ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 1 | Line 1
1 < #include <stdlib.h>
2 < #include <string.h>
3 < #include <math.h>
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Vardeman & Gezelter, in progress (2009).                        
40 > */
41 >
42 > /**
43 > * @file SimInfo.cpp
44 > * @author    tlin
45 > * @date  11/02/2004
46 > * @version 1.0
47 > */
48  
49 < #include <iostream>
50 < using namespace std;
49 > #include <algorithm>
50 > #include <set>
51 > #include <map>
52  
53   #include "brains/SimInfo.hpp"
54 < #define __C
55 < #include "brains/fSimulation.h"
54 > #include "math/Vector3.hpp"
55 > #include "primitives/Molecule.hpp"
56 > #include "primitives/StuntDouble.hpp"
57 > #include "utils/MemoryUtils.hpp"
58   #include "utils/simError.h"
59 < #include "UseTheForce/DarkSide/simulation_interface.h"
60 < #include "UseTheForce/notifyCutoffs_interface.h"
59 > #include "selection/SelectionManager.hpp"
60 > #include "io/ForceFieldOptions.hpp"
61 > #include "UseTheForce/ForceField.hpp"
62 > #include "nonbonded/SwitchingFunction.hpp"
63  
64 < //#include "UseTheForce/fortranWrappers.hpp"
64 > using namespace std;
65 > namespace OpenMD {
66 >  
67 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
68 >    forceField_(ff), simParams_(simParams),
69 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
70 >    nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
71 >    nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
72 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
73 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
74 >    nConstraints_(0), sman_(NULL), topologyDone_(false),
75 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
76 >    
77 >    MoleculeStamp* molStamp;
78 >    int nMolWithSameStamp;
79 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
80 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
81 >    CutoffGroupStamp* cgStamp;    
82 >    RigidBodyStamp* rbStamp;
83 >    int nRigidAtoms = 0;
84 >    
85 >    vector<Component*> components = simParams->getComponents();
86 >    
87 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
88 >      molStamp = (*i)->getMoleculeStamp();
89 >      nMolWithSameStamp = (*i)->getNMol();
90 >      
91 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
92 >      
93 >      //calculate atoms in molecules
94 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
95 >      
96 >      //calculate atoms in cutoff groups
97 >      int nAtomsInGroups = 0;
98 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
99 >      
100 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
101 >        cgStamp = molStamp->getCutoffGroupStamp(j);
102 >        nAtomsInGroups += cgStamp->getNMembers();
103 >      }
104 >      
105 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
106 >      
107 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
108 >      
109 >      //calculate atoms in rigid bodies
110 >      int nAtomsInRigidBodies = 0;
111 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
112 >      
113 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
114 >        rbStamp = molStamp->getRigidBodyStamp(j);
115 >        nAtomsInRigidBodies += rbStamp->getNMembers();
116 >      }
117 >      
118 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
119 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
120 >      
121 >    }
122 >    
123 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
124 >    //group therefore the total number of cutoff groups in the system is
125 >    //equal to the total number of atoms minus number of atoms belong to
126 >    //cutoff group defined in meta-data file plus the number of cutoff
127 >    //groups defined in meta-data file
128  
129 < #include "math/MatVec3.h"
129 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
130 >    
131 >    //every free atom (atom does not belong to rigid bodies) is an
132 >    //integrable object therefore the total number of integrable objects
133 >    //in the system is equal to the total number of atoms minus number of
134 >    //atoms belong to rigid body defined in meta-data file plus the number
135 >    //of rigid bodies defined in meta-data file
136 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
137 >      + nGlobalRigidBodies_;
138 >    
139 >    nGlobalMols_ = molStampIds_.size();
140 >    molToProcMap_.resize(nGlobalMols_);
141 >  }
142 >  
143 >  SimInfo::~SimInfo() {
144 >    map<int, Molecule*>::iterator i;
145 >    for (i = molecules_.begin(); i != molecules_.end(); ++i) {
146 >      delete i->second;
147 >    }
148 >    molecules_.clear();
149 >      
150 >    delete sman_;
151 >    delete simParams_;
152 >    delete forceField_;
153 >  }
154  
19 #ifdef IS_MPI
20 #include "brains/mpiSimulation.hpp"
21 #endif
155  
156 < inline double roundMe( double x ){
157 <  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
158 < }
159 <          
160 < inline double min( double a, double b ){
161 <  return (a < b ) ? a : b;
162 < }
156 >  bool SimInfo::addMolecule(Molecule* mol) {
157 >    MoleculeIterator i;
158 >    
159 >    i = molecules_.find(mol->getGlobalIndex());
160 >    if (i == molecules_.end() ) {
161 >      
162 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
163 >      
164 >      nAtoms_ += mol->getNAtoms();
165 >      nBonds_ += mol->getNBonds();
166 >      nBends_ += mol->getNBends();
167 >      nTorsions_ += mol->getNTorsions();
168 >      nInversions_ += mol->getNInversions();
169 >      nRigidBodies_ += mol->getNRigidBodies();
170 >      nIntegrableObjects_ += mol->getNIntegrableObjects();
171 >      nCutoffGroups_ += mol->getNCutoffGroups();
172 >      nConstraints_ += mol->getNConstraintPairs();
173 >      
174 >      addInteractionPairs(mol);
175 >      
176 >      return true;
177 >    } else {
178 >      return false;
179 >    }
180 >  }
181 >  
182 >  bool SimInfo::removeMolecule(Molecule* mol) {
183 >    MoleculeIterator i;
184 >    i = molecules_.find(mol->getGlobalIndex());
185  
186 < SimInfo* currentInfo;
186 >    if (i != molecules_.end() ) {
187  
188 < SimInfo::SimInfo(){
188 >      assert(mol == i->second);
189 >        
190 >      nAtoms_ -= mol->getNAtoms();
191 >      nBonds_ -= mol->getNBonds();
192 >      nBends_ -= mol->getNBends();
193 >      nTorsions_ -= mol->getNTorsions();
194 >      nInversions_ -= mol->getNInversions();
195 >      nRigidBodies_ -= mol->getNRigidBodies();
196 >      nIntegrableObjects_ -= mol->getNIntegrableObjects();
197 >      nCutoffGroups_ -= mol->getNCutoffGroups();
198 >      nConstraints_ -= mol->getNConstraintPairs();
199  
200 <  n_constraints = 0;
201 <  nZconstraints = 0;
37 <  n_oriented = 0;
38 <  n_dipoles = 0;
39 <  ndf = 0;
40 <  ndfRaw = 0;
41 <  nZconstraints = 0;
42 <  the_integrator = NULL;
43 <  setTemp = 0;
44 <  thermalTime = 0.0;
45 <  currentTime = 0.0;
46 <  rCut = 0.0;
47 <  rSw = 0.0;
200 >      removeInteractionPairs(mol);
201 >      molecules_.erase(mol->getGlobalIndex());
202  
203 <  haveRcut = 0;
204 <  haveRsw = 0;
205 <  boxIsInit = 0;
206 <  
207 <  resetTime = 1e99;
203 >      delete mol;
204 >        
205 >      return true;
206 >    } else {
207 >      return false;
208 >    }
209 >  }    
210  
211 <  orthoRhombic = 0;
212 <  orthoTolerance = 1E-6;
213 <  useInitXSstate = true;
211 >        
212 >  Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
213 >    i = molecules_.begin();
214 >    return i == molecules_.end() ? NULL : i->second;
215 >  }    
216  
217 <  usePBC = 0;
218 <  useDirectionalAtoms = 0;
219 <  useLennardJones = 0;
220 <  useElectrostatics = 0;
63 <  useCharges = 0;
64 <  useDipoles = 0;
65 <  useSticky = 0;
66 <  useGayBerne = 0;
67 <  useEAM = 0;
68 <  useShapes = 0;
69 <  useFLARB = 0;
217 >  Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
218 >    ++i;
219 >    return i == molecules_.end() ? NULL : i->second;    
220 >  }
221  
71  useSolidThermInt = 0;
72  useLiquidThermInt = 0;
222  
223 <  haveCutoffGroups = false;
223 >  void SimInfo::calcNdf() {
224 >    int ndf_local;
225 >    MoleculeIterator i;
226 >    vector<StuntDouble*>::iterator j;
227 >    Molecule* mol;
228 >    StuntDouble* integrableObject;
229  
230 <  excludes = Exclude::Instance();
230 >    ndf_local = 0;
231 >    
232 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
233 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
234 >           integrableObject = mol->nextIntegrableObject(j)) {
235  
236 <  myConfiguration = new SimState();
236 >        ndf_local += 3;
237  
238 <  has_minimizer = false;
239 <  the_minimizer =NULL;
238 >        if (integrableObject->isDirectional()) {
239 >          if (integrableObject->isLinear()) {
240 >            ndf_local += 2;
241 >          } else {
242 >            ndf_local += 3;
243 >          }
244 >        }
245 >            
246 >      }
247 >    }
248 >    
249 >    // n_constraints is local, so subtract them on each processor
250 >    ndf_local -= nConstraints_;
251  
252 <  ngroup = 0;
252 > #ifdef IS_MPI
253 >    MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
254 > #else
255 >    ndf_ = ndf_local;
256 > #endif
257  
258 < }
258 >    // nZconstraints_ is global, as are the 3 COM translations for the
259 >    // entire system:
260 >    ndf_ = ndf_ - 3 - nZconstraint_;
261  
262 +  }
263  
264 < SimInfo::~SimInfo(){
265 <
266 <  delete myConfiguration;
267 <
268 <  map<string, GenericData*>::iterator i;
264 >  int SimInfo::getFdf() {
265 > #ifdef IS_MPI
266 >    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
267 > #else
268 >    fdf_ = fdf_local;
269 > #endif
270 >    return fdf_;
271 >  }
272    
273 <  for(i = properties.begin(); i != properties.end(); i++)
274 <    delete (*i).second;
273 >  unsigned int SimInfo::getNLocalCutoffGroups(){
274 >    int nLocalCutoffAtoms = 0;
275 >    Molecule* mol;
276 >    MoleculeIterator mi;
277 >    CutoffGroup* cg;
278 >    Molecule::CutoffGroupIterator ci;
279 >    
280 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
281 >      
282 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
283 >           cg = mol->nextCutoffGroup(ci)) {
284 >        nLocalCutoffAtoms += cg->getNumAtom();
285 >        
286 >      }        
287 >    }
288 >    
289 >    return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_;
290 >  }
291 >    
292 >  void SimInfo::calcNdfRaw() {
293 >    int ndfRaw_local;
294  
295 < }
295 >    MoleculeIterator i;
296 >    vector<StuntDouble*>::iterator j;
297 >    Molecule* mol;
298 >    StuntDouble* integrableObject;
299  
300 < void SimInfo::setBox(double newBox[3]) {
301 <  
302 <  int i, j;
303 <  double tempMat[3][3];
300 >    // Raw degrees of freedom that we have to set
301 >    ndfRaw_local = 0;
302 >    
303 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
304 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
305 >           integrableObject = mol->nextIntegrableObject(j)) {
306  
307 <  for(i=0; i<3; i++)
105 <    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
307 >        ndfRaw_local += 3;
308  
309 <  tempMat[0][0] = newBox[0];
310 <  tempMat[1][1] = newBox[1];
311 <  tempMat[2][2] = newBox[2];
312 <
313 <  setBoxM( tempMat );
314 <
315 < }
316 <
317 < void SimInfo::setBoxM( double theBox[3][3] ){
116 <  
117 <  int i, j;
118 <  double FortranHmat[9]; // to preserve compatibility with Fortran the
119 <                         // ordering in the array is as follows:
120 <                         // [ 0 3 6 ]
121 <                         // [ 1 4 7 ]
122 <                         // [ 2 5 8 ]
123 <  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
124 <
125 <  if( !boxIsInit ) boxIsInit = 1;
126 <
127 <  for(i=0; i < 3; i++)
128 <    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
129 <  
130 <  calcBoxL();
131 <  calcHmatInv();
132 <
133 <  for(i=0; i < 3; i++) {
134 <    for (j=0; j < 3; j++) {
135 <      FortranHmat[3*j + i] = Hmat[i][j];
136 <      FortranHmatInv[3*j + i] = HmatInv[i][j];
309 >        if (integrableObject->isDirectional()) {
310 >          if (integrableObject->isLinear()) {
311 >            ndfRaw_local += 2;
312 >          } else {
313 >            ndfRaw_local += 3;
314 >          }
315 >        }
316 >            
317 >      }
318      }
319 +    
320 + #ifdef IS_MPI
321 +    MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
322 + #else
323 +    ndfRaw_ = ndfRaw_local;
324 + #endif
325    }
326  
327 <  setFortranBox(FortranHmat, FortranHmatInv, &orthoRhombic);
328 <
142 < }
143 <
327 >  void SimInfo::calcNdfTrans() {
328 >    int ndfTrans_local;
329  
330 < void SimInfo::getBoxM (double theBox[3][3]) {
330 >    ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
331  
147  int i, j;
148  for(i=0; i<3; i++)
149    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
150 }
332  
333 + #ifdef IS_MPI
334 +    MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
335 + #else
336 +    ndfTrans_ = ndfTrans_local;
337 + #endif
338  
339 < void SimInfo::scaleBox(double scale) {
340 <  double theBox[3][3];
341 <  int i, j;
339 >    ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
340 >
341 >  }
342  
343 <  // cerr << "Scaling box by " << scale << "\n";
343 >  void SimInfo::addInteractionPairs(Molecule* mol) {
344 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
345 >    vector<Bond*>::iterator bondIter;
346 >    vector<Bend*>::iterator bendIter;
347 >    vector<Torsion*>::iterator torsionIter;
348 >    vector<Inversion*>::iterator inversionIter;
349 >    Bond* bond;
350 >    Bend* bend;
351 >    Torsion* torsion;
352 >    Inversion* inversion;
353 >    int a;
354 >    int b;
355 >    int c;
356 >    int d;
357  
358 <  for(i=0; i<3; i++)
359 <    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
358 >    // atomGroups can be used to add special interaction maps between
359 >    // groups of atoms that are in two separate rigid bodies.
360 >    // However, most site-site interactions between two rigid bodies
361 >    // are probably not special, just the ones between the physically
362 >    // bonded atoms.  Interactions *within* a single rigid body should
363 >    // always be excluded.  These are done at the bottom of this
364 >    // function.
365  
366 <  setBoxM(theBox);
367 <
368 < }
369 <
370 < void SimInfo::calcHmatInv( void ) {
371 <  
372 <  int oldOrtho;
373 <  int i,j;
374 <  double smallDiag;
375 <  double tol;
376 <  double sanity[3][3];
377 <
378 <  invertMat3( Hmat, HmatInv );
379 <
380 <  // check to see if Hmat is orthorhombic
381 <  
382 <  oldOrtho = orthoRhombic;
383 <
384 <  smallDiag = fabs(Hmat[0][0]);
385 <  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
386 <  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
387 <  tol = smallDiag * orthoTolerance;
388 <
389 <  orthoRhombic = 1;
186 <  
187 <  for (i = 0; i < 3; i++ ) {
188 <    for (j = 0 ; j < 3; j++) {
189 <      if (i != j) {
190 <        if (orthoRhombic) {
191 <          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
192 <        }        
366 >    map<int, set<int> > atomGroups;
367 >    Molecule::RigidBodyIterator rbIter;
368 >    RigidBody* rb;
369 >    Molecule::IntegrableObjectIterator ii;
370 >    StuntDouble* integrableObject;
371 >    
372 >    for (integrableObject = mol->beginIntegrableObject(ii);
373 >         integrableObject != NULL;
374 >         integrableObject = mol->nextIntegrableObject(ii)) {
375 >      
376 >      if (integrableObject->isRigidBody()) {
377 >        rb = static_cast<RigidBody*>(integrableObject);
378 >        vector<Atom*> atoms = rb->getAtoms();
379 >        set<int> rigidAtoms;
380 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
381 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 >        }
383 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
384 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 >        }      
386 >      } else {
387 >        set<int> oneAtomSet;
388 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390        }
391 <    }
392 <  }
391 >    }  
392 >          
393 >    for (bond= mol->beginBond(bondIter); bond != NULL;
394 >         bond = mol->nextBond(bondIter)) {
395  
396 <  if( oldOrtho != orthoRhombic ){
396 >      a = bond->getAtomA()->getGlobalIndex();
397 >      b = bond->getAtomB()->getGlobalIndex();  
398      
399 <    if( orthoRhombic ) {
400 <      sprintf( painCave.errMsg,
401 <               "OOPSE is switching from the default Non-Orthorhombic\n"
402 <               "\tto the faster Orthorhombic periodic boundary computations.\n"
403 <               "\tThis is usually a good thing, but if you wan't the\n"
204 <               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
205 <               "\tvariable ( currently set to %G ) smaller.\n",
206 <               orthoTolerance);
207 <      painCave.severity = OOPSE_INFO;
208 <      simError();
399 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
400 >        oneTwoInteractions_.addPair(a, b);
401 >      } else {
402 >        excludedInteractions_.addPair(a, b);
403 >      }
404      }
210    else {
211      sprintf( painCave.errMsg,
212               "OOPSE is switching from the faster Orthorhombic to the more\n"
213               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
214               "\tThis is usually because the box has deformed under\n"
215               "\tNPTf integration. If you wan't to live on the edge with\n"
216               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
217               "\tvariable ( currently set to %G ) larger.\n",
218               orthoTolerance);
219      painCave.severity = OOPSE_WARNING;
220      simError();
221    }
222  }
223 }
405  
406 < void SimInfo::calcBoxL( void ){
406 >    for (bend= mol->beginBend(bendIter); bend != NULL;
407 >         bend = mol->nextBend(bendIter)) {
408  
409 <  double dx, dy, dz, dsq;
409 >      a = bend->getAtomA()->getGlobalIndex();
410 >      b = bend->getAtomB()->getGlobalIndex();        
411 >      c = bend->getAtomC()->getGlobalIndex();
412 >      
413 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
414 >        oneTwoInteractions_.addPair(a, b);      
415 >        oneTwoInteractions_.addPair(b, c);
416 >      } else {
417 >        excludedInteractions_.addPair(a, b);
418 >        excludedInteractions_.addPair(b, c);
419 >      }
420  
421 <  // boxVol = Determinant of Hmat
421 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
422 >        oneThreeInteractions_.addPair(a, c);      
423 >      } else {
424 >        excludedInteractions_.addPair(a, c);
425 >      }
426 >    }
427  
428 <  boxVol = matDet3( Hmat );
428 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
429 >         torsion = mol->nextTorsion(torsionIter)) {
430  
431 <  // boxLx
432 <  
433 <  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
434 <  dsq = dx*dx + dy*dy + dz*dz;
237 <  boxL[0] = sqrt( dsq );
238 <  //maxCutoff = 0.5 * boxL[0];
431 >      a = torsion->getAtomA()->getGlobalIndex();
432 >      b = torsion->getAtomB()->getGlobalIndex();        
433 >      c = torsion->getAtomC()->getGlobalIndex();        
434 >      d = torsion->getAtomD()->getGlobalIndex();      
435  
436 <  // boxLy
437 <  
438 <  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
439 <  dsq = dx*dx + dy*dy + dz*dz;
440 <  boxL[1] = sqrt( dsq );
441 <  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
436 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
437 >        oneTwoInteractions_.addPair(a, b);      
438 >        oneTwoInteractions_.addPair(b, c);
439 >        oneTwoInteractions_.addPair(c, d);
440 >      } else {
441 >        excludedInteractions_.addPair(a, b);
442 >        excludedInteractions_.addPair(b, c);
443 >        excludedInteractions_.addPair(c, d);
444 >      }
445  
446 +      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
447 +        oneThreeInteractions_.addPair(a, c);      
448 +        oneThreeInteractions_.addPair(b, d);      
449 +      } else {
450 +        excludedInteractions_.addPair(a, c);
451 +        excludedInteractions_.addPair(b, d);
452 +      }
453  
454 <  // boxLz
455 <  
456 <  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
457 <  dsq = dx*dx + dy*dy + dz*dz;
458 <  boxL[2] = sqrt( dsq );
459 <  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
454 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
455 >        oneFourInteractions_.addPair(a, d);      
456 >      } else {
457 >        excludedInteractions_.addPair(a, d);
458 >      }
459 >    }
460  
461 <  //calculate the max cutoff
462 <  maxCutoff =  calcMaxCutOff();
257 <  
258 <  checkCutOffs();
461 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
462 >         inversion = mol->nextInversion(inversionIter)) {
463  
464 < }
464 >      a = inversion->getAtomA()->getGlobalIndex();
465 >      b = inversion->getAtomB()->getGlobalIndex();        
466 >      c = inversion->getAtomC()->getGlobalIndex();        
467 >      d = inversion->getAtomD()->getGlobalIndex();        
468  
469 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
470 +        oneTwoInteractions_.addPair(a, b);      
471 +        oneTwoInteractions_.addPair(a, c);
472 +        oneTwoInteractions_.addPair(a, d);
473 +      } else {
474 +        excludedInteractions_.addPair(a, b);
475 +        excludedInteractions_.addPair(a, c);
476 +        excludedInteractions_.addPair(a, d);
477 +      }
478  
479 < double SimInfo::calcMaxCutOff(){
479 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
480 >        oneThreeInteractions_.addPair(b, c);    
481 >        oneThreeInteractions_.addPair(b, d);    
482 >        oneThreeInteractions_.addPair(c, d);      
483 >      } else {
484 >        excludedInteractions_.addPair(b, c);
485 >        excludedInteractions_.addPair(b, d);
486 >        excludedInteractions_.addPair(c, d);
487 >      }
488 >    }
489  
490 <  double ri[3], rj[3], rk[3];
491 <  double rij[3], rjk[3], rki[3];
492 <  double minDist;
490 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
491 >         rb = mol->nextRigidBody(rbIter)) {
492 >      vector<Atom*> atoms = rb->getAtoms();
493 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
494 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
495 >          a = atoms[i]->getGlobalIndex();
496 >          b = atoms[j]->getGlobalIndex();
497 >          excludedInteractions_.addPair(a, b);
498 >        }
499 >      }
500 >    }        
501  
502 <  ri[0] = Hmat[0][0];
270 <  ri[1] = Hmat[1][0];
271 <  ri[2] = Hmat[2][0];
502 >  }
503  
504 <  rj[0] = Hmat[0][1];
505 <  rj[1] = Hmat[1][1];
506 <  rj[2] = Hmat[2][1];
504 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
505 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
506 >    vector<Bond*>::iterator bondIter;
507 >    vector<Bend*>::iterator bendIter;
508 >    vector<Torsion*>::iterator torsionIter;
509 >    vector<Inversion*>::iterator inversionIter;
510 >    Bond* bond;
511 >    Bend* bend;
512 >    Torsion* torsion;
513 >    Inversion* inversion;
514 >    int a;
515 >    int b;
516 >    int c;
517 >    int d;
518  
519 <  rk[0] = Hmat[0][2];
520 <  rk[1] = Hmat[1][2];
521 <  rk[2] = Hmat[2][2];
519 >    map<int, set<int> > atomGroups;
520 >    Molecule::RigidBodyIterator rbIter;
521 >    RigidBody* rb;
522 >    Molecule::IntegrableObjectIterator ii;
523 >    StuntDouble* integrableObject;
524      
525 <  crossProduct3(ri, rj, rij);
526 <  distXY = dotProduct3(rk,rij) / norm3(rij);
525 >    for (integrableObject = mol->beginIntegrableObject(ii);
526 >         integrableObject != NULL;
527 >         integrableObject = mol->nextIntegrableObject(ii)) {
528 >      
529 >      if (integrableObject->isRigidBody()) {
530 >        rb = static_cast<RigidBody*>(integrableObject);
531 >        vector<Atom*> atoms = rb->getAtoms();
532 >        set<int> rigidAtoms;
533 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
534 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
535 >        }
536 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
537 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
538 >        }      
539 >      } else {
540 >        set<int> oneAtomSet;
541 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
542 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
543 >      }
544 >    }  
545  
546 <  crossProduct3(rj,rk, rjk);
547 <  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
546 >    for (bond= mol->beginBond(bondIter); bond != NULL;
547 >         bond = mol->nextBond(bondIter)) {
548 >      
549 >      a = bond->getAtomA()->getGlobalIndex();
550 >      b = bond->getAtomB()->getGlobalIndex();  
551 >    
552 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
553 >        oneTwoInteractions_.removePair(a, b);
554 >      } else {
555 >        excludedInteractions_.removePair(a, b);
556 >      }
557 >    }
558  
559 <  crossProduct3(rk,ri, rki);
560 <  distZX = dotProduct3(rj,rki) / norm3(rki);
559 >    for (bend= mol->beginBend(bendIter); bend != NULL;
560 >         bend = mol->nextBend(bendIter)) {
561  
562 <  minDist = min(min(distXY, distYZ), distZX);
563 <  return minDist/2;
564 <  
565 < }
562 >      a = bend->getAtomA()->getGlobalIndex();
563 >      b = bend->getAtomB()->getGlobalIndex();        
564 >      c = bend->getAtomC()->getGlobalIndex();
565 >      
566 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
567 >        oneTwoInteractions_.removePair(a, b);      
568 >        oneTwoInteractions_.removePair(b, c);
569 >      } else {
570 >        excludedInteractions_.removePair(a, b);
571 >        excludedInteractions_.removePair(b, c);
572 >      }
573  
574 < void SimInfo::wrapVector( double thePos[3] ){
574 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
575 >        oneThreeInteractions_.removePair(a, c);      
576 >      } else {
577 >        excludedInteractions_.removePair(a, c);
578 >      }
579 >    }
580  
581 <  int i;
582 <  double scaled[3];
581 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
582 >         torsion = mol->nextTorsion(torsionIter)) {
583  
584 <  if( !orthoRhombic ){
585 <    // calc the scaled coordinates.
584 >      a = torsion->getAtomA()->getGlobalIndex();
585 >      b = torsion->getAtomB()->getGlobalIndex();        
586 >      c = torsion->getAtomC()->getGlobalIndex();        
587 >      d = torsion->getAtomD()->getGlobalIndex();      
588    
589 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
590 +        oneTwoInteractions_.removePair(a, b);      
591 +        oneTwoInteractions_.removePair(b, c);
592 +        oneTwoInteractions_.removePair(c, d);
593 +      } else {
594 +        excludedInteractions_.removePair(a, b);
595 +        excludedInteractions_.removePair(b, c);
596 +        excludedInteractions_.removePair(c, d);
597 +      }
598  
599 <    matVecMul3(HmatInv, thePos, scaled);
600 <    
601 <    for(i=0; i<3; i++)
602 <      scaled[i] -= roundMe(scaled[i]);
603 <    
604 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
605 <    
311 <    matVecMul3(Hmat, scaled, thePos);
599 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
600 >        oneThreeInteractions_.removePair(a, c);      
601 >        oneThreeInteractions_.removePair(b, d);      
602 >      } else {
603 >        excludedInteractions_.removePair(a, c);
604 >        excludedInteractions_.removePair(b, d);
605 >      }
606  
607 <  }
608 <  else{
609 <    // calc the scaled coordinates.
610 <    
611 <    for(i=0; i<3; i++)
318 <      scaled[i] = thePos[i]*HmatInv[i][i];
319 <    
320 <    // wrap the scaled coordinates
321 <    
322 <    for(i=0; i<3; i++)
323 <      scaled[i] -= roundMe(scaled[i]);
324 <    
325 <    // calc the wrapped real coordinates from the wrapped scaled coordinates
326 <    
327 <    for(i=0; i<3; i++)
328 <      thePos[i] = scaled[i]*Hmat[i][i];
329 <  }
330 <    
331 < }
332 <
333 <
334 < int SimInfo::getNDF(){
335 <  int ndf_local;
336 <
337 <  ndf_local = 0;
338 <  
339 <  for(int i = 0; i < integrableObjects.size(); i++){
340 <    ndf_local += 3;
341 <    if (integrableObjects[i]->isDirectional()) {
342 <      if (integrableObjects[i]->isLinear())
343 <        ndf_local += 2;
344 <      else
345 <        ndf_local += 3;
607 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
608 >        oneFourInteractions_.removePair(a, d);      
609 >      } else {
610 >        excludedInteractions_.removePair(a, d);
611 >      }
612      }
347  }
613  
614 <  // n_constraints is local, so subtract them on each processor:
614 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
615 >         inversion = mol->nextInversion(inversionIter)) {
616  
617 <  ndf_local -= n_constraints;
617 >      a = inversion->getAtomA()->getGlobalIndex();
618 >      b = inversion->getAtomB()->getGlobalIndex();        
619 >      c = inversion->getAtomC()->getGlobalIndex();        
620 >      d = inversion->getAtomD()->getGlobalIndex();        
621  
622 < #ifdef IS_MPI
623 <  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
624 < #else
625 <  ndf = ndf_local;
626 < #endif
627 <
628 <  // nZconstraints is global, as are the 3 COM translations for the
629 <  // entire system:
622 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
623 >        oneTwoInteractions_.removePair(a, b);      
624 >        oneTwoInteractions_.removePair(a, c);
625 >        oneTwoInteractions_.removePair(a, d);
626 >      } else {
627 >        excludedInteractions_.removePair(a, b);
628 >        excludedInteractions_.removePair(a, c);
629 >        excludedInteractions_.removePair(a, d);
630 >      }
631  
632 <  ndf = ndf - 3 - nZconstraints;
632 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
633 >        oneThreeInteractions_.removePair(b, c);    
634 >        oneThreeInteractions_.removePair(b, d);    
635 >        oneThreeInteractions_.removePair(c, d);      
636 >      } else {
637 >        excludedInteractions_.removePair(b, c);
638 >        excludedInteractions_.removePair(b, d);
639 >        excludedInteractions_.removePair(c, d);
640 >      }
641 >    }
642  
643 <  return ndf;
644 < }
643 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
644 >         rb = mol->nextRigidBody(rbIter)) {
645 >      vector<Atom*> atoms = rb->getAtoms();
646 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
647 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
648 >          a = atoms[i]->getGlobalIndex();
649 >          b = atoms[j]->getGlobalIndex();
650 >          excludedInteractions_.removePair(a, b);
651 >        }
652 >      }
653 >    }        
654 >    
655 >  }
656 >  
657 >  
658 >  void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
659 >    int curStampId;
660 >    
661 >    //index from 0
662 >    curStampId = moleculeStamps_.size();
663  
664 < int SimInfo::getNDFraw() {
665 <  int ndfRaw_local;
664 >    moleculeStamps_.push_back(molStamp);
665 >    molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
666 >  }
667  
370  // Raw degrees of freedom that we have to set
371  ndfRaw_local = 0;
668  
669 <  for(int i = 0; i < integrableObjects.size(); i++){
670 <    ndfRaw_local += 3;
671 <    if (integrableObjects[i]->isDirectional()) {
672 <       if (integrableObjects[i]->isLinear())
673 <        ndfRaw_local += 2;
674 <      else
675 <        ndfRaw_local += 3;
676 <    }
669 >  /**
670 >   * update
671 >   *
672 >   *  Performs the global checks and variable settings after the
673 >   *  objects have been created.
674 >   *
675 >   */
676 >  void SimInfo::update() {  
677 >    setupSimVariables();
678 >    calcNdf();
679 >    calcNdfRaw();
680 >    calcNdfTrans();
681    }
682 +  
683 +  /**
684 +   * getSimulatedAtomTypes
685 +   *
686 +   * Returns an STL set of AtomType* that are actually present in this
687 +   * simulation.  Must query all processors to assemble this information.
688 +   *
689 +   */
690 +  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
691 +    SimInfo::MoleculeIterator mi;
692 +    Molecule* mol;
693 +    Molecule::AtomIterator ai;
694 +    Atom* atom;
695 +    set<AtomType*> atomTypes;
696      
697 +    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
698 +      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
699 +        atomTypes.insert(atom->getAtomType());
700 +      }      
701 +    }    
702 +
703   #ifdef IS_MPI
384  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
385 #else
386  ndfRaw = ndfRaw_local;
387 #endif
704  
705 <  return ndfRaw;
706 < }
705 >    // loop over the found atom types on this processor, and add their
706 >    // numerical idents to a vector:
707  
708 < int SimInfo::getNDFtranslational() {
709 <  int ndfTrans_local;
708 >    vector<int> foundTypes;
709 >    set<AtomType*>::iterator i;
710 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i)
711 >      foundTypes.push_back( (*i)->getIdent() );
712  
713 <  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
713 >    // count_local holds the number of found types on this processor
714 >    int count_local = foundTypes.size();
715  
716 +    // count holds the total number of found types on all processors
717 +    // (some will be redundant with the ones found locally):
718 +    int count;
719 +    MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM);
720  
721 < #ifdef IS_MPI
722 <  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
723 < #else
724 <  ndfTrans = ndfTrans_local;
402 < #endif
721 >    // create a vector to hold the globally found types, and resize it:
722 >    vector<int> ftGlobal;
723 >    ftGlobal.resize(count);
724 >    vector<int> counts;
725  
726 <  ndfTrans = ndfTrans - 3 - nZconstraints;
726 >    int nproc = MPI::COMM_WORLD.Get_size();
727 >    counts.resize(nproc);
728 >    vector<int> disps;
729 >    disps.resize(nproc);
730  
731 <  return ndfTrans;
732 < }
731 >    // now spray out the foundTypes to all the other processors:
732 >    
733 >    MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT,
734 >                               &ftGlobal[0], &counts[0], &disps[0], MPI::INT);
735  
736 < int SimInfo::getTotIntegrableObjects() {
737 <  int nObjs_local;
738 <  int nObjs;
739 <
740 <  nObjs_local =  integrableObjects.size();
741 <
742 <
743 < #ifdef IS_MPI
744 <  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
745 < #else
746 <  nObjs = nObjs_local;
736 >    // foundIdents is a stl set, so inserting an already found ident
737 >    // will have no effect.
738 >    set<int> foundIdents;
739 >    vector<int>::iterator j;
740 >    for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j)
741 >      foundIdents.insert((*j));
742 >    
743 >    // now iterate over the foundIdents and get the actual atom types
744 >    // that correspond to these:
745 >    set<int>::iterator it;
746 >    for (it = foundIdents.begin(); it != foundIdents.end(); ++it)
747 >      atomTypes.insert( forceField_->getAtomType((*it)) );
748 >
749   #endif
750 +    
751 +    return atomTypes;        
752 +  }
753  
754 +  void SimInfo::setupSimVariables() {
755 +    useAtomicVirial_ = simParams_->getUseAtomicVirial();
756 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
757 +    calcBoxDipole_ = false;
758 +    if ( simParams_->haveAccumulateBoxDipole() )
759 +      if ( simParams_->getAccumulateBoxDipole() ) {
760 +        calcBoxDipole_ = true;      
761 +      }
762  
763 <  return nObjs;
764 < }
763 >    set<AtomType*>::iterator i;
764 >    set<AtomType*> atomTypes;
765 >    atomTypes = getSimulatedAtomTypes();    
766 >    int usesElectrostatic = 0;
767 >    int usesMetallic = 0;
768 >    int usesDirectional = 0;
769 >    //loop over all of the atom types
770 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
771 >      usesElectrostatic |= (*i)->isElectrostatic();
772 >      usesMetallic |= (*i)->isMetal();
773 >      usesDirectional |= (*i)->isDirectional();
774 >    }
775  
776 < void SimInfo::refreshSim(){
776 > #ifdef IS_MPI    
777 >    int temp;
778 >    temp = usesDirectional;
779 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
780  
781 <  simtype fInfo;
782 <  int isError;
430 <  int n_global;
431 <  int* excl;
781 >    temp = usesMetallic;
782 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
783  
784 <  fInfo.dielect = 0.0;
785 <
786 <  if( useDipoles ){
436 <    if( useReactionField )fInfo.dielect = dielectric;
784 >    temp = usesElectrostatic;
785 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
786 > #endif
787    }
788  
439  fInfo.SIM_uses_PBC = usePBC;
789  
790 <  if (useSticky || useDipoles || useGayBerne || useShapes) {
791 <    useDirectionalAtoms = 1;
792 <    fInfo.SIM_uses_DirectionalAtoms = useDirectionalAtoms;
790 >  vector<int> SimInfo::getGlobalAtomIndices() {
791 >    SimInfo::MoleculeIterator mi;
792 >    Molecule* mol;
793 >    Molecule::AtomIterator ai;
794 >    Atom* atom;
795 >
796 >    vector<int> GlobalAtomIndices(getNAtoms(), 0);
797 >    
798 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
799 >      
800 >      for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
801 >        GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex();
802 >      }
803 >    }
804 >    return GlobalAtomIndices;
805    }
806  
446  fInfo.SIM_uses_LennardJones = useLennardJones;
807  
808 <  if (useCharges || useDipoles) {
809 <    useElectrostatics = 1;
810 <    fInfo.SIM_uses_Electrostatics = useElectrostatics;
808 >  vector<int> SimInfo::getGlobalGroupIndices() {
809 >    SimInfo::MoleculeIterator mi;
810 >    Molecule* mol;
811 >    Molecule::CutoffGroupIterator ci;
812 >    CutoffGroup* cg;
813 >
814 >    vector<int> GlobalGroupIndices;
815 >    
816 >    for (mol = beginMolecule(mi); mol != NULL; mol  = nextMolecule(mi)) {
817 >      
818 >      //local index of cutoff group is trivial, it only depends on the
819 >      //order of travesing
820 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
821 >           cg = mol->nextCutoffGroup(ci)) {
822 >        GlobalGroupIndices.push_back(cg->getGlobalIndex());
823 >      }        
824 >    }
825 >    return GlobalGroupIndices;
826    }
827  
453  fInfo.SIM_uses_Charges = useCharges;
454  fInfo.SIM_uses_Dipoles = useDipoles;
455  fInfo.SIM_uses_Sticky = useSticky;
456  fInfo.SIM_uses_GayBerne = useGayBerne;
457  fInfo.SIM_uses_EAM = useEAM;
458  fInfo.SIM_uses_Shapes = useShapes;
459  fInfo.SIM_uses_FLARB = useFLARB;
460  fInfo.SIM_uses_RF = useReactionField;
828  
829 <  n_exclude = excludes->getSize();
830 <  excl = excludes->getFortranArray();
464 <  
465 < #ifdef IS_MPI
466 <  n_global = mpiSim->getNAtomsGlobal();
467 < #else
468 <  n_global = n_atoms;
469 < #endif
470 <  
471 <  isError = 0;
472 <  
473 <  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
474 <  //it may not be a good idea to pass the address of first element in vector
475 <  //since c++ standard does not require vector to be stored continuously in meomory
476 <  //Most of the compilers will organize the memory of vector continuously
477 <  setFortranSim( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
478 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
479 <                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
829 >  void SimInfo::prepareTopology() {
830 >    int nExclude, nOneTwo, nOneThree, nOneFour;
831  
832 <  if( isError ){
832 >    //calculate mass ratio of cutoff group
833 >    SimInfo::MoleculeIterator mi;
834 >    Molecule* mol;
835 >    Molecule::CutoffGroupIterator ci;
836 >    CutoffGroup* cg;
837 >    Molecule::AtomIterator ai;
838 >    Atom* atom;
839 >    RealType totalMass;
840 >
841 >    //to avoid memory reallocation, reserve enough space for massFactors_
842 >    massFactors_.clear();
843 >    massFactors_.reserve(getNCutoffGroups());
844      
845 <    sprintf( painCave.errMsg,
846 <             "There was an error setting the simulation information in fortran.\n" );
847 <    painCave.isFatal = 1;
486 <    painCave.severity = OOPSE_ERROR;
487 <    simError();
488 <  }
489 <  
490 < #ifdef IS_MPI
491 <  sprintf( checkPointMsg,
492 <           "succesfully sent the simulation information to fortran.\n");
493 <  MPIcheckPoint();
494 < #endif // is_mpi
495 <  
496 <  this->ndf = this->getNDF();
497 <  this->ndfRaw = this->getNDFraw();
498 <  this->ndfTrans = this->getNDFtranslational();
499 < }
845 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
846 >      for (cg = mol->beginCutoffGroup(ci); cg != NULL;
847 >           cg = mol->nextCutoffGroup(ci)) {
848  
849 < void SimInfo::setDefaultRcut( double theRcut ){
850 <  
851 <  haveRcut = 1;
852 <  rCut = theRcut;
853 <  rList = rCut + 1.0;
854 <  
855 <  notifyFortranCutoffs( &rCut, &rSw, &rList );
856 < }
849 >        totalMass = cg->getMass();
850 >        for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
851 >          // Check for massless groups - set mfact to 1 if true
852 >          if (totalMass != 0)
853 >            massFactors_.push_back(atom->getMass()/totalMass);
854 >          else
855 >            massFactors_.push_back( 1.0 );
856 >        }
857 >      }      
858 >    }
859  
860 < void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
860 >    // Build the identArray_
861  
862 <  rSw = theRsw;
863 <  setDefaultRcut( theRcut );
864 < }
862 >    identArray_.clear();
863 >    identArray_.reserve(getNAtoms());    
864 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {        
865 >      for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
866 >        identArray_.push_back(atom->getIdent());
867 >      }
868 >    }    
869 >    
870 >    //scan topology
871  
872 +    nExclude = excludedInteractions_.getSize();
873 +    nOneTwo = oneTwoInteractions_.getSize();
874 +    nOneThree = oneThreeInteractions_.getSize();
875 +    nOneFour = oneFourInteractions_.getSize();
876  
877 < void SimInfo::checkCutOffs( void ){
878 <  
879 <  if( boxIsInit ){
877 >    int* excludeList = excludedInteractions_.getPairList();
878 >    int* oneTwoList = oneTwoInteractions_.getPairList();
879 >    int* oneThreeList = oneThreeInteractions_.getPairList();
880 >    int* oneFourList = oneFourInteractions_.getPairList();
881 >
882 >    //setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0],
883 >    //               &nExclude, excludeList,
884 >    //               &nOneTwo, oneTwoList,
885 >    //               &nOneThree, oneThreeList,
886 >    //               &nOneFour, oneFourList,
887 >    //               &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
888 >    //               &fortranGlobalGroupMembership[0], &isError);
889      
890 <    //we need to check cutOffs against the box
522 <    
523 <    if( rCut > maxCutoff ){
524 <      sprintf( painCave.errMsg,
525 <               "cutoffRadius is too large for the current periodic box.\n"
526 <               "\tCurrent Value of cutoffRadius = %G at time %G\n "
527 <               "\tThis is larger than half of at least one of the\n"
528 <               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
529 <               "\n"
530 <               "\t[ %G %G %G ]\n"
531 <               "\t[ %G %G %G ]\n"
532 <               "\t[ %G %G %G ]\n",
533 <               rCut, currentTime,
534 <               Hmat[0][0], Hmat[0][1], Hmat[0][2],
535 <               Hmat[1][0], Hmat[1][1], Hmat[1][2],
536 <               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
537 <      painCave.severity = OOPSE_ERROR;
538 <      painCave.isFatal = 1;
539 <      simError();
540 <    }    
541 <  } else {
542 <    // initialize this stuff before using it, OK?
543 <    sprintf( painCave.errMsg,
544 <             "Trying to check cutoffs without a box.\n"
545 <             "\tOOPSE should have better programmers than that.\n" );
546 <    painCave.severity = OOPSE_ERROR;
547 <    painCave.isFatal = 1;
548 <    simError();      
890 >    topologyDone_ = true;
891    }
550  
551 }
892  
893 < void SimInfo::addProperty(GenericData* prop){
893 >  void SimInfo::addProperty(GenericData* genData) {
894 >    properties_.addProperty(genData);  
895 >  }
896  
897 <  map<string, GenericData*>::iterator result;
898 <  result = properties.find(prop->getID());
557 <  
558 <  //we can't simply use  properties[prop->getID()] = prop,
559 <  //it will cause memory leak if we already contain a propery which has the same name of prop
560 <  
561 <  if(result != properties.end()){
562 <    
563 <    delete (*result).second;
564 <    (*result).second = prop;
565 <      
897 >  void SimInfo::removeProperty(const string& propName) {
898 >    properties_.removeProperty(propName);  
899    }
567  else{
900  
901 <    properties[prop->getID()] = prop;
901 >  void SimInfo::clearProperties() {
902 >    properties_.clearProperties();
903 >  }
904  
905 +  vector<string> SimInfo::getPropertyNames() {
906 +    return properties_.getPropertyNames();  
907    }
908 +      
909 +  vector<GenericData*> SimInfo::getProperties() {
910 +    return properties_.getProperties();
911 +  }
912 +
913 +  GenericData* SimInfo::getPropertyByName(const string& propName) {
914 +    return properties_.getPropertyByName(propName);
915 +  }
916 +
917 +  void SimInfo::setSnapshotManager(SnapshotManager* sman) {
918 +    if (sman_ == sman) {
919 +      return;
920 +    }    
921 +    delete sman_;
922 +    sman_ = sman;
923 +
924 +    Molecule* mol;
925 +    RigidBody* rb;
926 +    Atom* atom;
927 +    CutoffGroup* cg;
928 +    SimInfo::MoleculeIterator mi;
929 +    Molecule::RigidBodyIterator rbIter;
930 +    Molecule::AtomIterator atomIter;
931 +    Molecule::CutoffGroupIterator cgIter;
932 +
933 +    for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
934 +        
935 +      for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
936 +        atom->setSnapshotManager(sman_);
937 +      }
938 +        
939 +      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
940 +        rb->setSnapshotManager(sman_);
941 +      }
942 +
943 +      for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) {
944 +        cg->setSnapshotManager(sman_);
945 +      }
946 +    }    
947      
948 < }
948 >  }
949  
950 < GenericData* SimInfo::getProperty(const string& propName){
950 >  Vector3d SimInfo::getComVel(){
951 >    SimInfo::MoleculeIterator i;
952 >    Molecule* mol;
953 >
954 >    Vector3d comVel(0.0);
955 >    RealType totalMass = 0.0;
956 >    
957  
958 <  map<string, GenericData*>::iterator result;
959 <  
960 <  //string lowerCaseName = ();
961 <  
962 <  result = properties.find(propName);
582 <  
583 <  if(result != properties.end())
584 <    return (*result).second;  
585 <  else  
586 <    return NULL;  
587 < }
958 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
959 >      RealType mass = mol->getMass();
960 >      totalMass += mass;
961 >      comVel += mass * mol->getComVel();
962 >    }  
963  
964 + #ifdef IS_MPI
965 +    RealType tmpMass = totalMass;
966 +    Vector3d tmpComVel(comVel);    
967 +    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
968 +    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
969 + #endif
970  
971 < void SimInfo::getFortranGroupArrays(SimInfo* info,
591 <                                    vector<int>& FglobalGroupMembership,
592 <                                    vector<double>& mfact){
593 <  
594 <  Molecule* myMols;
595 <  Atom** myAtoms;
596 <  int numAtom;
597 <  double mtot;
598 <  int numMol;
599 <  int numCutoffGroups;
600 <  CutoffGroup* myCutoffGroup;
601 <  vector<CutoffGroup*>::iterator iterCutoff;
602 <  Atom* cutoffAtom;
603 <  vector<Atom*>::iterator iterAtom;
604 <  int atomIndex;
605 <  double totalMass;
606 <  
607 <  mfact.clear();
608 <  FglobalGroupMembership.clear();
609 <  
971 >    comVel /= totalMass;
972  
973 <  // Fix the silly fortran indexing problem
973 >    return comVel;
974 >  }
975 >
976 >  Vector3d SimInfo::getCom(){
977 >    SimInfo::MoleculeIterator i;
978 >    Molecule* mol;
979 >
980 >    Vector3d com(0.0);
981 >    RealType totalMass = 0.0;
982 >    
983 >    for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
984 >      RealType mass = mol->getMass();
985 >      totalMass += mass;
986 >      com += mass * mol->getCom();
987 >    }  
988 >
989   #ifdef IS_MPI
990 <  numAtom = mpiSim->getNAtomsGlobal();
991 < #else
992 <  numAtom = n_atoms;
990 >    RealType tmpMass = totalMass;
991 >    Vector3d tmpCom(com);    
992 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
993 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
994   #endif
617  for (int i = 0; i < numAtom; i++)
618    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
619  
995  
996 <  myMols = info->molecules;
622 <  numMol = info->n_mol;
623 <  for(int i  = 0; i < numMol; i++){
624 <    numCutoffGroups = myMols[i].getNCutoffGroups();
625 <    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
626 <        myCutoffGroup != NULL;
627 <        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
996 >    com /= totalMass;
997  
998 <      totalMass = myCutoffGroup->getMass();
998 >    return com;
999 >
1000 >  }        
1001 >
1002 >  ostream& operator <<(ostream& o, SimInfo& info) {
1003 >
1004 >    return o;
1005 >  }
1006 >  
1007 >  
1008 >   /*
1009 >   Returns center of mass and center of mass velocity in one function call.
1010 >   */
1011 >  
1012 >   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1013 >      SimInfo::MoleculeIterator i;
1014 >      Molecule* mol;
1015        
1016 <      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
1017 <          cutoffAtom != NULL;
1018 <          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
1019 <        mfact.push_back(cutoffAtom->getMass()/totalMass);
1016 >    
1017 >      RealType totalMass = 0.0;
1018 >    
1019 >
1020 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1021 >         RealType mass = mol->getMass();
1022 >         totalMass += mass;
1023 >         com += mass * mol->getCom();
1024 >         comVel += mass * mol->getComVel();          
1025        }  
1026 +      
1027 + #ifdef IS_MPI
1028 +      RealType tmpMass = totalMass;
1029 +      Vector3d tmpCom(com);  
1030 +      Vector3d tmpComVel(comVel);
1031 +      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1032 +      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1033 +      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1034 + #endif
1035 +      
1036 +      com /= totalMass;
1037 +      comVel /= totalMass;
1038 +   }        
1039 +  
1040 +   /*
1041 +   Return intertia tensor for entire system and angular momentum Vector.
1042 +
1043 +
1044 +       [  Ixx -Ixy  -Ixz ]
1045 +    J =| -Iyx  Iyy  -Iyz |
1046 +       [ -Izx -Iyz   Izz ]
1047 +    */
1048 +
1049 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1050 +      
1051 +
1052 +      RealType xx = 0.0;
1053 +      RealType yy = 0.0;
1054 +      RealType zz = 0.0;
1055 +      RealType xy = 0.0;
1056 +      RealType xz = 0.0;
1057 +      RealType yz = 0.0;
1058 +      Vector3d com(0.0);
1059 +      Vector3d comVel(0.0);
1060 +      
1061 +      getComAll(com, comVel);
1062 +      
1063 +      SimInfo::MoleculeIterator i;
1064 +      Molecule* mol;
1065 +      
1066 +      Vector3d thisq(0.0);
1067 +      Vector3d thisv(0.0);
1068 +
1069 +      RealType thisMass = 0.0;
1070 +    
1071 +      
1072 +      
1073 +  
1074 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1075 +        
1076 +         thisq = mol->getCom()-com;
1077 +         thisv = mol->getComVel()-comVel;
1078 +         thisMass = mol->getMass();
1079 +         // Compute moment of intertia coefficients.
1080 +         xx += thisq[0]*thisq[0]*thisMass;
1081 +         yy += thisq[1]*thisq[1]*thisMass;
1082 +         zz += thisq[2]*thisq[2]*thisMass;
1083 +        
1084 +         // compute products of intertia
1085 +         xy += thisq[0]*thisq[1]*thisMass;
1086 +         xz += thisq[0]*thisq[2]*thisMass;
1087 +         yz += thisq[1]*thisq[2]*thisMass;
1088 +            
1089 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1090 +            
1091 +      }  
1092 +      
1093 +      
1094 +      inertiaTensor(0,0) = yy + zz;
1095 +      inertiaTensor(0,1) = -xy;
1096 +      inertiaTensor(0,2) = -xz;
1097 +      inertiaTensor(1,0) = -xy;
1098 +      inertiaTensor(1,1) = xx + zz;
1099 +      inertiaTensor(1,2) = -yz;
1100 +      inertiaTensor(2,0) = -xz;
1101 +      inertiaTensor(2,1) = -yz;
1102 +      inertiaTensor(2,2) = xx + yy;
1103 +      
1104 + #ifdef IS_MPI
1105 +      Mat3x3d tmpI(inertiaTensor);
1106 +      Vector3d tmpAngMom;
1107 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1108 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1109 + #endif
1110 +              
1111 +      return;
1112 +   }
1113 +
1114 +   //Returns the angular momentum of the system
1115 +   Vector3d SimInfo::getAngularMomentum(){
1116 +      
1117 +      Vector3d com(0.0);
1118 +      Vector3d comVel(0.0);
1119 +      Vector3d angularMomentum(0.0);
1120 +      
1121 +      getComAll(com,comVel);
1122 +      
1123 +      SimInfo::MoleculeIterator i;
1124 +      Molecule* mol;
1125 +      
1126 +      Vector3d thisr(0.0);
1127 +      Vector3d thisp(0.0);
1128 +      
1129 +      RealType thisMass;
1130 +      
1131 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1132 +        thisMass = mol->getMass();
1133 +        thisr = mol->getCom()-com;
1134 +        thisp = (mol->getComVel()-comVel)*thisMass;
1135 +        
1136 +        angularMomentum += cross( thisr, thisp );
1137 +        
1138 +      }  
1139 +      
1140 + #ifdef IS_MPI
1141 +      Vector3d tmpAngMom;
1142 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1143 + #endif
1144 +      
1145 +      return angularMomentum;
1146 +   }
1147 +  
1148 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1149 +    return IOIndexToIntegrableObject.at(index);
1150 +  }
1151 +  
1152 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1153 +    IOIndexToIntegrableObject= v;
1154 +  }
1155 +
1156 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1157 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1158 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1159 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1160 +  */
1161 +  void SimInfo::getGyrationalVolume(RealType &volume){
1162 +    Mat3x3d intTensor;
1163 +    RealType det;
1164 +    Vector3d dummyAngMom;
1165 +    RealType sysconstants;
1166 +    RealType geomCnst;
1167 +
1168 +    geomCnst = 3.0/2.0;
1169 +    /* Get the inertial tensor and angular momentum for free*/
1170 +    getInertiaTensor(intTensor,dummyAngMom);
1171 +    
1172 +    det = intTensor.determinant();
1173 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1174 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1175 +    return;
1176 +  }
1177 +
1178 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1179 +    Mat3x3d intTensor;
1180 +    Vector3d dummyAngMom;
1181 +    RealType sysconstants;
1182 +    RealType geomCnst;
1183 +
1184 +    geomCnst = 3.0/2.0;
1185 +    /* Get the inertial tensor and angular momentum for free*/
1186 +    getInertiaTensor(intTensor,dummyAngMom);
1187 +    
1188 +    detI = intTensor.determinant();
1189 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1190 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1191 +    return;
1192 +  }
1193 + /*
1194 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1195 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1196 +      sdByGlobalIndex_ = v;
1197      }
1198 +
1199 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1200 +      //assert(index < nAtoms_ + nRigidBodies_);
1201 +      return sdByGlobalIndex_.at(index);
1202 +    }  
1203 + */  
1204 +  int SimInfo::getNGlobalConstraints() {
1205 +    int nGlobalConstraints;
1206 + #ifdef IS_MPI
1207 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1208 +                  MPI_COMM_WORLD);    
1209 + #else
1210 +    nGlobalConstraints =  nConstraints_;
1211 + #endif
1212 +    return nGlobalConstraints;
1213    }
1214  
1215 < }
1215 > }//end namespace OpenMD
1216 >

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 143 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1577 by gezelter, Wed Jun 8 20:26:56 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines