577 <                                    vector<double>& mfact){
578 <  
579 <  Molecule* myMols;
580 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
1101 >    comVel /= totalMass;
1102  
1103 <  // Fix the silly fortran indexing problem
1103 >    return comVel;
1104 >  }
1105 >
1106 >  Vector3d SimInfo::getCom(){
1107 >    SimInfo::MoleculeIterator i;
1108 >    Molecule* mol;
1109 >
1110 >    Vector3d com(0.0);
1111 >    RealType totalMass = 0.0;
1112 >    
1113 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1114 >      RealType mass = mol->getMass();
1115 >      totalMass += mass;
1116 >      com += mass * mol->getCom();
1117 >    }  
1118 >
1119   #ifdef IS_MPI
1120 <  numAtom = mpiSim->getNAtomsGlobal();
1121 < #else
1122 <  numAtom = n_atoms;
1120 >    RealType tmpMass = totalMass;
1121 >    Vector3d tmpCom(com);    
1122 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1123 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1124   #endif
602  for (int i = 0; i < numAtom; i++)
603    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604  
1125  
1126 <  myMols = info->molecules;
607 <  numMol = info->n_mol;
608 <  for(int i  = 0; i < numMol; i++){
609 <    numCutoffGroups = myMols[i].getNCutoffGroups();
610 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 <        myCutoffGroup != NULL;
612 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
1126 >    com /= totalMass;
1127  
1128 <      totalMass = myCutoffGroup->getMass();
1128 >    return com;
1129 >
1130 >  }        
1131 >
1132 >  ostream& operator <<(ostream& o, SimInfo& info) {
1133 >
1134 >    return o;
1135 >  }
1136 >  
1137 >  
1138 >   /*
1139 >   Returns center of mass and center of mass velocity in one function call.
1140 >   */
1141 >  
1142 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1143 >      SimInfo::MoleculeIterator i;
1144 >      Molecule* mol;
1145        
1146 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1147 <          cutoffAtom != NULL;
1148 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1149 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1146 >    
1147 >      RealType totalMass = 0.0;
1148 >    
1149 >
1150 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1151 >         RealType mass = mol->getMass();
1152 >         totalMass += mass;
1153 >         com += mass * mol->getCom();
1154 >         comVel += mass * mol->getComVel();          
1155        }  
1156 +      
1157 + #ifdef IS_MPI
1158 +      RealType tmpMass = totalMass;
1159 +      Vector3d tmpCom(com);  
1160 +      Vector3d tmpComVel(comVel);
1161 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1162 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1163 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1164 + #endif
1165 +      
1166 +      com /= totalMass;
1167 +      comVel /= totalMass;
1168 +   }        
1169 +  
1170 +   /*
1171 +   Return intertia tensor for entire system and angular momentum Vector.
1172 +
1173 +
1174 +       [  Ixx -Ixy  -Ixz ]
1175 +    J =| -Iyx  Iyy  -Iyz |
1176 +       [ -Izx -Iyz   Izz ]
1177 +    */
1178 +
1179 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1180 +      
1181 +
1182 +      RealType xx = 0.0;
1183 +      RealType yy = 0.0;
1184 +      RealType zz = 0.0;
1185 +      RealType xy = 0.0;
1186 +      RealType xz = 0.0;
1187 +      RealType yz = 0.0;
1188 +      Vector3d com(0.0);
1189 +      Vector3d comVel(0.0);
1190 +      
1191 +      getComAll(com, comVel);
1192 +      
1193 +      SimInfo::MoleculeIterator i;
1194 +      Molecule* mol;
1195 +      
1196 +      Vector3d thisq(0.0);
1197 +      Vector3d thisv(0.0);
1198 +
1199 +      RealType thisMass = 0.0;
1200 +    
1201 +      
1202 +      
1203 +  
1204 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1205 +        
1206 +         thisq = mol->getCom()-com;
1207 +         thisv = mol->getComVel()-comVel;
1208 +         thisMass = mol->getMass();
1209 +         // Compute moment of intertia coefficients.
1210 +         xx += thisq[0]*thisq[0]*thisMass;
1211 +         yy += thisq[1]*thisq[1]*thisMass;
1212 +         zz += thisq[2]*thisq[2]*thisMass;
1213 +        
1214 +         // compute products of intertia
1215 +         xy += thisq[0]*thisq[1]*thisMass;
1216 +         xz += thisq[0]*thisq[2]*thisMass;
1217 +         yz += thisq[1]*thisq[2]*thisMass;
1218 +            
1219 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1220 +            
1221 +      }  
1222 +      
1223 +      
1224 +      inertiaTensor(0,0) = yy + zz;
1225 +      inertiaTensor(0,1) = -xy;
1226 +      inertiaTensor(0,2) = -xz;
1227 +      inertiaTensor(1,0) = -xy;
1228 +      inertiaTensor(1,1) = xx + zz;
1229 +      inertiaTensor(1,2) = -yz;
1230 +      inertiaTensor(2,0) = -xz;
1231 +      inertiaTensor(2,1) = -yz;
1232 +      inertiaTensor(2,2) = xx + yy;
1233 +      
1234 + #ifdef IS_MPI
1235 +      Mat3x3d tmpI(inertiaTensor);
1236 +      Vector3d tmpAngMom;
1237 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1238 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1239 + #endif
1240 +              
1241 +      return;
1242 +   }
1243 +
1244 +   //Returns the angular momentum of the system
1245 +   Vector3d SimInfo::getAngularMomentum(){
1246 +      
1247 +      Vector3d com(0.0);
1248 +      Vector3d comVel(0.0);
1249 +      Vector3d angularMomentum(0.0);
1250 +      
1251 +      getComAll(com,comVel);
1252 +      
1253 +      SimInfo::MoleculeIterator i;
1254 +      Molecule* mol;
1255 +      
1256 +      Vector3d thisr(0.0);
1257 +      Vector3d thisp(0.0);
1258 +      
1259 +      RealType thisMass;
1260 +      
1261 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1262 +        thisMass = mol->getMass();
1263 +        thisr = mol->getCom()-com;
1264 +        thisp = (mol->getComVel()-comVel)*thisMass;
1265 +        
1266 +        angularMomentum += cross( thisr, thisp );
1267 +        
1268 +      }  
1269 +      
1270 + #ifdef IS_MPI
1271 +      Vector3d tmpAngMom;
1272 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1273 + #endif
1274 +      
1275 +      return angularMomentum;
1276 +   }
1277 +  
1278 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1279 +    return IOIndexToIntegrableObject.at(index);
1280 +  }
1281 +  
1282 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1283 +    IOIndexToIntegrableObject= v;
1284 +  }
1285 +
1286 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1287 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1288 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1289 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1290 +  */
1291 +  void SimInfo::getGyrationalVolume(RealType &volume){
1292 +    Mat3x3d intTensor;
1293 +    RealType det;
1294 +    Vector3d dummyAngMom;
1295 +    RealType sysconstants;
1296 +    RealType geomCnst;
1297 +
1298 +    geomCnst = 3.0/2.0;
1299 +    /* Get the inertial tensor and angular momentum for free*/
1300 +    getInertiaTensor(intTensor,dummyAngMom);
1301 +    
1302 +    det = intTensor.determinant();
1303 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1304 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1305 +    return;
1306 +  }
1307 +
1308 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1309 +    Mat3x3d intTensor;
1310 +    Vector3d dummyAngMom;
1311 +    RealType sysconstants;
1312 +    RealType geomCnst;
1313 +
1314 +    geomCnst = 3.0/2.0;
1315 +    /* Get the inertial tensor and angular momentum for free*/
1316 +    getInertiaTensor(intTensor,dummyAngMom);
1317 +    
1318 +    detI = intTensor.determinant();
1319 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1320 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1321 +    return;
1322 +  }
1323 + /*
1324 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1325 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1326 +      sdByGlobalIndex_ = v;
1327      }
1328 +
1329 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1330 +      //assert(index < nAtoms_ + nRigidBodies_);
1331 +      return sdByGlobalIndex_.at(index);
1332 +    }  
1333 + */  
1334 +  int SimInfo::getNGlobalConstraints() {
1335 +    int nGlobalConstraints;
1336 + #ifdef IS_MPI
1337 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1338 +                  MPI_COMM_WORLD);    
1339 + #else
1340 +    nGlobalConstraints =  nConstraints_;
1341 + #endif
1342 +    return nGlobalConstraints;
1343    }
1344  
1345 < }
1345 > }//end namespace OpenMD
1346 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1529 by gezelter, Mon Dec 27 18:35:59 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines