ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 1241 by gezelter, Fri Apr 25 15:14:47 2008 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Acknowledgement of the program authors must be made in any
10 > *    publication of scientific results based in part on use of the
11 > *    program.  An acceptable form of acknowledgement is citation of
12 > *    the article in which the program was described (Matthew
13 > *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 > *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 > *    Parallel Simulation Engine for Molecular Dynamics,"
16 > *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 > *
18 > * 2. Redistributions of source code must retain the above copyright
19 > *    notice, this list of conditions and the following disclaimer.
20 > *
21 > * 3. Redistributions in binary form must reproduce the above copyright
22 > *    notice, this list of conditions and the following disclaimer in the
23 > *    documentation and/or other materials provided with the
24 > *    distribution.
25 > *
26 > * This software is provided "AS IS," without a warranty of any
27 > * kind. All express or implied conditions, representations and
28 > * warranties, including any implied warranty of merchantability,
29 > * fitness for a particular purpose or non-infringement, are hereby
30 > * excluded.  The University of Notre Dame and its licensors shall not
31 > * be liable for any damages suffered by licensee as a result of
32 > * using, modifying or distributing the software or its
33 > * derivatives. In no event will the University of Notre Dame or its
34 > * licensors be liable for any lost revenue, profit or data, or for
35 > * direct, indirect, special, consequential, incidental or punitive
36 > * damages, however caused and regardless of the theory of liability,
37 > * arising out of the use of or inability to use software, even if the
38 > * University of Notre Dame has been advised of the possibility of
39 > * such damages.
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53 < #include "SimInfo.hpp"
54 < #define __C
55 < #include "fSimulation.h"
56 < #include "simError.h"
53 > #include "brains/SimInfo.hpp"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "UseTheForce/fCutoffPolicy.h"
58 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 > #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 > #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 > #include "UseTheForce/doForces_interface.h"
62 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 > #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 > #include "utils/MemoryUtils.hpp"
66 > #include "utils/simError.h"
67 > #include "selection/SelectionManager.hpp"
68 > #include "io/ForceFieldOptions.hpp"
69 > #include "UseTheForce/ForceField.hpp"
70  
13 #include "fortranWrappers.hpp"
71  
15 #include "MatVec3.h"
16
72   #ifdef IS_MPI
73 < #include "mpiSimulation.hpp"
74 < #endif
73 > #include "UseTheForce/mpiComponentPlan.h"
74 > #include "UseTheForce/DarkSide/simParallel_interface.h"
75 > #endif
76  
77 < inline double roundMe( double x ){
78 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
79 < }
80 <          
81 < inline double min( double a, double b ){
82 <  return (a < b ) ? a : b;
83 < }
77 > namespace oopse {
78 >  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 >    std::map<int, std::set<int> >::iterator i = container.find(index);
80 >    std::set<int> result;
81 >    if (i != container.end()) {
82 >        result = i->second;
83 >    }
84  
85 < SimInfo* currentInfo;
85 >    return result;
86 >  }
87 >  
88 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 >    forceField_(ff), simParams_(simParams),
90 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 >    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
95 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96 >    useAtomicVirial_(true) {
97  
98 < SimInfo::SimInfo(){
98 >      MoleculeStamp* molStamp;
99 >      int nMolWithSameStamp;
100 >      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 >      int nGroups = 0;      //total cutoff groups defined in meta-data file
102 >      CutoffGroupStamp* cgStamp;    
103 >      RigidBodyStamp* rbStamp;
104 >      int nRigidAtoms = 0;
105 >      std::vector<Component*> components = simParams->getComponents();
106 >      
107 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 >        molStamp = (*i)->getMoleculeStamp();
109 >        nMolWithSameStamp = (*i)->getNMol();
110 >        
111 >        addMoleculeStamp(molStamp, nMolWithSameStamp);
112  
113 <  n_constraints = 0;
114 <  nZconstraints = 0;
35 <  n_oriented = 0;
36 <  n_dipoles = 0;
37 <  ndf = 0;
38 <  ndfRaw = 0;
39 <  nZconstraints = 0;
40 <  the_integrator = NULL;
41 <  setTemp = 0;
42 <  thermalTime = 0.0;
43 <  currentTime = 0.0;
44 <  rCut = 0.0;
45 <  rSw = 0.0;
113 >        //calculate atoms in molecules
114 >        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
115  
116 <  haveRcut = 0;
117 <  haveRsw = 0;
118 <  boxIsInit = 0;
119 <  
120 <  resetTime = 1e99;
116 >        //calculate atoms in cutoff groups
117 >        int nAtomsInGroups = 0;
118 >        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119 >        
120 >        for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 >          cgStamp = molStamp->getCutoffGroupStamp(j);
122 >          nAtomsInGroups += cgStamp->getNMembers();
123 >        }
124  
125 <  orthoRhombic = 0;
54 <  orthoTolerance = 1E-6;
55 <  useInitXSstate = true;
125 >        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126  
127 <  usePBC = 0;
58 <  useLJ = 0;
59 <  useSticky = 0;
60 <  useCharges = 0;
61 <  useDipoles = 0;
62 <  useReactionField = 0;
63 <  useGB = 0;
64 <  useEAM = 0;
65 <  useSolidThermInt = 0;
66 <  useLiquidThermInt = 0;
127 >        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
128  
129 <  haveCutoffGroups = false;
129 >        //calculate atoms in rigid bodies
130 >        int nAtomsInRigidBodies = 0;
131 >        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132 >        
133 >        for (int j=0; j < nRigidBodiesInStamp; j++) {
134 >          rbStamp = molStamp->getRigidBodyStamp(j);
135 >          nAtomsInRigidBodies += rbStamp->getNMembers();
136 >        }
137  
138 <  excludes = Exclude::Instance();
138 >        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 >        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
140 >        
141 >      }
142  
143 <  myConfiguration = new SimState();
143 >      //every free atom (atom does not belong to cutoff groups) is a cutoff
144 >      //group therefore the total number of cutoff groups in the system is
145 >      //equal to the total number of atoms minus number of atoms belong to
146 >      //cutoff group defined in meta-data file plus the number of cutoff
147 >      //groups defined in meta-data file
148 >      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149  
150 <  has_minimizer = false;
151 <  the_minimizer =NULL;
150 >      //every free atom (atom does not belong to rigid bodies) is an
151 >      //integrable object therefore the total number of integrable objects
152 >      //in the system is equal to the total number of atoms minus number of
153 >      //atoms belong to rigid body defined in meta-data file plus the number
154 >      //of rigid bodies defined in meta-data file
155 >      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 >                                                + nGlobalRigidBodies_;
157 >  
158 >      nGlobalMols_ = molStampIds_.size();
159 >      molToProcMap_.resize(nGlobalMols_);
160 >    }
161  
162 <  ngroup = 0;
162 >  SimInfo::~SimInfo() {
163 >    std::map<int, Molecule*>::iterator i;
164 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
165 >      delete i->second;
166 >    }
167 >    molecules_.clear();
168 >      
169 >    delete sman_;
170 >    delete simParams_;
171 >    delete forceField_;
172 >  }
173  
174 <  wrapMeSimInfo( this );
175 < }
174 >  int SimInfo::getNGlobalConstraints() {
175 >    int nGlobalConstraints;
176 > #ifdef IS_MPI
177 >    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
178 >                  MPI_COMM_WORLD);    
179 > #else
180 >    nGlobalConstraints =  nConstraints_;
181 > #endif
182 >    return nGlobalConstraints;
183 >  }
184  
185 +  bool SimInfo::addMolecule(Molecule* mol) {
186 +    MoleculeIterator i;
187  
188 < SimInfo::~SimInfo(){
188 >    i = molecules_.find(mol->getGlobalIndex());
189 >    if (i == molecules_.end() ) {
190  
191 <  delete myConfiguration;
191 >      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
192 >        
193 >      nAtoms_ += mol->getNAtoms();
194 >      nBonds_ += mol->getNBonds();
195 >      nBends_ += mol->getNBends();
196 >      nTorsions_ += mol->getNTorsions();
197 >      nRigidBodies_ += mol->getNRigidBodies();
198 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
199 >      nCutoffGroups_ += mol->getNCutoffGroups();
200 >      nConstraints_ += mol->getNConstraintPairs();
201  
202 <  map<string, GenericData*>::iterator i;
203 <  
204 <  for(i = properties.begin(); i != properties.end(); i++)
205 <    delete (*i).second;
202 >      addExcludePairs(mol);
203 >        
204 >      return true;
205 >    } else {
206 >      return false;
207 >    }
208 >  }
209  
210 < }
210 >  bool SimInfo::removeMolecule(Molecule* mol) {
211 >    MoleculeIterator i;
212 >    i = molecules_.find(mol->getGlobalIndex());
213  
214 < void SimInfo::setBox(double newBox[3]) {
95 <  
96 <  int i, j;
97 <  double tempMat[3][3];
214 >    if (i != molecules_.end() ) {
215  
216 <  for(i=0; i<3; i++)
217 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
216 >      assert(mol == i->second);
217 >        
218 >      nAtoms_ -= mol->getNAtoms();
219 >      nBonds_ -= mol->getNBonds();
220 >      nBends_ -= mol->getNBends();
221 >      nTorsions_ -= mol->getNTorsions();
222 >      nRigidBodies_ -= mol->getNRigidBodies();
223 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
224 >      nCutoffGroups_ -= mol->getNCutoffGroups();
225 >      nConstraints_ -= mol->getNConstraintPairs();
226  
227 <  tempMat[0][0] = newBox[0];
228 <  tempMat[1][1] = newBox[1];
104 <  tempMat[2][2] = newBox[2];
227 >      removeExcludePairs(mol);
228 >      molecules_.erase(mol->getGlobalIndex());
229  
230 <  setBoxM( tempMat );
230 >      delete mol;
231 >        
232 >      return true;
233 >    } else {
234 >      return false;
235 >    }
236  
108 }
237  
238 < void SimInfo::setBoxM( double theBox[3][3] ){
111 <  
112 <  int i, j;
113 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 <                         // ordering in the array is as follows:
115 <                         // [ 0 3 6 ]
116 <                         // [ 1 4 7 ]
117 <                         // [ 2 5 8 ]
118 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
238 >  }    
239  
240 <  if( !boxIsInit ) boxIsInit = 1;
240 >        
241 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
242 >    i = molecules_.begin();
243 >    return i == molecules_.end() ? NULL : i->second;
244 >  }    
245  
246 <  for(i=0; i < 3; i++)
247 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
248 <  
125 <  calcBoxL();
126 <  calcHmatInv();
127 <
128 <  for(i=0; i < 3; i++) {
129 <    for (j=0; j < 3; j++) {
130 <      FortranHmat[3*j + i] = Hmat[i][j];
131 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
132 <    }
246 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
247 >    ++i;
248 >    return i == molecules_.end() ? NULL : i->second;    
249    }
250  
135  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
136
137 }
138
251  
252 < void SimInfo::getBoxM (double theBox[3][3]) {
252 >  void SimInfo::calcNdf() {
253 >    int ndf_local;
254 >    MoleculeIterator i;
255 >    std::vector<StuntDouble*>::iterator j;
256 >    Molecule* mol;
257 >    StuntDouble* integrableObject;
258  
259 <  int i, j;
260 <  for(i=0; i<3; i++)
261 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
262 < }
259 >    ndf_local = 0;
260 >    
261 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
262 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
263 >           integrableObject = mol->nextIntegrableObject(j)) {
264  
265 +        ndf_local += 3;
266  
267 < void SimInfo::scaleBox(double scale) {
268 <  double theBox[3][3];
269 <  int i, j;
270 <
271 <  // cerr << "Scaling box by " << scale << "\n";
272 <
273 <  for(i=0; i<3; i++)
274 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
156 <
157 <  setBoxM(theBox);
158 <
159 < }
160 <
161 < void SimInfo::calcHmatInv( void ) {
162 <  
163 <  int oldOrtho;
164 <  int i,j;
165 <  double smallDiag;
166 <  double tol;
167 <  double sanity[3][3];
168 <
169 <  invertMat3( Hmat, HmatInv );
170 <
171 <  // check to see if Hmat is orthorhombic
172 <  
173 <  oldOrtho = orthoRhombic;
174 <
175 <  smallDiag = fabs(Hmat[0][0]);
176 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 <  tol = smallDiag * orthoTolerance;
179 <
180 <  orthoRhombic = 1;
181 <  
182 <  for (i = 0; i < 3; i++ ) {
183 <    for (j = 0 ; j < 3; j++) {
184 <      if (i != j) {
185 <        if (orthoRhombic) {
186 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 <        }        
267 >        if (integrableObject->isDirectional()) {
268 >          if (integrableObject->isLinear()) {
269 >            ndf_local += 2;
270 >          } else {
271 >            ndf_local += 3;
272 >          }
273 >        }
274 >            
275        }
276      }
190  }
191
192  if( oldOrtho != orthoRhombic ){
277      
278 <    if( orthoRhombic ) {
279 <      sprintf( painCave.errMsg,
196 <               "OOPSE is switching from the default Non-Orthorhombic\n"
197 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 <               "\tThis is usually a good thing, but if you wan't the\n"
199 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 <               "\tvariable ( currently set to %G ) smaller.\n",
201 <               orthoTolerance);
202 <      painCave.severity = OOPSE_INFO;
203 <      simError();
204 <    }
205 <    else {
206 <      sprintf( painCave.errMsg,
207 <               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 <               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 <               "\tThis is usually because the box has deformed under\n"
210 <               "\tNPTf integration. If you wan't to live on the edge with\n"
211 <               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 <               "\tvariable ( currently set to %G ) larger.\n",
213 <               orthoTolerance);
214 <      painCave.severity = OOPSE_WARNING;
215 <      simError();
216 <    }
217 <  }
218 < }
278 >    // n_constraints is local, so subtract them on each processor
279 >    ndf_local -= nConstraints_;
280  
281 < void SimInfo::calcBoxL( void ){
281 > #ifdef IS_MPI
282 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
283 > #else
284 >    ndf_ = ndf_local;
285 > #endif
286  
287 <  double dx, dy, dz, dsq;
288 <
289 <  // boxVol = Determinant of Hmat
225 <
226 <  boxVol = matDet3( Hmat );
227 <
228 <  // boxLx
229 <  
230 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 <  dsq = dx*dx + dy*dy + dz*dz;
232 <  boxL[0] = sqrt( dsq );
233 <  //maxCutoff = 0.5 * boxL[0];
234 <
235 <  // boxLy
236 <  
237 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 <  dsq = dx*dx + dy*dy + dz*dz;
239 <  boxL[1] = sqrt( dsq );
240 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 <
242 <
243 <  // boxLz
244 <  
245 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 <  dsq = dx*dx + dy*dy + dz*dz;
247 <  boxL[2] = sqrt( dsq );
248 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 <
250 <  //calculate the max cutoff
251 <  maxCutoff =  calcMaxCutOff();
252 <  
253 <  checkCutOffs();
254 <
255 < }
256 <
257 <
258 < double SimInfo::calcMaxCutOff(){
259 <
260 <  double ri[3], rj[3], rk[3];
261 <  double rij[3], rjk[3], rki[3];
262 <  double minDist;
263 <
264 <  ri[0] = Hmat[0][0];
265 <  ri[1] = Hmat[1][0];
266 <  ri[2] = Hmat[2][0];
267 <
268 <  rj[0] = Hmat[0][1];
269 <  rj[1] = Hmat[1][1];
270 <  rj[2] = Hmat[2][1];
271 <
272 <  rk[0] = Hmat[0][2];
273 <  rk[1] = Hmat[1][2];
274 <  rk[2] = Hmat[2][2];
275 <    
276 <  crossProduct3(ri, rj, rij);
277 <  distXY = dotProduct3(rk,rij) / norm3(rij);
278 <
279 <  crossProduct3(rj,rk, rjk);
280 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
281 <
282 <  crossProduct3(rk,ri, rki);
283 <  distZX = dotProduct3(rj,rki) / norm3(rki);
284 <
285 <  minDist = min(min(distXY, distYZ), distZX);
286 <  return minDist/2;
287 <  
288 < }
289 <
290 < void SimInfo::wrapVector( double thePos[3] ){
291 <
292 <  int i;
293 <  double scaled[3];
294 <
295 <  if( !orthoRhombic ){
296 <    // calc the scaled coordinates.
297 <  
298 <
299 <    matVecMul3(HmatInv, thePos, scaled);
300 <    
301 <    for(i=0; i<3; i++)
302 <      scaled[i] -= roundMe(scaled[i]);
303 <    
304 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 <    
306 <    matVecMul3(Hmat, scaled, thePos);
307 <
308 <  }
309 <  else{
310 <    // calc the scaled coordinates.
311 <    
312 <    for(i=0; i<3; i++)
313 <      scaled[i] = thePos[i]*HmatInv[i][i];
314 <    
315 <    // wrap the scaled coordinates
316 <    
317 <    for(i=0; i<3; i++)
318 <      scaled[i] -= roundMe(scaled[i]);
319 <    
320 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      thePos[i] = scaled[i]*Hmat[i][i];
324 <  }
325 <    
326 < }
327 <
328 <
329 < int SimInfo::getNDF(){
330 <  int ndf_local;
287 >    // nZconstraints_ is global, as are the 3 COM translations for the
288 >    // entire system:
289 >    ndf_ = ndf_ - 3 - nZconstraint_;
290  
332  ndf_local = 0;
333  
334  for(int i = 0; i < integrableObjects.size(); i++){
335    ndf_local += 3;
336    if (integrableObjects[i]->isDirectional()) {
337      if (integrableObjects[i]->isLinear())
338        ndf_local += 2;
339      else
340        ndf_local += 3;
341    }
291    }
292  
293 <  // n_constraints is local, so subtract them on each processor:
345 <
346 <  ndf_local -= n_constraints;
347 <
293 >  int SimInfo::getFdf() {
294   #ifdef IS_MPI
295 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
295 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
296   #else
297 <  ndf = ndf_local;
297 >    fdf_ = fdf_local;
298   #endif
299 +    return fdf_;
300 +  }
301 +    
302 +  void SimInfo::calcNdfRaw() {
303 +    int ndfRaw_local;
304  
305 <  // nZconstraints is global, as are the 3 COM translations for the
306 <  // entire system:
305 >    MoleculeIterator i;
306 >    std::vector<StuntDouble*>::iterator j;
307 >    Molecule* mol;
308 >    StuntDouble* integrableObject;
309  
310 <  ndf = ndf - 3 - nZconstraints;
310 >    // Raw degrees of freedom that we have to set
311 >    ndfRaw_local = 0;
312 >    
313 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
314 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
315 >           integrableObject = mol->nextIntegrableObject(j)) {
316  
317 <  return ndf;
360 < }
317 >        ndfRaw_local += 3;
318  
319 < int SimInfo::getNDFraw() {
320 <  int ndfRaw_local;
321 <
322 <  // Raw degrees of freedom that we have to set
323 <  ndfRaw_local = 0;
324 <
325 <  for(int i = 0; i < integrableObjects.size(); i++){
326 <    ndfRaw_local += 3;
327 <    if (integrableObjects[i]->isDirectional()) {
371 <       if (integrableObjects[i]->isLinear())
372 <        ndfRaw_local += 2;
373 <      else
374 <        ndfRaw_local += 3;
319 >        if (integrableObject->isDirectional()) {
320 >          if (integrableObject->isLinear()) {
321 >            ndfRaw_local += 2;
322 >          } else {
323 >            ndfRaw_local += 3;
324 >          }
325 >        }
326 >            
327 >      }
328      }
376  }
329      
330   #ifdef IS_MPI
331 <  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
331 >    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
332   #else
333 <  ndfRaw = ndfRaw_local;
333 >    ndfRaw_ = ndfRaw_local;
334   #endif
335 +  }
336  
337 <  return ndfRaw;
338 < }
337 >  void SimInfo::calcNdfTrans() {
338 >    int ndfTrans_local;
339  
340 < int SimInfo::getNDFtranslational() {
388 <  int ndfTrans_local;
340 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
341  
390  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
342  
392
343   #ifdef IS_MPI
344 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
344 >    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
345   #else
346 <  ndfTrans = ndfTrans_local;
346 >    ndfTrans_ = ndfTrans_local;
347   #endif
348  
349 <  ndfTrans = ndfTrans - 3 - nZconstraints;
349 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
350 >
351 >  }
352  
353 <  return ndfTrans;
354 < }
353 >  void SimInfo::addExcludePairs(Molecule* mol) {
354 >    std::vector<Bond*>::iterator bondIter;
355 >    std::vector<Bend*>::iterator bendIter;
356 >    std::vector<Torsion*>::iterator torsionIter;
357 >    Bond* bond;
358 >    Bend* bend;
359 >    Torsion* torsion;
360 >    int a;
361 >    int b;
362 >    int c;
363 >    int d;
364  
365 < int SimInfo::getTotIntegrableObjects() {
405 <  int nObjs_local;
406 <  int nObjs;
365 >    std::map<int, std::set<int> > atomGroups;
366  
367 <  nObjs_local =  integrableObjects.size();
367 >    Molecule::RigidBodyIterator rbIter;
368 >    RigidBody* rb;
369 >    Molecule::IntegrableObjectIterator ii;
370 >    StuntDouble* integrableObject;
371 >    
372 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
373 >           integrableObject = mol->nextIntegrableObject(ii)) {
374  
375 +      if (integrableObject->isRigidBody()) {
376 +          rb = static_cast<RigidBody*>(integrableObject);
377 +          std::vector<Atom*> atoms = rb->getAtoms();
378 +          std::set<int> rigidAtoms;
379 +          for (int i = 0; i < atoms.size(); ++i) {
380 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
381 +          }
382 +          for (int i = 0; i < atoms.size(); ++i) {
383 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
384 +          }      
385 +      } else {
386 +        std::set<int> oneAtomSet;
387 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
388 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
389 +      }
390 +    }  
391  
392 < #ifdef IS_MPI
393 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
394 < #else
395 <  nObjs = nObjs_local;
396 < #endif
392 >    
393 >    
394 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
395 >      a = bond->getAtomA()->getGlobalIndex();
396 >      b = bond->getAtomB()->getGlobalIndex();        
397 >      exclude_.addPair(a, b);
398 >    }
399  
400 +    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
401 +      a = bend->getAtomA()->getGlobalIndex();
402 +      b = bend->getAtomB()->getGlobalIndex();        
403 +      c = bend->getAtomC()->getGlobalIndex();
404 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
405 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
406 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
407  
408 <  return nObjs;
409 < }
408 >      exclude_.addPairs(rigidSetA, rigidSetB);
409 >      exclude_.addPairs(rigidSetA, rigidSetC);
410 >      exclude_.addPairs(rigidSetB, rigidSetC);
411 >      
412 >      //exclude_.addPair(a, b);
413 >      //exclude_.addPair(a, c);
414 >      //exclude_.addPair(b, c);        
415 >    }
416  
417 < void SimInfo::refreshSim(){
417 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
418 >      a = torsion->getAtomA()->getGlobalIndex();
419 >      b = torsion->getAtomB()->getGlobalIndex();        
420 >      c = torsion->getAtomC()->getGlobalIndex();        
421 >      d = torsion->getAtomD()->getGlobalIndex();        
422 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
423 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
424 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
425 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
426  
427 <  simtype fInfo;
428 <  int isError;
429 <  int n_global;
430 <  int* excl;
427 >      exclude_.addPairs(rigidSetA, rigidSetB);
428 >      exclude_.addPairs(rigidSetA, rigidSetC);
429 >      exclude_.addPairs(rigidSetA, rigidSetD);
430 >      exclude_.addPairs(rigidSetB, rigidSetC);
431 >      exclude_.addPairs(rigidSetB, rigidSetD);
432 >      exclude_.addPairs(rigidSetC, rigidSetD);
433  
434 <  fInfo.dielect = 0.0;
434 >      /*
435 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
436 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
437 >      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
438 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
439 >      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
440 >      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
441 >        
442 >      
443 >      exclude_.addPair(a, b);
444 >      exclude_.addPair(a, c);
445 >      exclude_.addPair(a, d);
446 >      exclude_.addPair(b, c);
447 >      exclude_.addPair(b, d);
448 >      exclude_.addPair(c, d);        
449 >      */
450 >    }
451  
452 <  if( useDipoles ){
453 <    if( useReactionField )fInfo.dielect = dielectric;
454 <  }
452 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
453 >      std::vector<Atom*> atoms = rb->getAtoms();
454 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
455 >        for (int j = i + 1; j < atoms.size(); ++j) {
456 >          a = atoms[i]->getGlobalIndex();
457 >          b = atoms[j]->getGlobalIndex();
458 >          exclude_.addPair(a, b);
459 >        }
460 >      }
461 >    }        
462 >
463 >  }
464 >
465 >  void SimInfo::removeExcludePairs(Molecule* mol) {
466 >    std::vector<Bond*>::iterator bondIter;
467 >    std::vector<Bend*>::iterator bendIter;
468 >    std::vector<Torsion*>::iterator torsionIter;
469 >    Bond* bond;
470 >    Bend* bend;
471 >    Torsion* torsion;
472 >    int a;
473 >    int b;
474 >    int c;
475 >    int d;
476 >
477 >    std::map<int, std::set<int> > atomGroups;
478 >
479 >    Molecule::RigidBodyIterator rbIter;
480 >    RigidBody* rb;
481 >    Molecule::IntegrableObjectIterator ii;
482 >    StuntDouble* integrableObject;
483 >    
484 >    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
485 >           integrableObject = mol->nextIntegrableObject(ii)) {
486 >
487 >      if (integrableObject->isRigidBody()) {
488 >          rb = static_cast<RigidBody*>(integrableObject);
489 >          std::vector<Atom*> atoms = rb->getAtoms();
490 >          std::set<int> rigidAtoms;
491 >          for (int i = 0; i < atoms.size(); ++i) {
492 >            rigidAtoms.insert(atoms[i]->getGlobalIndex());
493 >          }
494 >          for (int i = 0; i < atoms.size(); ++i) {
495 >            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
496 >          }      
497 >      } else {
498 >        std::set<int> oneAtomSet;
499 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
500 >        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
501 >      }
502 >    }  
503 >
504 >    
505 >    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
506 >      a = bond->getAtomA()->getGlobalIndex();
507 >      b = bond->getAtomB()->getGlobalIndex();        
508 >      exclude_.removePair(a, b);
509 >    }
510 >
511 >    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
512 >      a = bend->getAtomA()->getGlobalIndex();
513 >      b = bend->getAtomB()->getGlobalIndex();        
514 >      c = bend->getAtomC()->getGlobalIndex();
515 >
516 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
517 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
518 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
519 >
520 >      exclude_.removePairs(rigidSetA, rigidSetB);
521 >      exclude_.removePairs(rigidSetA, rigidSetC);
522 >      exclude_.removePairs(rigidSetB, rigidSetC);
523 >      
524 >      //exclude_.removePair(a, b);
525 >      //exclude_.removePair(a, c);
526 >      //exclude_.removePair(b, c);        
527 >    }
528 >
529 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
530 >      a = torsion->getAtomA()->getGlobalIndex();
531 >      b = torsion->getAtomB()->getGlobalIndex();        
532 >      c = torsion->getAtomC()->getGlobalIndex();        
533 >      d = torsion->getAtomD()->getGlobalIndex();        
534 >
535 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
536 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
537 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
538 >      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
539 >
540 >      exclude_.removePairs(rigidSetA, rigidSetB);
541 >      exclude_.removePairs(rigidSetA, rigidSetC);
542 >      exclude_.removePairs(rigidSetA, rigidSetD);
543 >      exclude_.removePairs(rigidSetB, rigidSetC);
544 >      exclude_.removePairs(rigidSetB, rigidSetD);
545 >      exclude_.removePairs(rigidSetC, rigidSetD);
546 >
547 >      /*
548 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
549 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
550 >      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
551 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
552 >      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
553 >      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
554 >
555 >      
556 >      exclude_.removePair(a, b);
557 >      exclude_.removePair(a, c);
558 >      exclude_.removePair(a, d);
559 >      exclude_.removePair(b, c);
560 >      exclude_.removePair(b, d);
561 >      exclude_.removePair(c, d);        
562 >      */
563 >    }
564 >
565 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
566 >      std::vector<Atom*> atoms = rb->getAtoms();
567 >      for (int i = 0; i < atoms.size() -1 ; ++i) {
568 >        for (int j = i + 1; j < atoms.size(); ++j) {
569 >          a = atoms[i]->getGlobalIndex();
570 >          b = atoms[j]->getGlobalIndex();
571 >          exclude_.removePair(a, b);
572 >        }
573 >      }
574 >    }        
575 >
576 >  }
577 >
578 >
579 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
580 >    int curStampId;
581 >
582 >    //index from 0
583 >    curStampId = moleculeStamps_.size();
584 >
585 >    moleculeStamps_.push_back(molStamp);
586 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
587 >  }
588 >
589 >  void SimInfo::update() {
590 >
591 >    setupSimType();
592 >
593 > #ifdef IS_MPI
594 >    setupFortranParallel();
595 > #endif
596 >
597 >    setupFortranSim();
598 >
599 >    //setup fortran force field
600 >    /** @deprecate */    
601 >    int isError = 0;
602 >    
603 >    setupCutoff();
604 >    
605 >    setupElectrostaticSummationMethod( isError );
606 >    setupSwitchingFunction();
607 >    setupAccumulateBoxDipole();
608 >
609 >    if(isError){
610 >      sprintf( painCave.errMsg,
611 >               "ForceField error: There was an error initializing the forceField in fortran.\n" );
612 >      painCave.isFatal = 1;
613 >      simError();
614 >    }
615 >
616 >    calcNdf();
617 >    calcNdfRaw();
618 >    calcNdfTrans();
619 >
620 >    fortranInitialized_ = true;
621 >  }
622 >
623 >  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
624 >    SimInfo::MoleculeIterator mi;
625 >    Molecule* mol;
626 >    Molecule::AtomIterator ai;
627 >    Atom* atom;
628 >    std::set<AtomType*> atomTypes;
629 >
630 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
631 >
632 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
633 >        atomTypes.insert(atom->getAtomType());
634 >      }
635 >        
636 >    }
637 >
638 >    return atomTypes;        
639 >  }
640 >
641 >  void SimInfo::setupSimType() {
642 >    std::set<AtomType*>::iterator i;
643 >    std::set<AtomType*> atomTypes;
644 >    atomTypes = getUniqueAtomTypes();
645 >    
646 >    int useLennardJones = 0;
647 >    int useElectrostatic = 0;
648 >    int useEAM = 0;
649 >    int useSC = 0;
650 >    int useCharge = 0;
651 >    int useDirectional = 0;
652 >    int useDipole = 0;
653 >    int useGayBerne = 0;
654 >    int useSticky = 0;
655 >    int useStickyPower = 0;
656 >    int useShape = 0;
657 >    int useFLARB = 0; //it is not in AtomType yet
658 >    int useDirectionalAtom = 0;    
659 >    int useElectrostatics = 0;
660 >    //usePBC and useRF are from simParams
661 >    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
662 >    int useRF;
663 >    int useSF;
664 >    int useSP;
665 >    int useBoxDipole;
666 >
667 >    std::string myMethod;
668 >
669 >    // set the useRF logical
670 >    useRF = 0;
671 >    useSF = 0;
672 >    useSP = 0;
673 >
674 >
675 >    if (simParams_->haveElectrostaticSummationMethod()) {
676 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
677 >      toUpper(myMethod);
678 >      if (myMethod == "REACTION_FIELD"){
679 >        useRF = 1;
680 >      } else if (myMethod == "SHIFTED_FORCE"){
681 >        useSF = 1;
682 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
683 >        useSP = 1;
684 >      }
685 >    }
686 >    
687 >    if (simParams_->haveAccumulateBoxDipole())
688 >      if (simParams_->getAccumulateBoxDipole())
689 >        useBoxDipole = 1;
690 >
691 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
692 >
693 >    //loop over all of the atom types
694 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
695 >      useLennardJones |= (*i)->isLennardJones();
696 >      useElectrostatic |= (*i)->isElectrostatic();
697 >      useEAM |= (*i)->isEAM();
698 >      useSC |= (*i)->isSC();
699 >      useCharge |= (*i)->isCharge();
700 >      useDirectional |= (*i)->isDirectional();
701 >      useDipole |= (*i)->isDipole();
702 >      useGayBerne |= (*i)->isGayBerne();
703 >      useSticky |= (*i)->isSticky();
704 >      useStickyPower |= (*i)->isStickyPower();
705 >      useShape |= (*i)->isShape();
706 >    }
707 >
708 >    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
709 >      useDirectionalAtom = 1;
710 >    }
711 >
712 >    if (useCharge || useDipole) {
713 >      useElectrostatics = 1;
714 >    }
715 >
716 > #ifdef IS_MPI    
717 >    int temp;
718 >
719 >    temp = usePBC;
720 >    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
721 >
722 >    temp = useDirectionalAtom;
723 >    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
724 >
725 >    temp = useLennardJones;
726 >    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
727 >
728 >    temp = useElectrostatics;
729 >    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
730 >
731 >    temp = useCharge;
732 >    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
733 >
734 >    temp = useDipole;
735 >    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
736 >
737 >    temp = useSticky;
738 >    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
739 >
740 >    temp = useStickyPower;
741 >    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
742 >    
743 >    temp = useGayBerne;
744 >    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745 >
746 >    temp = useEAM;
747 >    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
748 >
749 >    temp = useSC;
750 >    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
751 >    
752 >    temp = useShape;
753 >    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
754 >
755 >    temp = useFLARB;
756 >    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757 >
758 >    temp = useRF;
759 >    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
760  
761 <  fInfo.SIM_uses_PBC = usePBC;
762 <  //fInfo.SIM_uses_LJ = 0;
436 <  fInfo.SIM_uses_LJ = useLJ;
437 <  fInfo.SIM_uses_sticky = useSticky;
438 <  //fInfo.SIM_uses_sticky = 0;
439 <  fInfo.SIM_uses_charges = useCharges;
440 <  fInfo.SIM_uses_dipoles = useDipoles;
441 <  //fInfo.SIM_uses_dipoles = 0;
442 <  fInfo.SIM_uses_RF = useReactionField;
443 <  //fInfo.SIM_uses_RF = 0;
444 <  fInfo.SIM_uses_GB = useGB;
445 <  fInfo.SIM_uses_EAM = useEAM;
761 >    temp = useSF;
762 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
763  
764 <  n_exclude = excludes->getSize();
765 <  excl = excludes->getFortranArray();
766 <  
767 < #ifdef IS_MPI
768 <  n_global = mpiSim->getNAtomsGlobal();
769 < #else
770 <  n_global = n_atoms;
764 >    temp = useSP;
765 >    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 >
767 >    temp = useBoxDipole;
768 >    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
769 >
770 >    temp = useAtomicVirial_;
771 >    MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
772 >
773   #endif
455  
456  isError = 0;
457  
458  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459  //it may not be a good idea to pass the address of first element in vector
460  //since c++ standard does not require vector to be stored continuously in meomory
461  //Most of the compilers will organize the memory of vector continuously
462  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
774  
775 <  if( isError ){
776 <    
777 <    sprintf( painCave.errMsg,
778 <             "There was an error setting the simulation information in fortran.\n" );
779 <    painCave.isFatal = 1;
780 <    painCave.severity = OOPSE_ERROR;
781 <    simError();
775 >    fInfo_.SIM_uses_PBC = usePBC;    
776 >    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
777 >    fInfo_.SIM_uses_LennardJones = useLennardJones;
778 >    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
779 >    fInfo_.SIM_uses_Charges = useCharge;
780 >    fInfo_.SIM_uses_Dipoles = useDipole;
781 >    fInfo_.SIM_uses_Sticky = useSticky;
782 >    fInfo_.SIM_uses_StickyPower = useStickyPower;
783 >    fInfo_.SIM_uses_GayBerne = useGayBerne;
784 >    fInfo_.SIM_uses_EAM = useEAM;
785 >    fInfo_.SIM_uses_SC = useSC;
786 >    fInfo_.SIM_uses_Shapes = useShape;
787 >    fInfo_.SIM_uses_FLARB = useFLARB;
788 >    fInfo_.SIM_uses_RF = useRF;
789 >    fInfo_.SIM_uses_SF = useSF;
790 >    fInfo_.SIM_uses_SP = useSP;
791 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
792 >    fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
793    }
474  
475 #ifdef IS_MPI
476  sprintf( checkPointMsg,
477           "succesfully sent the simulation information to fortran.\n");
478  MPIcheckPoint();
479 #endif // is_mpi
480  
481  this->ndf = this->getNDF();
482  this->ndfRaw = this->getNDFraw();
483  this->ndfTrans = this->getNDFtranslational();
484 }
794  
795 < void SimInfo::setDefaultRcut( double theRcut ){
796 <  
797 <  haveRcut = 1;
798 <  rCut = theRcut;
799 <  rList = rCut + 1.0;
800 <  
801 <  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 < }
795 >  void SimInfo::setupFortranSim() {
796 >    int isError;
797 >    int nExclude;
798 >    std::vector<int> fortranGlobalGroupMembership;
799 >    
800 >    nExclude = exclude_.getSize();
801 >    isError = 0;
802  
803 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
803 >    //globalGroupMembership_ is filled by SimCreator    
804 >    for (int i = 0; i < nGlobalAtoms_; i++) {
805 >      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
806 >    }
807  
808 <  rSw = theRsw;
809 <  setDefaultRcut( theRcut );
810 < }
808 >    //calculate mass ratio of cutoff group
809 >    std::vector<RealType> mfact;
810 >    SimInfo::MoleculeIterator mi;
811 >    Molecule* mol;
812 >    Molecule::CutoffGroupIterator ci;
813 >    CutoffGroup* cg;
814 >    Molecule::AtomIterator ai;
815 >    Atom* atom;
816 >    RealType totalMass;
817  
818 +    //to avoid memory reallocation, reserve enough space for mfact
819 +    mfact.reserve(getNCutoffGroups());
820 +    
821 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
822 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
823  
824 < void SimInfo::checkCutOffs( void ){
825 <  
826 <  if( boxIsInit ){
824 >        totalMass = cg->getMass();
825 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
826 >          // Check for massless groups - set mfact to 1 if true
827 >          if (totalMass != 0)
828 >            mfact.push_back(atom->getMass()/totalMass);
829 >          else
830 >            mfact.push_back( 1.0 );
831 >        }
832 >
833 >      }      
834 >    }
835 >
836 >    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
837 >    std::vector<int> identArray;
838 >
839 >    //to avoid memory reallocation, reserve enough space identArray
840 >    identArray.reserve(getNAtoms());
841      
842 <    //we need to check cutOffs against the box
842 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
843 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
844 >        identArray.push_back(atom->getIdent());
845 >      }
846 >    }    
847 >
848 >    //fill molMembershipArray
849 >    //molMembershipArray is filled by SimCreator    
850 >    std::vector<int> molMembershipArray(nGlobalAtoms_);
851 >    for (int i = 0; i < nGlobalAtoms_; i++) {
852 >      molMembershipArray[i] = globalMolMembership_[i] + 1;
853 >    }
854      
855 <    if( rCut > maxCutoff ){
855 >    //setup fortran simulation
856 >    int nGlobalExcludes = 0;
857 >    int* globalExcludes = NULL;
858 >    int* excludeList = exclude_.getExcludeList();
859 >    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
860 >                   &nExclude, excludeList , &nGlobalExcludes, globalExcludes,
861 >                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
862 >                   &fortranGlobalGroupMembership[0], &isError);
863 >    
864 >    if( isError ){
865 >      
866        sprintf( painCave.errMsg,
867 <               "cutoffRadius is too large for the current periodic box.\n"
511 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 <               "\tThis is larger than half of at least one of the\n"
513 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 <               "\n"
515 <               "\t[ %G %G %G ]\n"
516 <               "\t[ %G %G %G ]\n"
517 <               "\t[ %G %G %G ]\n",
518 <               rCut, currentTime,
519 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 <      painCave.severity = OOPSE_ERROR;
867 >               "There was an error setting the simulation information in fortran.\n" );
868        painCave.isFatal = 1;
869 +      painCave.severity = OOPSE_ERROR;
870        simError();
871 <    }    
872 <  } else {
873 <    // initialize this stuff before using it, OK?
874 <    sprintf( painCave.errMsg,
875 <             "Trying to check cutoffs without a box.\n"
876 <             "\tOOPSE should have better programmers than that.\n" );
877 <    painCave.severity = OOPSE_ERROR;
878 <    painCave.isFatal = 1;
879 <    simError();      
871 >    }
872 >    
873 >    
874 >    sprintf( checkPointMsg,
875 >             "succesfully sent the simulation information to fortran.\n");
876 >    
877 >    errorCheckPoint();
878 >    
879 >    // Setup number of neighbors in neighbor list if present
880 >    if (simParams_->haveNeighborListNeighbors()) {
881 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
882 >      setNeighbors(&nlistNeighbors);
883 >    }
884 >  
885 >
886    }
535  
536 }
887  
538 void SimInfo::addProperty(GenericData* prop){
888  
889 <  map<string, GenericData*>::iterator result;
890 <  result = properties.find(prop->getID());
891 <  
892 <  //we can't simply use  properties[prop->getID()] = prop,
893 <  //it will cause memory leak if we already contain a propery which has the same name of prop
894 <  
895 <  if(result != properties.end()){
896 <    
897 <    delete (*result).second;
898 <    (*result).second = prop;
899 <      
900 <  }
901 <  else{
889 >  void SimInfo::setupFortranParallel() {
890 > #ifdef IS_MPI    
891 >    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
892 >    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
893 >    std::vector<int> localToGlobalCutoffGroupIndex;
894 >    SimInfo::MoleculeIterator mi;
895 >    Molecule::AtomIterator ai;
896 >    Molecule::CutoffGroupIterator ci;
897 >    Molecule* mol;
898 >    Atom* atom;
899 >    CutoffGroup* cg;
900 >    mpiSimData parallelData;
901 >    int isError;
902  
903 <    properties[prop->getID()] = prop;
903 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
904  
905 +      //local index(index in DataStorge) of atom is important
906 +      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
907 +        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
908 +      }
909 +
910 +      //local index of cutoff group is trivial, it only depends on the order of travesing
911 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
912 +        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
913 +      }        
914 +        
915 +    }
916 +
917 +    //fill up mpiSimData struct
918 +    parallelData.nMolGlobal = getNGlobalMolecules();
919 +    parallelData.nMolLocal = getNMolecules();
920 +    parallelData.nAtomsGlobal = getNGlobalAtoms();
921 +    parallelData.nAtomsLocal = getNAtoms();
922 +    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
923 +    parallelData.nGroupsLocal = getNCutoffGroups();
924 +    parallelData.myNode = worldRank;
925 +    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
926 +
927 +    //pass mpiSimData struct and index arrays to fortran
928 +    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
929 +                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
930 +                    &localToGlobalCutoffGroupIndex[0], &isError);
931 +
932 +    if (isError) {
933 +      sprintf(painCave.errMsg,
934 +              "mpiRefresh errror: fortran didn't like something we gave it.\n");
935 +      painCave.isFatal = 1;
936 +      simError();
937 +    }
938 +
939 +    sprintf(checkPointMsg, " mpiRefresh successful.\n");
940 +    errorCheckPoint();
941 +
942 + #endif
943    }
944 +
945 +  void SimInfo::setupCutoff() {          
946      
947 < }
947 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
948  
949 < GenericData* SimInfo::getProperty(const string& propName){
950 <
562 <  map<string, GenericData*>::iterator result;
563 <  
564 <  //string lowerCaseName = ();
565 <  
566 <  result = properties.find(propName);
567 <  
568 <  if(result != properties.end())
569 <    return (*result).second;  
570 <  else  
571 <    return NULL;  
572 < }
949 >    // Check the cutoff policy
950 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
951  
952 +    // Set LJ shifting bools to false
953 +    ljsp_ = false;
954 +    ljsf_ = false;
955  
956 < void SimInfo::getFortranGroupArrays(SimInfo* info,
957 <                                    vector<int>& FglobalGroupMembership,
958 <                                    vector<double>& mfact){
959 <  
960 <  Molecule* myMols;
961 <  Atom** myAtoms;
581 <  int numAtom;
582 <  double mtot;
583 <  int numMol;
584 <  int numCutoffGroups;
585 <  CutoffGroup* myCutoffGroup;
586 <  vector<CutoffGroup*>::iterator iterCutoff;
587 <  Atom* cutoffAtom;
588 <  vector<Atom*>::iterator iterAtom;
589 <  int atomIndex;
590 <  double totalMass;
591 <  
592 <  mfact.clear();
593 <  FglobalGroupMembership.clear();
594 <  
956 >    std::string myPolicy;
957 >    if (forceFieldOptions_.haveCutoffPolicy()){
958 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
959 >    }else if (simParams_->haveCutoffPolicy()) {
960 >      myPolicy = simParams_->getCutoffPolicy();
961 >    }
962  
963 <  // Fix the silly fortran indexing problem
964 < #ifdef IS_MPI
965 <  numAtom = mpiSim->getNAtomsGlobal();
966 < #else
967 <  numAtom = n_atoms;
968 < #endif
969 <  for (int i = 0; i < numAtom; i++)
970 <    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
971 <  
963 >    if (!myPolicy.empty()){
964 >      toUpper(myPolicy);
965 >      if (myPolicy == "MIX") {
966 >        cp = MIX_CUTOFF_POLICY;
967 >      } else {
968 >        if (myPolicy == "MAX") {
969 >          cp = MAX_CUTOFF_POLICY;
970 >        } else {
971 >          if (myPolicy == "TRADITIONAL") {            
972 >            cp = TRADITIONAL_CUTOFF_POLICY;
973 >          } else {
974 >            // throw error        
975 >            sprintf( painCave.errMsg,
976 >                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
977 >            painCave.isFatal = 1;
978 >            simError();
979 >          }    
980 >        }          
981 >      }
982 >    }          
983 >    notifyFortranCutoffPolicy(&cp);
984  
985 <  myMols = info->molecules;
986 <  numMol = info->n_mol;
987 <  for(int i  = 0; i < numMol; i++){
988 <    numCutoffGroups = myMols[i].getNCutoffGroups();
989 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
990 <        myCutoffGroup != NULL;
991 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
985 >    // Check the Skin Thickness for neighborlists
986 >    RealType skin;
987 >    if (simParams_->haveSkinThickness()) {
988 >      skin = simParams_->getSkinThickness();
989 >      notifyFortranSkinThickness(&skin);
990 >    }            
991 >        
992 >    // Check if the cutoff was set explicitly:
993 >    if (simParams_->haveCutoffRadius()) {
994 >      rcut_ = simParams_->getCutoffRadius();
995 >      if (simParams_->haveSwitchingRadius()) {
996 >        rsw_  = simParams_->getSwitchingRadius();
997 >      } else {
998 >        if (fInfo_.SIM_uses_Charges |
999 >            fInfo_.SIM_uses_Dipoles |
1000 >            fInfo_.SIM_uses_RF) {
1001 >          
1002 >          rsw_ = 0.85 * rcut_;
1003 >          sprintf(painCave.errMsg,
1004 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1005 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1006 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1007 >        painCave.isFatal = 0;
1008 >        simError();
1009 >        } else {
1010 >          rsw_ = rcut_;
1011 >          sprintf(painCave.errMsg,
1012 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
1013 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
1014 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
1015 >          painCave.isFatal = 0;
1016 >          simError();
1017 >        }
1018 >      }
1019  
1020 <      totalMass = myCutoffGroup->getMass();
1020 >      if (simParams_->haveElectrostaticSummationMethod()) {
1021 >        std::string myMethod = simParams_->getElectrostaticSummationMethod();
1022 >        toUpper(myMethod);
1023 >        
1024 >        if (myMethod == "SHIFTED_POTENTIAL") {
1025 >          ljsp_ = true;
1026 >        } else if (myMethod == "SHIFTED_FORCE") {
1027 >          ljsf_ = true;
1028 >        }
1029 >      }
1030 >      notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1031        
1032 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1033 <          cutoffAtom != NULL;
1034 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1035 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1036 <      }  
1032 >    } else {
1033 >      
1034 >      // For electrostatic atoms, we'll assume a large safe value:
1035 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1036 >        sprintf(painCave.errMsg,
1037 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1038 >                "\tOOPSE will use a default value of 15.0 angstroms"
1039 >                "\tfor the cutoffRadius.\n");
1040 >        painCave.isFatal = 0;
1041 >        simError();
1042 >        rcut_ = 15.0;
1043 >      
1044 >        if (simParams_->haveElectrostaticSummationMethod()) {
1045 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1046 >          toUpper(myMethod);
1047 >      
1048 >      // For the time being, we're tethering the LJ shifted behavior to the
1049 >      // electrostaticSummationMethod keyword options
1050 >          if (myMethod == "SHIFTED_POTENTIAL") {
1051 >            ljsp_ = true;
1052 >          } else if (myMethod == "SHIFTED_FORCE") {
1053 >            ljsf_ = true;
1054 >          }
1055 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1056 >            if (simParams_->haveSwitchingRadius()){
1057 >              sprintf(painCave.errMsg,
1058 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1059 >                      "\teven though the electrostaticSummationMethod was\n"
1060 >                      "\tset to %s\n", myMethod.c_str());
1061 >              painCave.isFatal = 1;
1062 >              simError();            
1063 >            }
1064 >          }
1065 >        }
1066 >      
1067 >        if (simParams_->haveSwitchingRadius()){
1068 >          rsw_ = simParams_->getSwitchingRadius();
1069 >        } else {        
1070 >          sprintf(painCave.errMsg,
1071 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1072 >                  "\tOOPSE will use a default value of\n"
1073 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1074 >          painCave.isFatal = 0;
1075 >          simError();
1076 >          rsw_ = 0.85 * rcut_;
1077 >        }
1078 >
1079 >        notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_);
1080 >
1081 >      } else {
1082 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1083 >        // We'll punt and let fortran figure out the cutoffs later.
1084 >        
1085 >        notifyFortranYouAreOnYourOwn();
1086 >
1087 >      }
1088      }
1089    }
1090  
1091 < }
1091 >  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1092 >    
1093 >    int errorOut;
1094 >    int esm =  NONE;
1095 >    int sm = UNDAMPED;
1096 >    RealType alphaVal;
1097 >    RealType dielectric;
1098 >    
1099 >    errorOut = isError;
1100 >
1101 >    if (simParams_->haveElectrostaticSummationMethod()) {
1102 >      std::string myMethod = simParams_->getElectrostaticSummationMethod();
1103 >      toUpper(myMethod);
1104 >      if (myMethod == "NONE") {
1105 >        esm = NONE;
1106 >      } else {
1107 >        if (myMethod == "SWITCHING_FUNCTION") {
1108 >          esm = SWITCHING_FUNCTION;
1109 >        } else {
1110 >          if (myMethod == "SHIFTED_POTENTIAL") {
1111 >            esm = SHIFTED_POTENTIAL;
1112 >          } else {
1113 >            if (myMethod == "SHIFTED_FORCE") {            
1114 >              esm = SHIFTED_FORCE;
1115 >            } else {
1116 >              if (myMethod == "REACTION_FIELD") {
1117 >                esm = REACTION_FIELD;
1118 >                dielectric = simParams_->getDielectric();
1119 >                if (!simParams_->haveDielectric()) {
1120 >                  // throw warning
1121 >                  sprintf( painCave.errMsg,
1122 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1123 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1124 >                  painCave.isFatal = 0;
1125 >                  simError();
1126 >                }
1127 >              } else {
1128 >                // throw error        
1129 >                sprintf( painCave.errMsg,
1130 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1131 >                         "\t(Input file specified %s .)\n"
1132 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1133 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1134 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1135 >                painCave.isFatal = 1;
1136 >                simError();
1137 >              }    
1138 >            }          
1139 >          }
1140 >        }
1141 >      }
1142 >    }
1143 >    
1144 >    if (simParams_->haveElectrostaticScreeningMethod()) {
1145 >      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1146 >      toUpper(myScreen);
1147 >      if (myScreen == "UNDAMPED") {
1148 >        sm = UNDAMPED;
1149 >      } else {
1150 >        if (myScreen == "DAMPED") {
1151 >          sm = DAMPED;
1152 >          if (!simParams_->haveDampingAlpha()) {
1153 >            // first set a cutoff dependent alpha value
1154 >            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1155 >            alphaVal = 0.5125 - rcut_* 0.025;
1156 >            // for values rcut > 20.5, alpha is zero
1157 >            if (alphaVal < 0) alphaVal = 0;
1158 >
1159 >            // throw warning
1160 >            sprintf( painCave.errMsg,
1161 >                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1162 >                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1163 >            painCave.isFatal = 0;
1164 >            simError();
1165 >          } else {
1166 >            alphaVal = simParams_->getDampingAlpha();
1167 >          }
1168 >          
1169 >        } else {
1170 >          // throw error        
1171 >          sprintf( painCave.errMsg,
1172 >                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1173 >                   "\t(Input file specified %s .)\n"
1174 >                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1175 >                   "or \"damped\".\n", myScreen.c_str() );
1176 >          painCave.isFatal = 1;
1177 >          simError();
1178 >        }
1179 >      }
1180 >    }
1181 >    
1182 >    // let's pass some summation method variables to fortran
1183 >    setElectrostaticSummationMethod( &esm );
1184 >    setFortranElectrostaticMethod( &esm );
1185 >    setScreeningMethod( &sm );
1186 >    setDampingAlpha( &alphaVal );
1187 >    setReactionFieldDielectric( &dielectric );
1188 >    initFortranFF( &errorOut );
1189 >  }
1190 >
1191 >  void SimInfo::setupSwitchingFunction() {    
1192 >    int ft = CUBIC;
1193 >
1194 >    if (simParams_->haveSwitchingFunctionType()) {
1195 >      std::string funcType = simParams_->getSwitchingFunctionType();
1196 >      toUpper(funcType);
1197 >      if (funcType == "CUBIC") {
1198 >        ft = CUBIC;
1199 >      } else {
1200 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1201 >          ft = FIFTH_ORDER_POLY;
1202 >        } else {
1203 >          // throw error        
1204 >          sprintf( painCave.errMsg,
1205 >                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1206 >          painCave.isFatal = 1;
1207 >          simError();
1208 >        }          
1209 >      }
1210 >    }
1211 >
1212 >    // send switching function notification to switcheroo
1213 >    setFunctionType(&ft);
1214 >
1215 >  }
1216 >
1217 >  void SimInfo::setupAccumulateBoxDipole() {    
1218 >
1219 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1220 >    if ( simParams_->haveAccumulateBoxDipole() )
1221 >      if ( simParams_->getAccumulateBoxDipole() ) {
1222 >        setAccumulateBoxDipole();
1223 >        calcBoxDipole_ = true;
1224 >      }
1225 >
1226 >  }
1227 >
1228 >  void SimInfo::addProperty(GenericData* genData) {
1229 >    properties_.addProperty(genData);  
1230 >  }
1231 >
1232 >  void SimInfo::removeProperty(const std::string& propName) {
1233 >    properties_.removeProperty(propName);  
1234 >  }
1235 >
1236 >  void SimInfo::clearProperties() {
1237 >    properties_.clearProperties();
1238 >  }
1239 >
1240 >  std::vector<std::string> SimInfo::getPropertyNames() {
1241 >    return properties_.getPropertyNames();  
1242 >  }
1243 >      
1244 >  std::vector<GenericData*> SimInfo::getProperties() {
1245 >    return properties_.getProperties();
1246 >  }
1247 >
1248 >  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1249 >    return properties_.getPropertyByName(propName);
1250 >  }
1251 >
1252 >  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1253 >    if (sman_ == sman) {
1254 >      return;
1255 >    }    
1256 >    delete sman_;
1257 >    sman_ = sman;
1258 >
1259 >    Molecule* mol;
1260 >    RigidBody* rb;
1261 >    Atom* atom;
1262 >    SimInfo::MoleculeIterator mi;
1263 >    Molecule::RigidBodyIterator rbIter;
1264 >    Molecule::AtomIterator atomIter;;
1265 >
1266 >    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1267 >        
1268 >      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1269 >        atom->setSnapshotManager(sman_);
1270 >      }
1271 >        
1272 >      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1273 >        rb->setSnapshotManager(sman_);
1274 >      }
1275 >    }    
1276 >    
1277 >  }
1278 >
1279 >  Vector3d SimInfo::getComVel(){
1280 >    SimInfo::MoleculeIterator i;
1281 >    Molecule* mol;
1282 >
1283 >    Vector3d comVel(0.0);
1284 >    RealType totalMass = 0.0;
1285 >    
1286 >
1287 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1288 >      RealType mass = mol->getMass();
1289 >      totalMass += mass;
1290 >      comVel += mass * mol->getComVel();
1291 >    }  
1292 >
1293 > #ifdef IS_MPI
1294 >    RealType tmpMass = totalMass;
1295 >    Vector3d tmpComVel(comVel);    
1296 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1297 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1298 > #endif
1299 >
1300 >    comVel /= totalMass;
1301 >
1302 >    return comVel;
1303 >  }
1304 >
1305 >  Vector3d SimInfo::getCom(){
1306 >    SimInfo::MoleculeIterator i;
1307 >    Molecule* mol;
1308 >
1309 >    Vector3d com(0.0);
1310 >    RealType totalMass = 0.0;
1311 >    
1312 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1313 >      RealType mass = mol->getMass();
1314 >      totalMass += mass;
1315 >      com += mass * mol->getCom();
1316 >    }  
1317 >
1318 > #ifdef IS_MPI
1319 >    RealType tmpMass = totalMass;
1320 >    Vector3d tmpCom(com);    
1321 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323 > #endif
1324 >
1325 >    com /= totalMass;
1326 >
1327 >    return com;
1328 >
1329 >  }        
1330 >
1331 >  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1332 >
1333 >    return o;
1334 >  }
1335 >  
1336 >  
1337 >   /*
1338 >   Returns center of mass and center of mass velocity in one function call.
1339 >   */
1340 >  
1341 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1342 >      SimInfo::MoleculeIterator i;
1343 >      Molecule* mol;
1344 >      
1345 >    
1346 >      RealType totalMass = 0.0;
1347 >    
1348 >
1349 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1350 >         RealType mass = mol->getMass();
1351 >         totalMass += mass;
1352 >         com += mass * mol->getCom();
1353 >         comVel += mass * mol->getComVel();          
1354 >      }  
1355 >      
1356 > #ifdef IS_MPI
1357 >      RealType tmpMass = totalMass;
1358 >      Vector3d tmpCom(com);  
1359 >      Vector3d tmpComVel(comVel);
1360 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1361 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1362 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1363 > #endif
1364 >      
1365 >      com /= totalMass;
1366 >      comVel /= totalMass;
1367 >   }        
1368 >  
1369 >   /*
1370 >   Return intertia tensor for entire system and angular momentum Vector.
1371 >
1372 >
1373 >       [  Ixx -Ixy  -Ixz ]
1374 >  J =| -Iyx  Iyy  -Iyz |
1375 >       [ -Izx -Iyz   Izz ]
1376 >    */
1377 >
1378 >   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1379 >      
1380 >
1381 >      RealType xx = 0.0;
1382 >      RealType yy = 0.0;
1383 >      RealType zz = 0.0;
1384 >      RealType xy = 0.0;
1385 >      RealType xz = 0.0;
1386 >      RealType yz = 0.0;
1387 >      Vector3d com(0.0);
1388 >      Vector3d comVel(0.0);
1389 >      
1390 >      getComAll(com, comVel);
1391 >      
1392 >      SimInfo::MoleculeIterator i;
1393 >      Molecule* mol;
1394 >      
1395 >      Vector3d thisq(0.0);
1396 >      Vector3d thisv(0.0);
1397 >
1398 >      RealType thisMass = 0.0;
1399 >    
1400 >      
1401 >      
1402 >  
1403 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1404 >        
1405 >         thisq = mol->getCom()-com;
1406 >         thisv = mol->getComVel()-comVel;
1407 >         thisMass = mol->getMass();
1408 >         // Compute moment of intertia coefficients.
1409 >         xx += thisq[0]*thisq[0]*thisMass;
1410 >         yy += thisq[1]*thisq[1]*thisMass;
1411 >         zz += thisq[2]*thisq[2]*thisMass;
1412 >        
1413 >         // compute products of intertia
1414 >         xy += thisq[0]*thisq[1]*thisMass;
1415 >         xz += thisq[0]*thisq[2]*thisMass;
1416 >         yz += thisq[1]*thisq[2]*thisMass;
1417 >            
1418 >         angularMomentum += cross( thisq, thisv ) * thisMass;
1419 >            
1420 >      }  
1421 >      
1422 >      
1423 >      inertiaTensor(0,0) = yy + zz;
1424 >      inertiaTensor(0,1) = -xy;
1425 >      inertiaTensor(0,2) = -xz;
1426 >      inertiaTensor(1,0) = -xy;
1427 >      inertiaTensor(1,1) = xx + zz;
1428 >      inertiaTensor(1,2) = -yz;
1429 >      inertiaTensor(2,0) = -xz;
1430 >      inertiaTensor(2,1) = -yz;
1431 >      inertiaTensor(2,2) = xx + yy;
1432 >      
1433 > #ifdef IS_MPI
1434 >      Mat3x3d tmpI(inertiaTensor);
1435 >      Vector3d tmpAngMom;
1436 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1437 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1438 > #endif
1439 >              
1440 >      return;
1441 >   }
1442 >
1443 >   //Returns the angular momentum of the system
1444 >   Vector3d SimInfo::getAngularMomentum(){
1445 >      
1446 >      Vector3d com(0.0);
1447 >      Vector3d comVel(0.0);
1448 >      Vector3d angularMomentum(0.0);
1449 >      
1450 >      getComAll(com,comVel);
1451 >      
1452 >      SimInfo::MoleculeIterator i;
1453 >      Molecule* mol;
1454 >      
1455 >      Vector3d thisr(0.0);
1456 >      Vector3d thisp(0.0);
1457 >      
1458 >      RealType thisMass;
1459 >      
1460 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1461 >        thisMass = mol->getMass();
1462 >        thisr = mol->getCom()-com;
1463 >        thisp = (mol->getComVel()-comVel)*thisMass;
1464 >        
1465 >        angularMomentum += cross( thisr, thisp );
1466 >        
1467 >      }  
1468 >      
1469 > #ifdef IS_MPI
1470 >      Vector3d tmpAngMom;
1471 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1472 > #endif
1473 >      
1474 >      return angularMomentum;
1475 >   }
1476 >  
1477 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1478 >    return IOIndexToIntegrableObject.at(index);
1479 >  }
1480 >  
1481 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1482 >    IOIndexToIntegrableObject= v;
1483 >  }
1484 >
1485 >  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1486 >     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1487 >     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1488 >     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1489 >  */
1490 >  void SimInfo::getGyrationalVolume(RealType &volume){
1491 >    Mat3x3d intTensor;
1492 >    RealType det;
1493 >    Vector3d dummyAngMom;
1494 >    RealType sysconstants;
1495 >    RealType geomCnst;
1496 >
1497 >    geomCnst = 3.0/2.0;
1498 >    /* Get the inertial tensor and angular momentum for free*/
1499 >    getInertiaTensor(intTensor,dummyAngMom);
1500 >    
1501 >    det = intTensor.determinant();
1502 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1503 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1504 >    return;
1505 >  }
1506 >
1507 >  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1508 >    Mat3x3d intTensor;
1509 >    Vector3d dummyAngMom;
1510 >    RealType sysconstants;
1511 >    RealType geomCnst;
1512 >
1513 >    geomCnst = 3.0/2.0;
1514 >    /* Get the inertial tensor and angular momentum for free*/
1515 >    getInertiaTensor(intTensor,dummyAngMom);
1516 >    
1517 >    detI = intTensor.determinant();
1518 >    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1519 >    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1520 >    return;
1521 >  }
1522 > /*
1523 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1524 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1525 >      sdByGlobalIndex_ = v;
1526 >    }
1527 >
1528 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1529 >      //assert(index < nAtoms_ + nRigidBodies_);
1530 >      return sdByGlobalIndex_.at(index);
1531 >    }  
1532 > */  
1533 > }//end namespace oopse
1534 >

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines