ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 < #include "UseTheForce/fCutoffPolicy.h"
56 < #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
57 < #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
58 < #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
59 < #include "UseTheForce/doForces_interface.h"
60 < #include "UseTheForce/DarkSide/electrostatic_interface.h"
61 < #include "UseTheForce/notifyCutoffs_interface.h"
62 < #include "UseTheForce/DarkSide/switcheroo_interface.h"
56 > #include "primitives/StuntDouble.hpp"
57   #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59   #include "selection/SelectionManager.hpp"
60 + #include "io/ForceFieldOptions.hpp"
61 + #include "UseTheForce/ForceField.hpp"
62 + #include "nonbonded/SwitchingFunction.hpp"
63  
64 < #ifdef IS_MPI
65 < #include "UseTheForce/mpiComponentPlan.h"
66 < #include "UseTheForce/DarkSide/simParallel_interface.h"
67 < #endif
68 <
69 < namespace oopse {
73 <
74 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
75 <                   ForceField* ff, Globals* simParams) :
76 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
77 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
73 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
74 <    sman_(NULL), fortranInitialized_(false) {
75 <
84 <            
85 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
86 <      MoleculeStamp* molStamp;
87 <      int nMolWithSameStamp;
88 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
89 <      int nGroups = 0;      //total cutoff groups defined in meta-data file
90 <      CutoffGroupStamp* cgStamp;    
91 <      RigidBodyStamp* rbStamp;
92 <      int nRigidAtoms = 0;
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76      
77 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
78 <        molStamp = i->first;
79 <        nMolWithSameStamp = i->second;
80 <        
81 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
82 <
83 <        //calculate atoms in molecules
84 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
85 <
86 <
87 <        //calculate atoms in cutoff groups
88 <        int nAtomsInGroups = 0;
89 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
90 <        
91 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
92 <          cgStamp = molStamp->getCutoffGroup(j);
93 <          nAtomsInGroups += cgStamp->getNMembers();
94 <        }
95 <
96 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
97 <
98 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
99 <
100 <        //calculate atoms in rigid bodies
101 <        int nAtomsInRigidBodies = 0;
102 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 <        
121 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
122 <          rbStamp = molStamp->getRigidBody(j);
123 <          nAtomsInRigidBodies += rbStamp->getNMembers();
124 <        }
125 <
126 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 <        
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103        }
104 <
105 <      //every free atom (atom does not belong to cutoff groups) is a cutoff
106 <      //group therefore the total number of cutoff groups in the system is
107 <      //equal to the total number of atoms minus number of atoms belong to
108 <      //cutoff group defined in meta-data file plus the number of cutoff
109 <      //groups defined in meta-data file
110 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
111 <
112 <      //every free atom (atom does not belong to rigid bodies) is an
113 <      //integrable object therefore the total number of integrable objects
114 <      //in the system is equal to the total number of atoms minus number of
115 <      //atoms belong to rigid body defined in meta-data file plus the number
116 <      //of rigid bodies defined in meta-data file
117 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
118 <                                                + nGlobalRigidBodies_;
119 <  
120 <      nGlobalMols_ = molStampIds_.size();
147 <
148 < #ifdef IS_MPI    
149 <      molToProcMap_.resize(nGlobalMols_);
150 < #endif
151 <
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121      }
122 +    
123 +    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 +    //group therefore the total number of cutoff groups in the system is
125 +    //equal to the total number of atoms minus number of atoms belong to
126 +    //cutoff group defined in meta-data file plus the number of cutoff
127 +    //groups defined in meta-data file
128  
129 +    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 +    
131 +    //every free atom (atom does not belong to rigid bodies) is an
132 +    //integrable object therefore the total number of integrable objects
133 +    //in the system is equal to the total number of atoms minus number of
134 +    //atoms belong to rigid body defined in meta-data file plus the number
135 +    //of rigid bodies defined in meta-data file
136 +    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 +      + nGlobalRigidBodies_;
138 +    
139 +    nGlobalMols_ = molStampIds_.size();
140 +    molToProcMap_.resize(nGlobalMols_);
141 +  }
142 +  
143    SimInfo::~SimInfo() {
144 <    std::map<int, Molecule*>::iterator i;
144 >    map<int, Molecule*>::iterator i;
145      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146        delete i->second;
147      }
148      molecules_.clear();
149        
161    delete stamps_;
150      delete sman_;
151      delete simParams_;
152      delete forceField_;
153    }
154  
167  int SimInfo::getNGlobalConstraints() {
168    int nGlobalConstraints;
169 #ifdef IS_MPI
170    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
171                  MPI_COMM_WORLD);    
172 #else
173    nGlobalConstraints =  nConstraints_;
174 #endif
175    return nGlobalConstraints;
176  }
155  
156    bool SimInfo::addMolecule(Molecule* mol) {
157      MoleculeIterator i;
158 <
158 >    
159      i = molecules_.find(mol->getGlobalIndex());
160      if (i == molecules_.end() ) {
161 <
162 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
163 <        
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164        nAtoms_ += mol->getNAtoms();
165        nBonds_ += mol->getNBonds();
166        nBends_ += mol->getNBends();
167        nTorsions_ += mol->getNTorsions();
168 +      nInversions_ += mol->getNInversions();
169        nRigidBodies_ += mol->getNRigidBodies();
170        nIntegrableObjects_ += mol->getNIntegrableObjects();
171        nCutoffGroups_ += mol->getNCutoffGroups();
172        nConstraints_ += mol->getNConstraintPairs();
173 <
174 <      addExcludePairs(mol);
175 <        
173 >      
174 >      addInteractionPairs(mol);
175 >      
176        return true;
177      } else {
178        return false;
179      }
180    }
181 <
181 >  
182    bool SimInfo::removeMolecule(Molecule* mol) {
183      MoleculeIterator i;
184      i = molecules_.find(mol->getGlobalIndex());
# Line 212 | Line 191 | namespace oopse {
191        nBonds_ -= mol->getNBonds();
192        nBends_ -= mol->getNBends();
193        nTorsions_ -= mol->getNTorsions();
194 +      nInversions_ -= mol->getNInversions();
195        nRigidBodies_ -= mol->getNRigidBodies();
196        nIntegrableObjects_ -= mol->getNIntegrableObjects();
197        nCutoffGroups_ -= mol->getNCutoffGroups();
198        nConstraints_ -= mol->getNConstraintPairs();
199  
200 <      removeExcludePairs(mol);
200 >      removeInteractionPairs(mol);
201        molecules_.erase(mol->getGlobalIndex());
202  
203        delete mol;
# Line 226 | Line 206 | namespace oopse {
206      } else {
207        return false;
208      }
229
230
209    }    
210  
211          
# Line 245 | Line 223 | namespace oopse {
223    void SimInfo::calcNdf() {
224      int ndf_local;
225      MoleculeIterator i;
226 <    std::vector<StuntDouble*>::iterator j;
226 >    vector<StuntDouble*>::iterator j;
227      Molecule* mol;
228      StuntDouble* integrableObject;
229  
# Line 265 | Line 243 | namespace oopse {
243            }
244          }
245              
246 <      }//end for (integrableObject)
247 <    }// end for (mol)
246 >      }
247 >    }
248      
249      // n_constraints is local, so subtract them on each processor
250      ndf_local -= nConstraints_;
# Line 283 | Line 261 | namespace oopse {
261  
262    }
263  
264 +  int SimInfo::getFdf() {
265 + #ifdef IS_MPI
266 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 + #else
268 +    fdf_ = fdf_local;
269 + #endif
270 +    return fdf_;
271 +  }
272 +  
273 +  unsigned int SimInfo::getNLocalCutoffGroups(){
274 +    int nLocalCutoffAtoms = 0;
275 +    Molecule* mol;
276 +    MoleculeIterator mi;
277 +    CutoffGroup* cg;
278 +    Molecule::CutoffGroupIterator ci;
279 +    
280 +    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 +      
282 +      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 +           cg = mol->nextCutoffGroup(ci)) {
284 +        nLocalCutoffAtoms += cg->getNumAtom();
285 +        
286 +      }        
287 +    }
288 +    
289 +    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 +  }
291 +    
292    void SimInfo::calcNdfRaw() {
293      int ndfRaw_local;
294  
295      MoleculeIterator i;
296 <    std::vector<StuntDouble*>::iterator j;
296 >    vector<StuntDouble*>::iterator j;
297      Molecule* mol;
298      StuntDouble* integrableObject;
299  
# Line 334 | Line 340 | namespace oopse {
340  
341    }
342  
343 <  void SimInfo::addExcludePairs(Molecule* mol) {
344 <    std::vector<Bond*>::iterator bondIter;
345 <    std::vector<Bend*>::iterator bendIter;
346 <    std::vector<Torsion*>::iterator torsionIter;
343 >  void SimInfo::addInteractionPairs(Molecule* mol) {
344 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349      Bond* bond;
350      Bend* bend;
351      Torsion* torsion;
352 +    Inversion* inversion;
353      int a;
354      int b;
355      int c;
356      int d;
357 <    
358 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
359 <      a = bond->getAtomA()->getGlobalIndex();
360 <      b = bond->getAtomB()->getGlobalIndex();        
361 <      exclude_.addPair(a, b);
357 >
358 >    // atomGroups can be used to add special interaction maps between
359 >    // groups of atoms that are in two separate rigid bodies.
360 >    // However, most site-site interactions between two rigid bodies
361 >    // are probably not special, just the ones between the physically
362 >    // bonded atoms.  Interactions *within* a single rigid body should
363 >    // always be excluded.  These are done at the bottom of this
364 >    // function.
365 >
366 >    map<int, set<int> > atomGroups;
367 >    Molecule::RigidBodyIterator rbIter;
368 >    RigidBody* rb;
369 >    Molecule::IntegrableObjectIterator ii;
370 >    StuntDouble* integrableObject;
371 >    
372 >    for (integrableObject = mol->beginIntegrableObject(ii);
373 >         integrableObject != NULL;
374 >         integrableObject = mol->nextIntegrableObject(ii)) {
375 >      
376 >      if (integrableObject->isRigidBody()) {
377 >        rb = static_cast<RigidBody*>(integrableObject);
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >        }
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >        }      
386 >      } else {
387 >        set<int> oneAtomSet;
388 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 >      }
391 >    }  
392 >          
393 >    for (bond= mol->beginBond(bondIter); bond != NULL;
394 >         bond = mol->nextBond(bondIter)) {
395 >
396 >      a = bond->getAtomA()->getGlobalIndex();
397 >      b = bond->getAtomB()->getGlobalIndex();  
398 >    
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);
401 >      } else {
402 >        excludedInteractions_.addPair(a, b);
403 >      }
404      }
405  
406 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
406 >    for (bend= mol->beginBend(bendIter); bend != NULL;
407 >         bend = mol->nextBend(bendIter)) {
408 >
409        a = bend->getAtomA()->getGlobalIndex();
410        b = bend->getAtomB()->getGlobalIndex();        
411        c = bend->getAtomC()->getGlobalIndex();
412 +      
413 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 +        oneTwoInteractions_.addPair(a, b);      
415 +        oneTwoInteractions_.addPair(b, c);
416 +      } else {
417 +        excludedInteractions_.addPair(a, b);
418 +        excludedInteractions_.addPair(b, c);
419 +      }
420  
421 <      exclude_.addPair(a, b);
422 <      exclude_.addPair(a, c);
423 <      exclude_.addPair(b, c);        
421 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
422 >        oneThreeInteractions_.addPair(a, c);      
423 >      } else {
424 >        excludedInteractions_.addPair(a, c);
425 >      }
426      }
427  
428 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
428 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
429 >         torsion = mol->nextTorsion(torsionIter)) {
430 >
431        a = torsion->getAtomA()->getGlobalIndex();
432        b = torsion->getAtomB()->getGlobalIndex();        
433        c = torsion->getAtomC()->getGlobalIndex();        
434 <      d = torsion->getAtomD()->getGlobalIndex();        
434 >      d = torsion->getAtomD()->getGlobalIndex();      
435  
436 <      exclude_.addPair(a, b);
437 <      exclude_.addPair(a, c);
438 <      exclude_.addPair(a, d);
439 <      exclude_.addPair(b, c);
440 <      exclude_.addPair(b, d);
441 <      exclude_.addPair(c, d);        
436 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
437 >        oneTwoInteractions_.addPair(a, b);      
438 >        oneTwoInteractions_.addPair(b, c);
439 >        oneTwoInteractions_.addPair(c, d);
440 >      } else {
441 >        excludedInteractions_.addPair(a, b);
442 >        excludedInteractions_.addPair(b, c);
443 >        excludedInteractions_.addPair(c, d);
444 >      }
445 >
446 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
447 >        oneThreeInteractions_.addPair(a, c);      
448 >        oneThreeInteractions_.addPair(b, d);      
449 >      } else {
450 >        excludedInteractions_.addPair(a, c);
451 >        excludedInteractions_.addPair(b, d);
452 >      }
453 >
454 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
455 >        oneFourInteractions_.addPair(a, d);      
456 >      } else {
457 >        excludedInteractions_.addPair(a, d);
458 >      }
459      }
460  
461 <    Molecule::RigidBodyIterator rbIter;
462 <    RigidBody* rb;
463 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
464 <      std::vector<Atom*> atoms = rb->getAtoms();
465 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
466 <        for (int j = i + 1; j < atoms.size(); ++j) {
461 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
462 >         inversion = mol->nextInversion(inversionIter)) {
463 >
464 >      a = inversion->getAtomA()->getGlobalIndex();
465 >      b = inversion->getAtomB()->getGlobalIndex();        
466 >      c = inversion->getAtomC()->getGlobalIndex();        
467 >      d = inversion->getAtomD()->getGlobalIndex();        
468 >
469 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
470 >        oneTwoInteractions_.addPair(a, b);      
471 >        oneTwoInteractions_.addPair(a, c);
472 >        oneTwoInteractions_.addPair(a, d);
473 >      } else {
474 >        excludedInteractions_.addPair(a, b);
475 >        excludedInteractions_.addPair(a, c);
476 >        excludedInteractions_.addPair(a, d);
477 >      }
478 >
479 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
480 >        oneThreeInteractions_.addPair(b, c);    
481 >        oneThreeInteractions_.addPair(b, d);    
482 >        oneThreeInteractions_.addPair(c, d);      
483 >      } else {
484 >        excludedInteractions_.addPair(b, c);
485 >        excludedInteractions_.addPair(b, d);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488 >    }
489 >
490 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >         rb = mol->nextRigidBody(rbIter)) {
492 >      vector<Atom*> atoms = rb->getAtoms();
493 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495            a = atoms[i]->getGlobalIndex();
496            b = atoms[j]->getGlobalIndex();
497 <          exclude_.addPair(a, b);
497 >          excludedInteractions_.addPair(a, b);
498          }
499        }
500      }        
501  
502    }
503  
504 <  void SimInfo::removeExcludePairs(Molecule* mol) {
505 <    std::vector<Bond*>::iterator bondIter;
506 <    std::vector<Bend*>::iterator bendIter;
507 <    std::vector<Torsion*>::iterator torsionIter;
504 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
505 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510      Bond* bond;
511      Bend* bend;
512      Torsion* torsion;
513 +    Inversion* inversion;
514      int a;
515      int b;
516      int c;
517      int d;
518 +
519 +    map<int, set<int> > atomGroups;
520 +    Molecule::RigidBodyIterator rbIter;
521 +    RigidBody* rb;
522 +    Molecule::IntegrableObjectIterator ii;
523 +    StuntDouble* integrableObject;
524      
525 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
525 >    for (integrableObject = mol->beginIntegrableObject(ii);
526 >         integrableObject != NULL;
527 >         integrableObject = mol->nextIntegrableObject(ii)) {
528 >      
529 >      if (integrableObject->isRigidBody()) {
530 >        rb = static_cast<RigidBody*>(integrableObject);
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 >        }
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 >        }      
539 >      } else {
540 >        set<int> oneAtomSet;
541 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543 >      }
544 >    }  
545 >
546 >    for (bond= mol->beginBond(bondIter); bond != NULL;
547 >         bond = mol->nextBond(bondIter)) {
548 >      
549        a = bond->getAtomA()->getGlobalIndex();
550 <      b = bond->getAtomB()->getGlobalIndex();        
551 <      exclude_.removePair(a, b);
550 >      b = bond->getAtomB()->getGlobalIndex();  
551 >    
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);
554 >      } else {
555 >        excludedInteractions_.removePair(a, b);
556 >      }
557      }
558  
559 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
559 >    for (bend= mol->beginBend(bendIter); bend != NULL;
560 >         bend = mol->nextBend(bendIter)) {
561 >
562        a = bend->getAtomA()->getGlobalIndex();
563        b = bend->getAtomB()->getGlobalIndex();        
564        c = bend->getAtomC()->getGlobalIndex();
565 +      
566 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 +        oneTwoInteractions_.removePair(a, b);      
568 +        oneTwoInteractions_.removePair(b, c);
569 +      } else {
570 +        excludedInteractions_.removePair(a, b);
571 +        excludedInteractions_.removePair(b, c);
572 +      }
573  
574 <      exclude_.removePair(a, b);
575 <      exclude_.removePair(a, c);
576 <      exclude_.removePair(b, c);        
574 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
575 >        oneThreeInteractions_.removePair(a, c);      
576 >      } else {
577 >        excludedInteractions_.removePair(a, c);
578 >      }
579      }
580  
581 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
581 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
582 >         torsion = mol->nextTorsion(torsionIter)) {
583 >
584        a = torsion->getAtomA()->getGlobalIndex();
585        b = torsion->getAtomB()->getGlobalIndex();        
586        c = torsion->getAtomC()->getGlobalIndex();        
587 <      d = torsion->getAtomD()->getGlobalIndex();        
587 >      d = torsion->getAtomD()->getGlobalIndex();      
588 >  
589 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
590 >        oneTwoInteractions_.removePair(a, b);      
591 >        oneTwoInteractions_.removePair(b, c);
592 >        oneTwoInteractions_.removePair(c, d);
593 >      } else {
594 >        excludedInteractions_.removePair(a, b);
595 >        excludedInteractions_.removePair(b, c);
596 >        excludedInteractions_.removePair(c, d);
597 >      }
598  
599 <      exclude_.removePair(a, b);
600 <      exclude_.removePair(a, c);
601 <      exclude_.removePair(a, d);
602 <      exclude_.removePair(b, c);
603 <      exclude_.removePair(b, d);
604 <      exclude_.removePair(c, d);        
599 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
600 >        oneThreeInteractions_.removePair(a, c);      
601 >        oneThreeInteractions_.removePair(b, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, c);
604 >        excludedInteractions_.removePair(b, d);
605 >      }
606 >
607 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
608 >        oneFourInteractions_.removePair(a, d);      
609 >      } else {
610 >        excludedInteractions_.removePair(a, d);
611 >      }
612      }
613  
614 <    Molecule::RigidBodyIterator rbIter;
615 <    RigidBody* rb;
616 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
617 <      std::vector<Atom*> atoms = rb->getAtoms();
618 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
619 <        for (int j = i + 1; j < atoms.size(); ++j) {
614 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
615 >         inversion = mol->nextInversion(inversionIter)) {
616 >
617 >      a = inversion->getAtomA()->getGlobalIndex();
618 >      b = inversion->getAtomB()->getGlobalIndex();        
619 >      c = inversion->getAtomC()->getGlobalIndex();        
620 >      d = inversion->getAtomD()->getGlobalIndex();        
621 >
622 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
623 >        oneTwoInteractions_.removePair(a, b);      
624 >        oneTwoInteractions_.removePair(a, c);
625 >        oneTwoInteractions_.removePair(a, d);
626 >      } else {
627 >        excludedInteractions_.removePair(a, b);
628 >        excludedInteractions_.removePair(a, c);
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631 >
632 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
633 >        oneThreeInteractions_.removePair(b, c);    
634 >        oneThreeInteractions_.removePair(b, d);    
635 >        oneThreeInteractions_.removePair(c, d);      
636 >      } else {
637 >        excludedInteractions_.removePair(b, c);
638 >        excludedInteractions_.removePair(b, d);
639 >        excludedInteractions_.removePair(c, d);
640 >      }
641 >    }
642 >
643 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644 >         rb = mol->nextRigidBody(rbIter)) {
645 >      vector<Atom*> atoms = rb->getAtoms();
646 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648            a = atoms[i]->getGlobalIndex();
649            b = atoms[j]->getGlobalIndex();
650 <          exclude_.removePair(a, b);
650 >          excludedInteractions_.removePair(a, b);
651          }
652        }
653      }        
654 <
654 >    
655    }
656 <
657 <
656 >  
657 >  
658    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
659      int curStampId;
660 <
660 >    
661      //index from 0
662      curStampId = moleculeStamps_.size();
663  
# Line 459 | Line 665 | namespace oopse {
665      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666    }
667  
462  void SimInfo::update() {
668  
669 <    setupSimType();
670 <
671 < #ifdef IS_MPI
672 <    setupFortranParallel();
673 < #endif
674 <
675 <    setupFortranSim();
676 <
677 <    //setup fortran force field
473 <    /** @deprecate */    
474 <    int isError = 0;
475 <    
476 <    setupElectrostaticSummationMethod( isError );
477 <    setupSwitchingFunction();
478 <
479 <    if(isError){
480 <      sprintf( painCave.errMsg,
481 <               "ForceField error: There was an error initializing the forceField in fortran.\n" );
482 <      painCave.isFatal = 1;
483 <      simError();
484 <    }
485 <  
486 <    
487 <    setupCutoff();
488 <
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
492
493    fortranInitialized_ = true;
681    }
682 <
683 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
682 >  
683 >  /**
684 >   * getSimulatedAtomTypes
685 >   *
686 >   * Returns an STL set of AtomType* that are actually present in this
687 >   * simulation.  Must query all processors to assemble this information.
688 >   *
689 >   */
690 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691      SimInfo::MoleculeIterator mi;
692      Molecule* mol;
693      Molecule::AtomIterator ai;
694      Atom* atom;
695 <    std::set<AtomType*> atomTypes;
696 <
697 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
504 <
695 >    set<AtomType*> atomTypes;
696 >    
697 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
698        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
699          atomTypes.insert(atom->getAtomType());
700 <      }
701 <        
509 <    }
700 >      }      
701 >    }    
702  
703 <    return atomTypes;        
512 <  }
703 > #ifdef IS_MPI
704  
705 <  void SimInfo::setupSimType() {
706 <    std::set<AtomType*>::iterator i;
516 <    std::set<AtomType*> atomTypes;
517 <    atomTypes = getUniqueAtomTypes();
518 <    
519 <    int useLennardJones = 0;
520 <    int useElectrostatic = 0;
521 <    int useEAM = 0;
522 <    int useCharge = 0;
523 <    int useDirectional = 0;
524 <    int useDipole = 0;
525 <    int useGayBerne = 0;
526 <    int useSticky = 0;
527 <    int useStickyPower = 0;
528 <    int useShape = 0;
529 <    int useFLARB = 0; //it is not in AtomType yet
530 <    int useDirectionalAtom = 0;    
531 <    int useElectrostatics = 0;
532 <    //usePBC and useRF are from simParams
533 <    int usePBC = simParams_->getUsePeriodicBoundaryConditions();
534 <    int useRF;
535 <    int useSF;
536 <    std::string myMethod;
705 >    // loop over the found atom types on this processor, and add their
706 >    // numerical idents to a vector:
707  
708 <    // set the useRF logical
709 <    useRF = 0;
710 <    useSF = 0;
708 >    vector<int> foundTypes;
709 >    set<AtomType*>::iterator i;
710 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
711 >      foundTypes.push_back( (*i)->getIdent() );
712  
713 +    // count_local holds the number of found types on this processor
714 +    int count_local = foundTypes.size();
715  
716 <    if (simParams_->haveElectrostaticSummationMethod()) {
717 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
718 <      toUpper(myMethod);
719 <      if (myMethod == "REACTION_FIELD") {
547 <        useRF=1;
548 <      } else {
549 <        if (myMethod == "SHIFTED_FORCE") {
550 <          useSF = 1;
551 <        }
552 <      }
553 <    }
716 >    // count holds the total number of found types on all processors
717 >    // (some will be redundant with the ones found locally):
718 >    int count;
719 >    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
720  
721 +    // create a vector to hold the globally found types, and resize it:
722 +    vector<int> ftGlobal;
723 +    ftGlobal.resize(count);
724 +    vector<int> counts;
725 +
726 +    int nproc = MPI::COMM_WORLD.Get_size();
727 +    counts.resize(nproc);
728 +    vector<int> disps;
729 +    disps.resize(nproc);
730 +
731 +    // now spray out the foundTypes to all the other processors:
732 +    
733 +    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
734 +                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
735 +
736 +    // foundIdents is a stl set, so inserting an already found ident
737 +    // will have no effect.
738 +    set<int> foundIdents;
739 +    vector<int>::iterator j;
740 +    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
741 +      foundIdents.insert((*j));
742 +    
743 +    // now iterate over the foundIdents and get the actual atom types
744 +    // that correspond to these:
745 +    set<int>::iterator it;
746 +    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
747 +      atomTypes.insert( forceField_->getAtomType((*it)) );
748 +
749 + #endif
750 +    
751 +    return atomTypes;        
752 +  }
753 +
754 +  void SimInfo::setupSimVariables() {
755 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
756 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
757 +    calcBoxDipole_ = false;
758 +    if ( simParams_->haveAccumulateBoxDipole() )
759 +      if ( simParams_->getAccumulateBoxDipole() ) {
760 +        calcBoxDipole_ = true;      
761 +      }
762 +    
763 +    set<AtomType*>::iterator i;
764 +    set<AtomType*> atomTypes;
765 +    atomTypes = getSimulatedAtomTypes();    
766 +    int usesElectrostatic = 0;
767 +    int usesMetallic = 0;
768 +    int usesDirectional = 0;
769      //loop over all of the atom types
770      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
771 <      useLennardJones |= (*i)->isLennardJones();
772 <      useElectrostatic |= (*i)->isElectrostatic();
773 <      useEAM |= (*i)->isEAM();
560 <      useCharge |= (*i)->isCharge();
561 <      useDirectional |= (*i)->isDirectional();
562 <      useDipole |= (*i)->isDipole();
563 <      useGayBerne |= (*i)->isGayBerne();
564 <      useSticky |= (*i)->isSticky();
565 <      useStickyPower |= (*i)->isStickyPower();
566 <      useShape |= (*i)->isShape();
771 >      usesElectrostatic |= (*i)->isElectrostatic();
772 >      usesMetallic |= (*i)->isMetal();
773 >      usesDirectional |= (*i)->isDirectional();
774      }
775 <
569 <    if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
570 <      useDirectionalAtom = 1;
571 <    }
572 <
573 <    if (useCharge || useDipole) {
574 <      useElectrostatics = 1;
575 <    }
576 <
775 >    
776   #ifdef IS_MPI    
777      int temp;
778 +    temp = usesDirectional;
779 +    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
780 +    
781 +    temp = usesMetallic;
782 +    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
783 +    
784 +    temp = usesElectrostatic;
785 +    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
786 + #else
787  
788 <    temp = usePBC;
789 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
788 >    usesDirectionalAtoms_ = usesDirectional;
789 >    usesMetallicAtoms_ = usesMetallic;
790 >    usesElectrostaticAtoms_ = usesElectrostatic;
791  
792 <    temp = useDirectionalAtom;
793 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
792 > #endif
793 >    
794 >    requiresPrepair_ = usesMetallicAtoms_ ? true : false;
795 >    requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false;
796 >    requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false;    
797 >  }
798  
586    temp = useLennardJones;
587    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
799  
800 <    temp = useElectrostatics;
801 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
800 >  vector<int> SimInfo::getGlobalAtomIndices() {
801 >    SimInfo::MoleculeIterator mi;
802 >    Molecule* mol;
803 >    Molecule::AtomIterator ai;
804 >    Atom* atom;
805  
806 <    temp = useCharge;
593 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
594 <
595 <    temp = useDipole;
596 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
597 <
598 <    temp = useSticky;
599 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
600 <
601 <    temp = useStickyPower;
602 <    MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
806 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
807      
808 <    temp = useGayBerne;
809 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
808 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
809 >      
810 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
811 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
812 >      }
813 >    }
814 >    return GlobalAtomIndices;
815 >  }
816  
607    temp = useEAM;
608    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817  
818 <    temp = useShape;
819 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
818 >  vector<int> SimInfo::getGlobalGroupIndices() {
819 >    SimInfo::MoleculeIterator mi;
820 >    Molecule* mol;
821 >    Molecule::CutoffGroupIterator ci;
822 >    CutoffGroup* cg;
823  
824 <    temp = useFLARB;
825 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
826 <
616 <    temp = useRF;
617 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
618 <
619 <    temp = useSF;
620 <    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
621 <
622 < #endif
623 <
624 <    fInfo_.SIM_uses_PBC = usePBC;    
625 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
626 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
627 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
628 <    fInfo_.SIM_uses_Charges = useCharge;
629 <    fInfo_.SIM_uses_Dipoles = useDipole;
630 <    fInfo_.SIM_uses_Sticky = useSticky;
631 <    fInfo_.SIM_uses_StickyPower = useStickyPower;
632 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
633 <    fInfo_.SIM_uses_EAM = useEAM;
634 <    fInfo_.SIM_uses_Shapes = useShape;
635 <    fInfo_.SIM_uses_FLARB = useFLARB;
636 <    fInfo_.SIM_uses_RF = useRF;
637 <    fInfo_.SIM_uses_SF = useSF;
638 <
639 <    if( myMethod == "REACTION_FIELD") {
824 >    vector<int> GlobalGroupIndices;
825 >    
826 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
827        
828 <      if (simParams_->haveDielectric()) {
829 <        fInfo_.dielect = simParams_->getDielectric();
830 <      } else {
831 <        sprintf(painCave.errMsg,
832 <                "SimSetup Error: No Dielectric constant was set.\n"
833 <                "\tYou are trying to use Reaction Field without"
647 <                "\tsetting a dielectric constant!\n");
648 <        painCave.isFatal = 1;
649 <        simError();
650 <      }      
828 >      //local index of cutoff group is trivial, it only depends on the
829 >      //order of travesing
830 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
831 >           cg = mol->nextCutoffGroup(ci)) {
832 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
833 >      }        
834      }
835 <
835 >    return GlobalGroupIndices;
836    }
837  
655  void SimInfo::setupFortranSim() {
656    int isError;
657    int nExclude;
658    std::vector<int> fortranGlobalGroupMembership;
659    
660    nExclude = exclude_.getSize();
661    isError = 0;
838  
839 <    //globalGroupMembership_ is filled by SimCreator    
840 <    for (int i = 0; i < nGlobalAtoms_; i++) {
665 <      fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
666 <    }
839 >  void SimInfo::prepareTopology() {
840 >    int nExclude, nOneTwo, nOneThree, nOneFour;
841  
842      //calculate mass ratio of cutoff group
669    std::vector<double> mfact;
843      SimInfo::MoleculeIterator mi;
844      Molecule* mol;
845      Molecule::CutoffGroupIterator ci;
846      CutoffGroup* cg;
847      Molecule::AtomIterator ai;
848      Atom* atom;
849 <    double totalMass;
849 >    RealType totalMass;
850  
851 <    //to avoid memory reallocation, reserve enough space for mfact
852 <    mfact.reserve(getNCutoffGroups());
851 >    /**
852 >     * The mass factor is the relative mass of an atom to the total
853 >     * mass of the cutoff group it belongs to.  By default, all atoms
854 >     * are their own cutoff groups, and therefore have mass factors of
855 >     * 1.  We need some special handling for massless atoms, which
856 >     * will be treated as carrying the entire mass of the cutoff
857 >     * group.
858 >     */
859 >    massFactors_.clear();
860 >    massFactors_.resize(getNAtoms(), 1.0);
861      
862 +    cerr << "mfs in si = " << massFactors_.size() << "\n";
863      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
864 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
864 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
865 >           cg = mol->nextCutoffGroup(ci)) {
866  
867          totalMass = cg->getMass();
868          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
869            // Check for massless groups - set mfact to 1 if true
870 <          if (totalMass != 0)
871 <            mfact.push_back(atom->getMass()/totalMass);
870 >          if (totalMass != 0)
871 >            massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass;
872            else
873 <            mfact.push_back( 1.0 );
873 >            massFactors_[atom->getLocalIndex()] = 1.0;
874          }
692
875        }      
876      }
877  
878 <    //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
697 <    std::vector<int> identArray;
878 >    // Build the identArray_
879  
880 <    //to avoid memory reallocation, reserve enough space identArray
881 <    identArray.reserve(getNAtoms());
701 <    
880 >    identArray_.clear();
881 >    identArray_.reserve(getNAtoms());    
882      for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
883        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
884 <        identArray.push_back(atom->getIdent());
884 >        identArray_.push_back(atom->getIdent());
885        }
886      }    
707
708    //fill molMembershipArray
709    //molMembershipArray is filled by SimCreator    
710    std::vector<int> molMembershipArray(nGlobalAtoms_);
711    for (int i = 0; i < nGlobalAtoms_; i++) {
712      molMembershipArray[i] = globalMolMembership_[i] + 1;
713    }
887      
888 <    //setup fortran simulation
716 <    int nGlobalExcludes = 0;
717 <    int* globalExcludes = NULL;
718 <    int* excludeList = exclude_.getExcludeList();
719 <    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
720 <                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
721 <                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
888 >    //scan topology
889  
890 <    if( isError ){
890 >    nExclude = excludedInteractions_.getSize();
891 >    nOneTwo = oneTwoInteractions_.getSize();
892 >    nOneThree = oneThreeInteractions_.getSize();
893 >    nOneFour = oneFourInteractions_.getSize();
894  
895 <      sprintf( painCave.errMsg,
896 <               "There was an error setting the simulation information in fortran.\n" );
897 <      painCave.isFatal = 1;
898 <      painCave.severity = OOPSE_ERROR;
729 <      simError();
730 <    }
731 <
732 < #ifdef IS_MPI
733 <    sprintf( checkPointMsg,
734 <             "succesfully sent the simulation information to fortran.\n");
735 <    MPIcheckPoint();
736 < #endif // is_mpi
737 <  }
738 <
739 <
740 < #ifdef IS_MPI
741 <  void SimInfo::setupFortranParallel() {
742 <    
743 <    //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
744 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
745 <    std::vector<int> localToGlobalCutoffGroupIndex;
746 <    SimInfo::MoleculeIterator mi;
747 <    Molecule::AtomIterator ai;
748 <    Molecule::CutoffGroupIterator ci;
749 <    Molecule* mol;
750 <    Atom* atom;
751 <    CutoffGroup* cg;
752 <    mpiSimData parallelData;
753 <    int isError;
754 <
755 <    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
756 <
757 <      //local index(index in DataStorge) of atom is important
758 <      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
759 <        localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
760 <      }
761 <
762 <      //local index of cutoff group is trivial, it only depends on the order of travesing
763 <      for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
764 <        localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
765 <      }        
766 <        
767 <    }
768 <
769 <    //fill up mpiSimData struct
770 <    parallelData.nMolGlobal = getNGlobalMolecules();
771 <    parallelData.nMolLocal = getNMolecules();
772 <    parallelData.nAtomsGlobal = getNGlobalAtoms();
773 <    parallelData.nAtomsLocal = getNAtoms();
774 <    parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
775 <    parallelData.nGroupsLocal = getNCutoffGroups();
776 <    parallelData.myNode = worldRank;
777 <    MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
778 <
779 <    //pass mpiSimData struct and index arrays to fortran
780 <    setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
781 <                    &localToGlobalAtomIndex[0],  &(parallelData.nGroupsLocal),
782 <                    &localToGlobalCutoffGroupIndex[0], &isError);
783 <
784 <    if (isError) {
785 <      sprintf(painCave.errMsg,
786 <              "mpiRefresh errror: fortran didn't like something we gave it.\n");
787 <      painCave.isFatal = 1;
788 <      simError();
789 <    }
790 <
791 <    sprintf(checkPointMsg, " mpiRefresh successful.\n");
792 <    MPIcheckPoint();
793 <
794 <
795 <  }
796 <
797 < #endif
798 <
799 <  double SimInfo::calcMaxCutoffRadius() {
800 <
801 <
802 <    std::set<AtomType*> atomTypes;
803 <    std::set<AtomType*>::iterator i;
804 <    std::vector<double> cutoffRadius;
805 <
806 <    //get the unique atom types
807 <    atomTypes = getUniqueAtomTypes();
808 <
809 <    //query the max cutoff radius among these atom types
810 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
811 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
812 <    }
813 <
814 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
815 < #ifdef IS_MPI
816 <    //pick the max cutoff radius among the processors
817 < #endif
818 <
819 <    return maxCutoffRadius;
820 <  }
895 >    int* excludeList = excludedInteractions_.getPairList();
896 >    int* oneTwoList = oneTwoInteractions_.getPairList();
897 >    int* oneThreeList = oneThreeInteractions_.getPairList();
898 >    int* oneFourList = oneFourInteractions_.getPairList();
899  
900 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
823 <    
824 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
825 <        
826 <      if (!simParams_->haveCutoffRadius()){
827 <        sprintf(painCave.errMsg,
828 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
829 <                "\tOOPSE will use a default value of 15.0 angstroms"
830 <                "\tfor the cutoffRadius.\n");
831 <        painCave.isFatal = 0;
832 <        simError();
833 <        rcut = 15.0;
834 <      } else{
835 <        rcut = simParams_->getCutoffRadius();
836 <      }
837 <
838 <      if (!simParams_->haveSwitchingRadius()){
839 <        sprintf(painCave.errMsg,
840 <                "SimCreator Warning: No value was set for switchingRadius.\n"
841 <                "\tOOPSE will use a default value of\n"
842 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
843 <        painCave.isFatal = 0;
844 <        simError();
845 <        rsw = 0.85 * rcut;
846 <      } else{
847 <        rsw = simParams_->getSwitchingRadius();
848 <      }
849 <
850 <    } else {
851 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
852 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
853 <        
854 <      if (simParams_->haveCutoffRadius()) {
855 <        rcut = simParams_->getCutoffRadius();
856 <      } else {
857 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
858 <        rcut = calcMaxCutoffRadius();
859 <      }
860 <
861 <      if (simParams_->haveSwitchingRadius()) {
862 <        rsw  = simParams_->getSwitchingRadius();
863 <      } else {
864 <        rsw = rcut;
865 <      }
866 <    
867 <    }
868 <  }
869 <
870 <  void SimInfo::setupCutoff() {    
871 <    getCutoff(rcut_, rsw_);    
872 <    double rnblist = rcut_ + 1; // skin of neighbor list
873 <
874 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
875 <    
876 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
877 <    if (simParams_->haveCutoffPolicy()) {
878 <      std::string myPolicy = simParams_->getCutoffPolicy();
879 <      toUpper(myPolicy);
880 <      if (myPolicy == "MIX") {
881 <        cp = MIX_CUTOFF_POLICY;
882 <      } else {
883 <        if (myPolicy == "MAX") {
884 <          cp = MAX_CUTOFF_POLICY;
885 <        } else {
886 <          if (myPolicy == "TRADITIONAL") {            
887 <            cp = TRADITIONAL_CUTOFF_POLICY;
888 <          } else {
889 <            // throw error        
890 <            sprintf( painCave.errMsg,
891 <                     "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
892 <            painCave.isFatal = 1;
893 <            simError();
894 <          }    
895 <        }          
896 <      }
897 <    }
898 <
899 <
900 <    if (simParams_->haveSkinThickness()) {
901 <      double skinThickness = simParams_->getSkinThickness();
902 <    }
903 <
904 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
905 <    // also send cutoff notification to electrostatics
906 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
907 <  }
908 <
909 <  void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
910 <    
911 <    int errorOut;
912 <    int esm =  NONE;
913 <    int sm = UNDAMPED;
914 <    double alphaVal;
915 <    double dielectric;
916 <
917 <    errorOut = isError;
918 <    alphaVal = simParams_->getDampingAlpha();
919 <    dielectric = simParams_->getDielectric();
920 <
921 <    if (simParams_->haveElectrostaticSummationMethod()) {
922 <      std::string myMethod = simParams_->getElectrostaticSummationMethod();
923 <      toUpper(myMethod);
924 <      if (myMethod == "NONE") {
925 <        esm = NONE;
926 <      } else {
927 <        if (myMethod == "SWITCHING_FUNCTION") {
928 <          esm = SWITCHING_FUNCTION;
929 <        } else {
930 <          if (myMethod == "SHIFTED_POTENTIAL") {
931 <            esm = SHIFTED_POTENTIAL;
932 <          } else {
933 <            if (myMethod == "SHIFTED_FORCE") {            
934 <              esm = SHIFTED_FORCE;
935 <            } else {
936 <              if (myMethod == "REACTION_FIELD") {            
937 <                esm = REACTION_FIELD;
938 <              } else {
939 <                // throw error        
940 <                sprintf( painCave.errMsg,
941 <                         "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"shifted_potential\", \"shifted_force\", or \"reaction_field\".", myMethod.c_str() );
942 <                painCave.isFatal = 1;
943 <                simError();
944 <              }    
945 <            }          
946 <          }
947 <        }
948 <      }
949 <    }
950 <    
951 <    if (simParams_->haveElectrostaticScreeningMethod()) {
952 <      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
953 <      toUpper(myScreen);
954 <      if (myScreen == "UNDAMPED") {
955 <        sm = UNDAMPED;
956 <      } else {
957 <        if (myScreen == "DAMPED") {
958 <          sm = DAMPED;
959 <          if (!simParams_->haveDampingAlpha()) {
960 <            //throw error
961 <            sprintf( painCave.errMsg,
962 <                     "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used.", alphaVal);
963 <            painCave.isFatal = 0;
964 <            simError();
965 <          }
966 <        } else {
967 <          // throw error        
968 <          sprintf( painCave.errMsg,
969 <                   "SimInfo error: Unknown electrostaticScreeningMethod. (Input file specified %s .)\n\telectrostaticScreeningMethod must be one of: \"undamped\" or \"damped\".", myScreen.c_str() );
970 <          painCave.isFatal = 1;
971 <          simError();
972 <        }
973 <      }
974 <    }
975 <    
976 <    // let's pass some summation method variables to fortran
977 <    setElectrostaticSummationMethod( &esm );
978 <    setScreeningMethod( &sm );
979 <    setDampingAlpha( &alphaVal );
980 <    setReactionFieldDielectric( &dielectric );
981 <    initFortranFF( &esm, &errorOut );
982 <  }
983 <
984 <  void SimInfo::setupSwitchingFunction() {    
985 <    int ft = CUBIC;
986 <
987 <    if (simParams_->haveSwitchingFunctionType()) {
988 <      std::string funcType = simParams_->getSwitchingFunctionType();
989 <      toUpper(funcType);
990 <      if (funcType == "CUBIC") {
991 <        ft = CUBIC;
992 <      } else {
993 <        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
994 <          ft = FIFTH_ORDER_POLY;
995 <        } else {
996 <          // throw error        
997 <          sprintf( painCave.errMsg,
998 <                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
999 <          painCave.isFatal = 1;
1000 <          simError();
1001 <        }          
1002 <      }
1003 <    }
1004 <
1005 <    // send switching function notification to switcheroo
1006 <    setFunctionType(&ft);
1007 <
900 >    topologyDone_ = true;
901    }
902  
903    void SimInfo::addProperty(GenericData* genData) {
904      properties_.addProperty(genData);  
905    }
906  
907 <  void SimInfo::removeProperty(const std::string& propName) {
907 >  void SimInfo::removeProperty(const string& propName) {
908      properties_.removeProperty(propName);  
909    }
910  
# Line 1019 | Line 912 | namespace oopse {
912      properties_.clearProperties();
913    }
914  
915 <  std::vector<std::string> SimInfo::getPropertyNames() {
915 >  vector<string> SimInfo::getPropertyNames() {
916      return properties_.getPropertyNames();  
917    }
918        
919 <  std::vector<GenericData*> SimInfo::getProperties() {
919 >  vector<GenericData*> SimInfo::getProperties() {
920      return properties_.getProperties();
921    }
922  
923 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
923 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
924      return properties_.getPropertyByName(propName);
925    }
926  
# Line 1041 | Line 934 | namespace oopse {
934      Molecule* mol;
935      RigidBody* rb;
936      Atom* atom;
937 +    CutoffGroup* cg;
938      SimInfo::MoleculeIterator mi;
939      Molecule::RigidBodyIterator rbIter;
940 <    Molecule::AtomIterator atomIter;;
940 >    Molecule::AtomIterator atomIter;
941 >    Molecule::CutoffGroupIterator cgIter;
942  
943      for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
944          
# Line 1054 | Line 949 | namespace oopse {
949        for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
950          rb->setSnapshotManager(sman_);
951        }
952 +
953 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
954 +        cg->setSnapshotManager(sman_);
955 +      }
956      }    
957      
958    }
# Line 1063 | Line 962 | namespace oopse {
962      Molecule* mol;
963  
964      Vector3d comVel(0.0);
965 <    double totalMass = 0.0;
965 >    RealType totalMass = 0.0;
966      
967  
968      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
969 <      double mass = mol->getMass();
969 >      RealType mass = mol->getMass();
970        totalMass += mass;
971        comVel += mass * mol->getComVel();
972      }  
973  
974   #ifdef IS_MPI
975 <    double tmpMass = totalMass;
975 >    RealType tmpMass = totalMass;
976      Vector3d tmpComVel(comVel);    
977 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
978 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
977 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
978 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
979   #endif
980  
981      comVel /= totalMass;
# Line 1089 | Line 988 | namespace oopse {
988      Molecule* mol;
989  
990      Vector3d com(0.0);
991 <    double totalMass = 0.0;
991 >    RealType totalMass = 0.0;
992      
993      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
994 <      double mass = mol->getMass();
994 >      RealType mass = mol->getMass();
995        totalMass += mass;
996        com += mass * mol->getCom();
997      }  
998  
999   #ifdef IS_MPI
1000 <    double tmpMass = totalMass;
1000 >    RealType tmpMass = totalMass;
1001      Vector3d tmpCom(com);    
1002 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1003 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1002 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1003 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1004   #endif
1005  
1006      com /= totalMass;
# Line 1110 | Line 1009 | namespace oopse {
1009  
1010    }        
1011  
1012 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1012 >  ostream& operator <<(ostream& o, SimInfo& info) {
1013  
1014      return o;
1015    }
# Line 1125 | Line 1024 | namespace oopse {
1024        Molecule* mol;
1025        
1026      
1027 <      double totalMass = 0.0;
1027 >      RealType totalMass = 0.0;
1028      
1029  
1030        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1031 <         double mass = mol->getMass();
1031 >         RealType mass = mol->getMass();
1032           totalMass += mass;
1033           com += mass * mol->getCom();
1034           comVel += mass * mol->getComVel();          
1035        }  
1036        
1037   #ifdef IS_MPI
1038 <      double tmpMass = totalMass;
1038 >      RealType tmpMass = totalMass;
1039        Vector3d tmpCom(com);  
1040        Vector3d tmpComVel(comVel);
1041 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1042 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1043 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1041 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1042 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1043 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1044   #endif
1045        
1046        com /= totalMass;
# Line 1153 | Line 1052 | namespace oopse {
1052  
1053  
1054         [  Ixx -Ixy  -Ixz ]
1055 <  J =| -Iyx  Iyy  -Iyz |
1055 >    J =| -Iyx  Iyy  -Iyz |
1056         [ -Izx -Iyz   Izz ]
1057      */
1058  
1059     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1060        
1061  
1062 <      double xx = 0.0;
1063 <      double yy = 0.0;
1064 <      double zz = 0.0;
1065 <      double xy = 0.0;
1066 <      double xz = 0.0;
1067 <      double yz = 0.0;
1062 >      RealType xx = 0.0;
1063 >      RealType yy = 0.0;
1064 >      RealType zz = 0.0;
1065 >      RealType xy = 0.0;
1066 >      RealType xz = 0.0;
1067 >      RealType yz = 0.0;
1068        Vector3d com(0.0);
1069        Vector3d comVel(0.0);
1070        
# Line 1177 | Line 1076 | namespace oopse {
1076        Vector3d thisq(0.0);
1077        Vector3d thisv(0.0);
1078  
1079 <      double thisMass = 0.0;
1079 >      RealType thisMass = 0.0;
1080      
1081        
1082        
# Line 1215 | Line 1114 | namespace oopse {
1114   #ifdef IS_MPI
1115        Mat3x3d tmpI(inertiaTensor);
1116        Vector3d tmpAngMom;
1117 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1118 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1117 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1118 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1119   #endif
1120                
1121        return;
# Line 1237 | Line 1136 | namespace oopse {
1136        Vector3d thisr(0.0);
1137        Vector3d thisp(0.0);
1138        
1139 <      double thisMass;
1139 >      RealType thisMass;
1140        
1141        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1142          thisMass = mol->getMass();
# Line 1250 | Line 1149 | namespace oopse {
1149        
1150   #ifdef IS_MPI
1151        Vector3d tmpAngMom;
1152 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1152 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1153   #endif
1154        
1155        return angularMomentum;
1156     }
1157    
1158 <  
1159 < }//end namespace oopse
1158 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1159 >    return IOIndexToIntegrableObject.at(index);
1160 >  }
1161 >  
1162 >  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1163 >    IOIndexToIntegrableObject= v;
1164 >  }
1165  
1166 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1167 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1168 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1169 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1170 +  */
1171 +  void SimInfo::getGyrationalVolume(RealType &volume){
1172 +    Mat3x3d intTensor;
1173 +    RealType det;
1174 +    Vector3d dummyAngMom;
1175 +    RealType sysconstants;
1176 +    RealType geomCnst;
1177 +
1178 +    geomCnst = 3.0/2.0;
1179 +    /* Get the inertial tensor and angular momentum for free*/
1180 +    getInertiaTensor(intTensor,dummyAngMom);
1181 +    
1182 +    det = intTensor.determinant();
1183 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1184 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1185 +    return;
1186 +  }
1187 +
1188 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1189 +    Mat3x3d intTensor;
1190 +    Vector3d dummyAngMom;
1191 +    RealType sysconstants;
1192 +    RealType geomCnst;
1193 +
1194 +    geomCnst = 3.0/2.0;
1195 +    /* Get the inertial tensor and angular momentum for free*/
1196 +    getInertiaTensor(intTensor,dummyAngMom);
1197 +    
1198 +    detI = intTensor.determinant();
1199 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1200 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1201 +    return;
1202 +  }
1203 + /*
1204 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1205 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1206 +      sdByGlobalIndex_ = v;
1207 +    }
1208 +
1209 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1210 +      //assert(index < nAtoms_ + nRigidBodies_);
1211 +      return sdByGlobalIndex_.at(index);
1212 +    }  
1213 + */  
1214 +  int SimInfo::getNGlobalConstraints() {
1215 +    int nGlobalConstraints;
1216 + #ifdef IS_MPI
1217 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1218 +                  MPI_COMM_WORLD);    
1219 + #else
1220 +    nGlobalConstraints =  nConstraints_;
1221 + #endif
1222 +    return nGlobalConstraints;
1223 +  }
1224 +
1225 + }//end namespace OpenMD
1226 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 726 by chrisfen, Fri Nov 11 15:22:11 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines