125 |
|
//equal to the total number of atoms minus number of atoms belong to |
126 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
|
//groups defined in meta-data file |
128 |
– |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 |
– |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 |
– |
std::cerr << "nG = " << nGroups << "\n"; |
128 |
|
|
129 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
– |
|
134 |
– |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
130 |
|
|
131 |
|
//every free atom (atom does not belong to rigid bodies) is an |
132 |
|
//integrable object therefore the total number of integrable objects |
269 |
|
#endif |
270 |
|
return fdf_; |
271 |
|
} |
272 |
+ |
|
273 |
+ |
unsigned int SimInfo::getNLocalCutoffGroups(){ |
274 |
+ |
int nLocalCutoffAtoms = 0; |
275 |
+ |
Molecule* mol; |
276 |
+ |
MoleculeIterator mi; |
277 |
+ |
CutoffGroup* cg; |
278 |
+ |
Molecule::CutoffGroupIterator ci; |
279 |
|
|
280 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
281 |
+ |
|
282 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
283 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
284 |
+ |
nLocalCutoffAtoms += cg->getNumAtom(); |
285 |
+ |
|
286 |
+ |
} |
287 |
+ |
} |
288 |
+ |
|
289 |
+ |
return nAtoms_ - nLocalCutoffAtoms + nCutoffGroups_; |
290 |
+ |
} |
291 |
+ |
|
292 |
|
void SimInfo::calcNdfRaw() { |
293 |
|
int ndfRaw_local; |
294 |
|
|
759 |
|
if ( simParams_->getAccumulateBoxDipole() ) { |
760 |
|
calcBoxDipole_ = true; |
761 |
|
} |
762 |
< |
|
762 |
> |
|
763 |
|
set<AtomType*>::iterator i; |
764 |
|
set<AtomType*> atomTypes; |
765 |
|
atomTypes = getSimulatedAtomTypes(); |
772 |
|
usesMetallic |= (*i)->isMetal(); |
773 |
|
usesDirectional |= (*i)->isDirectional(); |
774 |
|
} |
775 |
< |
|
775 |
> |
|
776 |
|
#ifdef IS_MPI |
777 |
|
int temp; |
778 |
|
temp = usesDirectional; |
779 |
|
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
780 |
< |
|
780 |
> |
|
781 |
|
temp = usesMetallic; |
782 |
|
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
783 |
< |
|
783 |
> |
|
784 |
|
temp = usesElectrostatic; |
785 |
|
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
786 |
+ |
#else |
787 |
+ |
|
788 |
+ |
usesDirectionalAtoms_ = usesDirectional; |
789 |
+ |
usesMetallicAtoms_ = usesMetallic; |
790 |
+ |
usesElectrostaticAtoms_ = usesElectrostatic; |
791 |
+ |
|
792 |
|
#endif |
793 |
+ |
|
794 |
+ |
requiresPrepair_ = usesMetallicAtoms_ ? true : false; |
795 |
+ |
requiresSkipCorrection_ = usesElectrostaticAtoms_ ? true : false; |
796 |
+ |
requiresSelfCorrection_ = usesElectrostaticAtoms_ ? true : false; |
797 |
|
} |
798 |
|
|
799 |
|
|
848 |
|
Atom* atom; |
849 |
|
RealType totalMass; |
850 |
|
|
851 |
< |
//to avoid memory reallocation, reserve enough space for massFactors_ |
851 |
> |
/** |
852 |
> |
* The mass factor is the relative mass of an atom to the total |
853 |
> |
* mass of the cutoff group it belongs to. By default, all atoms |
854 |
> |
* are their own cutoff groups, and therefore have mass factors of |
855 |
> |
* 1. We need some special handling for massless atoms, which |
856 |
> |
* will be treated as carrying the entire mass of the cutoff |
857 |
> |
* group. |
858 |
> |
*/ |
859 |
|
massFactors_.clear(); |
860 |
< |
massFactors_.reserve(getNCutoffGroups()); |
860 |
> |
massFactors_.resize(getNAtoms(), 1.0); |
861 |
|
|
862 |
+ |
cerr << "mfs in si = " << massFactors_.size() << "\n"; |
863 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
864 |
|
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
865 |
|
cg = mol->nextCutoffGroup(ci)) { |
867 |
|
totalMass = cg->getMass(); |
868 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
869 |
|
// Check for massless groups - set mfact to 1 if true |
870 |
< |
if (totalMass != 0) |
871 |
< |
massFactors_.push_back(atom->getMass()/totalMass); |
870 |
> |
if (totalMass != 0) |
871 |
> |
massFactors_[atom->getLocalIndex()] = atom->getMass()/totalMass; |
872 |
|
else |
873 |
< |
massFactors_.push_back( 1.0 ); |
873 |
> |
massFactors_[atom->getLocalIndex()] = 1.0; |
874 |
|
} |
875 |
|
} |
876 |
|
} |
897 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
898 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
899 |
|
|
868 |
– |
//setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 |
– |
// &nExclude, excludeList, |
870 |
– |
// &nOneTwo, oneTwoList, |
871 |
– |
// &nOneThree, oneThreeList, |
872 |
– |
// &nOneFour, oneFourList, |
873 |
– |
// &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 |
– |
// &fortranGlobalGroupMembership[0], &isError); |
875 |
– |
|
900 |
|
topologyDone_ = true; |
901 |
|
} |
902 |
|
|