ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing:
trunk/src/brains/SimInfo.cpp (file contents), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (file contents), Revision 1532 by gezelter, Wed Dec 29 19:59:21 2010 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   /**
# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/doForces_interface.h"
58 < #include "UseTheForce/notifyCutoffs_interface.h"
58 > #include "UseTheForce/DarkSide/neighborLists_interface.h"
59   #include "utils/MemoryUtils.hpp"
60   #include "utils/simError.h"
61   #include "selection/SelectionManager.hpp"
62 + #include "io/ForceFieldOptions.hpp"
63 + #include "UseTheForce/ForceField.hpp"
64 + #include "nonbonded/SwitchingFunction.hpp"
65  
66 +
67   #ifdef IS_MPI
68   #include "UseTheForce/mpiComponentPlan.h"
69   #include "UseTheForce/DarkSide/simParallel_interface.h"
70   #endif
71  
72 < namespace oopse {
73 <
74 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
75 <                   ForceField* ff, Globals* simParams) :
76 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
77 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
72 > using namespace std;
73 > namespace OpenMD {
74 >  
75 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
76 >    forceField_(ff), simParams_(simParams),
77 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
78      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
79      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
80 <    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
81 <    nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
82 <    sman_(NULL), fortranInitialized_(false) {
83 <
78 <            
79 <      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
80 <      MoleculeStamp* molStamp;
81 <      int nMolWithSameStamp;
82 <      int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
83 <      int nGroups = 0;          //total cutoff groups defined in meta-data file
84 <      CutoffGroupStamp* cgStamp;    
85 <      RigidBodyStamp* rbStamp;
86 <      int nRigidAtoms = 0;
80 >    nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nInversions_(0),
81 >    nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0),
82 >    nConstraints_(0), sman_(NULL), fortranInitialized_(false),
83 >    calcBoxDipole_(false), useAtomicVirial_(true) {    
84      
85 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
86 <        molStamp = i->first;
87 <        nMolWithSameStamp = i->second;
88 <        
89 <        addMoleculeStamp(molStamp, nMolWithSameStamp);
90 <
91 <        //calculate atoms in molecules
92 <        nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
93 <
94 <
95 <        //calculate atoms in cutoff groups
96 <        int nAtomsInGroups = 0;
97 <        int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
98 <        
99 <        for (int j=0; j < nCutoffGroupsInStamp; j++) {
100 <          cgStamp = molStamp->getCutoffGroup(j);
101 <          nAtomsInGroups += cgStamp->getNMembers();
102 <        }
103 <
104 <        nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
105 <        nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
106 <
107 <        //calculate atoms in rigid bodies
108 <        int nAtomsInRigidBodies = 0;
109 <        int nRigidBodiesInStamp = molStamp->getNRigidBodies();
110 <        
114 <        for (int j=0; j < nRigidBodiesInStamp; j++) {
115 <          rbStamp = molStamp->getRigidBody(j);
116 <          nAtomsInRigidBodies += rbStamp->getNMembers();
117 <        }
118 <
119 <        nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
120 <        nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
121 <        
85 >    MoleculeStamp* molStamp;
86 >    int nMolWithSameStamp;
87 >    int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
88 >    int nGroups = 0;       //total cutoff groups defined in meta-data file
89 >    CutoffGroupStamp* cgStamp;    
90 >    RigidBodyStamp* rbStamp;
91 >    int nRigidAtoms = 0;
92 >    
93 >    vector<Component*> components = simParams->getComponents();
94 >    
95 >    for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
96 >      molStamp = (*i)->getMoleculeStamp();
97 >      nMolWithSameStamp = (*i)->getNMol();
98 >      
99 >      addMoleculeStamp(molStamp, nMolWithSameStamp);
100 >      
101 >      //calculate atoms in molecules
102 >      nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
103 >      
104 >      //calculate atoms in cutoff groups
105 >      int nAtomsInGroups = 0;
106 >      int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
107 >      
108 >      for (int j=0; j < nCutoffGroupsInStamp; j++) {
109 >        cgStamp = molStamp->getCutoffGroupStamp(j);
110 >        nAtomsInGroups += cgStamp->getNMembers();
111        }
112 <
113 <      //every free atom (atom does not belong to cutoff groups) is a cutoff group
114 <      //therefore the total number of cutoff groups in the system is equal to
115 <      //the total number of atoms minus number of atoms belong to cutoff group defined in meta-data
116 <      //file plus the number of cutoff groups defined in meta-data file
117 <      nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
118 <
119 <      //every free atom (atom does not belong to rigid bodies) is an integrable object
120 <      //therefore the total number of  integrable objects in the system is equal to
121 <      //the total number of atoms minus number of atoms belong to  rigid body defined in meta-data
122 <      //file plus the number of  rigid bodies defined in meta-data file
123 <      nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_;
124 <
125 <      nGlobalMols_ = molStampIds_.size();
126 <
127 < #ifdef IS_MPI    
128 <      molToProcMap_.resize(nGlobalMols_);
140 < #endif
141 <
112 >      
113 >      nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
114 >      
115 >      nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;            
116 >      
117 >      //calculate atoms in rigid bodies
118 >      int nAtomsInRigidBodies = 0;
119 >      int nRigidBodiesInStamp = molStamp->getNRigidBodies();
120 >      
121 >      for (int j=0; j < nRigidBodiesInStamp; j++) {
122 >        rbStamp = molStamp->getRigidBodyStamp(j);
123 >        nAtomsInRigidBodies += rbStamp->getNMembers();
124 >      }
125 >      
126 >      nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
127 >      nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;            
128 >      
129      }
130 <
130 >    
131 >    //every free atom (atom does not belong to cutoff groups) is a cutoff
132 >    //group therefore the total number of cutoff groups in the system is
133 >    //equal to the total number of atoms minus number of atoms belong to
134 >    //cutoff group defined in meta-data file plus the number of cutoff
135 >    //groups defined in meta-data file
136 >    nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
137 >    
138 >    //every free atom (atom does not belong to rigid bodies) is an
139 >    //integrable object therefore the total number of integrable objects
140 >    //in the system is equal to the total number of atoms minus number of
141 >    //atoms belong to rigid body defined in meta-data file plus the number
142 >    //of rigid bodies defined in meta-data file
143 >    nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
144 >      + nGlobalRigidBodies_;
145 >    
146 >    nGlobalMols_ = molStampIds_.size();
147 >    molToProcMap_.resize(nGlobalMols_);
148 >  }
149 >  
150    SimInfo::~SimInfo() {
151 <    std::map<int, Molecule*>::iterator i;
151 >    map<int, Molecule*>::iterator i;
152      for (i = molecules_.begin(); i != molecules_.end(); ++i) {
153        delete i->second;
154      }
155      molecules_.clear();
156        
151    delete stamps_;
157      delete sman_;
158      delete simParams_;
159      delete forceField_;
160    }
161  
157  int SimInfo::getNGlobalConstraints() {
158    int nGlobalConstraints;
159 #ifdef IS_MPI
160    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
161                  MPI_COMM_WORLD);    
162 #else
163    nGlobalConstraints =  nConstraints_;
164 #endif
165    return nGlobalConstraints;
166  }
162  
163    bool SimInfo::addMolecule(Molecule* mol) {
164      MoleculeIterator i;
165 <
165 >    
166      i = molecules_.find(mol->getGlobalIndex());
167      if (i == molecules_.end() ) {
168 <
169 <      molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
170 <        
168 >      
169 >      molecules_.insert(make_pair(mol->getGlobalIndex(), mol));
170 >      
171        nAtoms_ += mol->getNAtoms();
172        nBonds_ += mol->getNBonds();
173        nBends_ += mol->getNBends();
174        nTorsions_ += mol->getNTorsions();
175 +      nInversions_ += mol->getNInversions();
176        nRigidBodies_ += mol->getNRigidBodies();
177        nIntegrableObjects_ += mol->getNIntegrableObjects();
178        nCutoffGroups_ += mol->getNCutoffGroups();
179        nConstraints_ += mol->getNConstraintPairs();
180 <
181 <      addExcludePairs(mol);
182 <        
180 >      
181 >      addInteractionPairs(mol);
182 >      
183        return true;
184      } else {
185        return false;
186      }
187    }
188 <
188 >  
189    bool SimInfo::removeMolecule(Molecule* mol) {
190      MoleculeIterator i;
191      i = molecules_.find(mol->getGlobalIndex());
# Line 202 | Line 198 | namespace oopse {
198        nBonds_ -= mol->getNBonds();
199        nBends_ -= mol->getNBends();
200        nTorsions_ -= mol->getNTorsions();
201 +      nInversions_ -= mol->getNInversions();
202        nRigidBodies_ -= mol->getNRigidBodies();
203        nIntegrableObjects_ -= mol->getNIntegrableObjects();
204        nCutoffGroups_ -= mol->getNCutoffGroups();
205        nConstraints_ -= mol->getNConstraintPairs();
206  
207 <      removeExcludePairs(mol);
207 >      removeInteractionPairs(mol);
208        molecules_.erase(mol->getGlobalIndex());
209  
210        delete mol;
# Line 216 | Line 213 | namespace oopse {
213      } else {
214        return false;
215      }
219
220
216    }    
217  
218          
# Line 235 | Line 230 | namespace oopse {
230    void SimInfo::calcNdf() {
231      int ndf_local;
232      MoleculeIterator i;
233 <    std::vector<StuntDouble*>::iterator j;
233 >    vector<StuntDouble*>::iterator j;
234      Molecule* mol;
235      StuntDouble* integrableObject;
236  
# Line 255 | Line 250 | namespace oopse {
250            }
251          }
252              
253 <      }//end for (integrableObject)
254 <    }// end for (mol)
253 >      }
254 >    }
255      
256      // n_constraints is local, so subtract them on each processor
257      ndf_local -= nConstraints_;
# Line 273 | Line 268 | namespace oopse {
268  
269    }
270  
271 +  int SimInfo::getFdf() {
272 + #ifdef IS_MPI
273 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
274 + #else
275 +    fdf_ = fdf_local;
276 + #endif
277 +    return fdf_;
278 +  }
279 +    
280    void SimInfo::calcNdfRaw() {
281      int ndfRaw_local;
282  
283      MoleculeIterator i;
284 <    std::vector<StuntDouble*>::iterator j;
284 >    vector<StuntDouble*>::iterator j;
285      Molecule* mol;
286      StuntDouble* integrableObject;
287  
# Line 324 | Line 328 | namespace oopse {
328  
329    }
330  
331 <  void SimInfo::addExcludePairs(Molecule* mol) {
332 <    std::vector<Bond*>::iterator bondIter;
333 <    std::vector<Bend*>::iterator bendIter;
334 <    std::vector<Torsion*>::iterator torsionIter;
331 >  void SimInfo::addInteractionPairs(Molecule* mol) {
332 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
333 >    vector<Bond*>::iterator bondIter;
334 >    vector<Bend*>::iterator bendIter;
335 >    vector<Torsion*>::iterator torsionIter;
336 >    vector<Inversion*>::iterator inversionIter;
337      Bond* bond;
338      Bend* bend;
339      Torsion* torsion;
340 +    Inversion* inversion;
341      int a;
342      int b;
343      int c;
344      int d;
345 +
346 +    // atomGroups can be used to add special interaction maps between
347 +    // groups of atoms that are in two separate rigid bodies.
348 +    // However, most site-site interactions between two rigid bodies
349 +    // are probably not special, just the ones between the physically
350 +    // bonded atoms.  Interactions *within* a single rigid body should
351 +    // always be excluded.  These are done at the bottom of this
352 +    // function.
353 +
354 +    map<int, set<int> > atomGroups;
355 +    Molecule::RigidBodyIterator rbIter;
356 +    RigidBody* rb;
357 +    Molecule::IntegrableObjectIterator ii;
358 +    StuntDouble* integrableObject;
359      
360 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
360 >    for (integrableObject = mol->beginIntegrableObject(ii);
361 >         integrableObject != NULL;
362 >         integrableObject = mol->nextIntegrableObject(ii)) {
363 >      
364 >      if (integrableObject->isRigidBody()) {
365 >        rb = static_cast<RigidBody*>(integrableObject);
366 >        vector<Atom*> atoms = rb->getAtoms();
367 >        set<int> rigidAtoms;
368 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
369 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
370 >        }
371 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
372 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
373 >        }      
374 >      } else {
375 >        set<int> oneAtomSet;
376 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
377 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
378 >      }
379 >    }  
380 >          
381 >    for (bond= mol->beginBond(bondIter); bond != NULL;
382 >         bond = mol->nextBond(bondIter)) {
383 >
384        a = bond->getAtomA()->getGlobalIndex();
385 <      b = bond->getAtomB()->getGlobalIndex();        
386 <      exclude_.addPair(a, b);
385 >      b = bond->getAtomB()->getGlobalIndex();  
386 >    
387 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
388 >        oneTwoInteractions_.addPair(a, b);
389 >      } else {
390 >        excludedInteractions_.addPair(a, b);
391 >      }
392      }
393  
394 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
394 >    for (bend= mol->beginBend(bendIter); bend != NULL;
395 >         bend = mol->nextBend(bendIter)) {
396 >
397        a = bend->getAtomA()->getGlobalIndex();
398        b = bend->getAtomB()->getGlobalIndex();        
399        c = bend->getAtomC()->getGlobalIndex();
400 +      
401 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
402 +        oneTwoInteractions_.addPair(a, b);      
403 +        oneTwoInteractions_.addPair(b, c);
404 +      } else {
405 +        excludedInteractions_.addPair(a, b);
406 +        excludedInteractions_.addPair(b, c);
407 +      }
408  
409 <      exclude_.addPair(a, b);
410 <      exclude_.addPair(a, c);
411 <      exclude_.addPair(b, c);        
409 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
410 >        oneThreeInteractions_.addPair(a, c);      
411 >      } else {
412 >        excludedInteractions_.addPair(a, c);
413 >      }
414      }
415  
416 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
416 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
417 >         torsion = mol->nextTorsion(torsionIter)) {
418 >
419        a = torsion->getAtomA()->getGlobalIndex();
420        b = torsion->getAtomB()->getGlobalIndex();        
421        c = torsion->getAtomC()->getGlobalIndex();        
422 <      d = torsion->getAtomD()->getGlobalIndex();        
422 >      d = torsion->getAtomD()->getGlobalIndex();      
423  
424 <      exclude_.addPair(a, b);
425 <      exclude_.addPair(a, c);
426 <      exclude_.addPair(a, d);
427 <      exclude_.addPair(b, c);
428 <      exclude_.addPair(b, d);
429 <      exclude_.addPair(c, d);        
424 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
425 >        oneTwoInteractions_.addPair(a, b);      
426 >        oneTwoInteractions_.addPair(b, c);
427 >        oneTwoInteractions_.addPair(c, d);
428 >      } else {
429 >        excludedInteractions_.addPair(a, b);
430 >        excludedInteractions_.addPair(b, c);
431 >        excludedInteractions_.addPair(c, d);
432 >      }
433 >
434 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
435 >        oneThreeInteractions_.addPair(a, c);      
436 >        oneThreeInteractions_.addPair(b, d);      
437 >      } else {
438 >        excludedInteractions_.addPair(a, c);
439 >        excludedInteractions_.addPair(b, d);
440 >      }
441 >
442 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
443 >        oneFourInteractions_.addPair(a, d);      
444 >      } else {
445 >        excludedInteractions_.addPair(a, d);
446 >      }
447      }
448  
449 <    Molecule::RigidBodyIterator rbIter;
450 <    RigidBody* rb;
451 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
452 <      std::vector<Atom*> atoms = rb->getAtoms();
453 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
454 <        for (int j = i + 1; j < atoms.size(); ++j) {
449 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
450 >         inversion = mol->nextInversion(inversionIter)) {
451 >
452 >      a = inversion->getAtomA()->getGlobalIndex();
453 >      b = inversion->getAtomB()->getGlobalIndex();        
454 >      c = inversion->getAtomC()->getGlobalIndex();        
455 >      d = inversion->getAtomD()->getGlobalIndex();        
456 >
457 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
458 >        oneTwoInteractions_.addPair(a, b);      
459 >        oneTwoInteractions_.addPair(a, c);
460 >        oneTwoInteractions_.addPair(a, d);
461 >      } else {
462 >        excludedInteractions_.addPair(a, b);
463 >        excludedInteractions_.addPair(a, c);
464 >        excludedInteractions_.addPair(a, d);
465 >      }
466 >
467 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
468 >        oneThreeInteractions_.addPair(b, c);    
469 >        oneThreeInteractions_.addPair(b, d);    
470 >        oneThreeInteractions_.addPair(c, d);      
471 >      } else {
472 >        excludedInteractions_.addPair(b, c);
473 >        excludedInteractions_.addPair(b, d);
474 >        excludedInteractions_.addPair(c, d);
475 >      }
476 >    }
477 >
478 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
479 >         rb = mol->nextRigidBody(rbIter)) {
480 >      vector<Atom*> atoms = rb->getAtoms();
481 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
482 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
483            a = atoms[i]->getGlobalIndex();
484            b = atoms[j]->getGlobalIndex();
485 <          exclude_.addPair(a, b);
485 >          excludedInteractions_.addPair(a, b);
486          }
487        }
488      }        
489  
490    }
491  
492 <  void SimInfo::removeExcludePairs(Molecule* mol) {
493 <    std::vector<Bond*>::iterator bondIter;
494 <    std::vector<Bend*>::iterator bendIter;
495 <    std::vector<Torsion*>::iterator torsionIter;
492 >  void SimInfo::removeInteractionPairs(Molecule* mol) {
493 >    ForceFieldOptions& options_ = forceField_->getForceFieldOptions();
494 >    vector<Bond*>::iterator bondIter;
495 >    vector<Bend*>::iterator bendIter;
496 >    vector<Torsion*>::iterator torsionIter;
497 >    vector<Inversion*>::iterator inversionIter;
498      Bond* bond;
499      Bend* bend;
500      Torsion* torsion;
501 +    Inversion* inversion;
502      int a;
503      int b;
504      int c;
505      int d;
506 +
507 +    map<int, set<int> > atomGroups;
508 +    Molecule::RigidBodyIterator rbIter;
509 +    RigidBody* rb;
510 +    Molecule::IntegrableObjectIterator ii;
511 +    StuntDouble* integrableObject;
512      
513 <    for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
513 >    for (integrableObject = mol->beginIntegrableObject(ii);
514 >         integrableObject != NULL;
515 >         integrableObject = mol->nextIntegrableObject(ii)) {
516 >      
517 >      if (integrableObject->isRigidBody()) {
518 >        rb = static_cast<RigidBody*>(integrableObject);
519 >        vector<Atom*> atoms = rb->getAtoms();
520 >        set<int> rigidAtoms;
521 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
522 >          rigidAtoms.insert(atoms[i]->getGlobalIndex());
523 >        }
524 >        for (int i = 0; i < static_cast<int>(atoms.size()); ++i) {
525 >          atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
526 >        }      
527 >      } else {
528 >        set<int> oneAtomSet;
529 >        oneAtomSet.insert(integrableObject->getGlobalIndex());
530 >        atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
531 >      }
532 >    }  
533 >
534 >    for (bond= mol->beginBond(bondIter); bond != NULL;
535 >         bond = mol->nextBond(bondIter)) {
536 >      
537        a = bond->getAtomA()->getGlobalIndex();
538 <      b = bond->getAtomB()->getGlobalIndex();        
539 <      exclude_.removePair(a, b);
538 >      b = bond->getAtomB()->getGlobalIndex();  
539 >    
540 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
541 >        oneTwoInteractions_.removePair(a, b);
542 >      } else {
543 >        excludedInteractions_.removePair(a, b);
544 >      }
545      }
546  
547 <    for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
547 >    for (bend= mol->beginBend(bendIter); bend != NULL;
548 >         bend = mol->nextBend(bendIter)) {
549 >
550        a = bend->getAtomA()->getGlobalIndex();
551        b = bend->getAtomB()->getGlobalIndex();        
552        c = bend->getAtomC()->getGlobalIndex();
553 +      
554 +      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
555 +        oneTwoInteractions_.removePair(a, b);      
556 +        oneTwoInteractions_.removePair(b, c);
557 +      } else {
558 +        excludedInteractions_.removePair(a, b);
559 +        excludedInteractions_.removePair(b, c);
560 +      }
561  
562 <      exclude_.removePair(a, b);
563 <      exclude_.removePair(a, c);
564 <      exclude_.removePair(b, c);        
562 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
563 >        oneThreeInteractions_.removePair(a, c);      
564 >      } else {
565 >        excludedInteractions_.removePair(a, c);
566 >      }
567      }
568  
569 <    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
569 >    for (torsion= mol->beginTorsion(torsionIter); torsion != NULL;
570 >         torsion = mol->nextTorsion(torsionIter)) {
571 >
572        a = torsion->getAtomA()->getGlobalIndex();
573        b = torsion->getAtomB()->getGlobalIndex();        
574        c = torsion->getAtomC()->getGlobalIndex();        
575 <      d = torsion->getAtomD()->getGlobalIndex();        
575 >      d = torsion->getAtomD()->getGlobalIndex();      
576 >  
577 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
578 >        oneTwoInteractions_.removePair(a, b);      
579 >        oneTwoInteractions_.removePair(b, c);
580 >        oneTwoInteractions_.removePair(c, d);
581 >      } else {
582 >        excludedInteractions_.removePair(a, b);
583 >        excludedInteractions_.removePair(b, c);
584 >        excludedInteractions_.removePair(c, d);
585 >      }
586  
587 <      exclude_.removePair(a, b);
588 <      exclude_.removePair(a, c);
589 <      exclude_.removePair(a, d);
590 <      exclude_.removePair(b, c);
591 <      exclude_.removePair(b, d);
592 <      exclude_.removePair(c, d);        
587 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
588 >        oneThreeInteractions_.removePair(a, c);      
589 >        oneThreeInteractions_.removePair(b, d);      
590 >      } else {
591 >        excludedInteractions_.removePair(a, c);
592 >        excludedInteractions_.removePair(b, d);
593 >      }
594 >
595 >      if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) {
596 >        oneFourInteractions_.removePair(a, d);      
597 >      } else {
598 >        excludedInteractions_.removePair(a, d);
599 >      }
600      }
601  
602 <    Molecule::RigidBodyIterator rbIter;
603 <    RigidBody* rb;
604 <    for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
605 <      std::vector<Atom*> atoms = rb->getAtoms();
606 <      for (int i = 0; i < atoms.size() -1 ; ++i) {
607 <        for (int j = i + 1; j < atoms.size(); ++j) {
602 >    for (inversion= mol->beginInversion(inversionIter); inversion != NULL;
603 >         inversion = mol->nextInversion(inversionIter)) {
604 >
605 >      a = inversion->getAtomA()->getGlobalIndex();
606 >      b = inversion->getAtomB()->getGlobalIndex();        
607 >      c = inversion->getAtomC()->getGlobalIndex();        
608 >      d = inversion->getAtomD()->getGlobalIndex();        
609 >
610 >      if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) {
611 >        oneTwoInteractions_.removePair(a, b);      
612 >        oneTwoInteractions_.removePair(a, c);
613 >        oneTwoInteractions_.removePair(a, d);
614 >      } else {
615 >        excludedInteractions_.removePair(a, b);
616 >        excludedInteractions_.removePair(a, c);
617 >        excludedInteractions_.removePair(a, d);
618 >      }
619 >
620 >      if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) {
621 >        oneThreeInteractions_.removePair(b, c);    
622 >        oneThreeInteractions_.removePair(b, d);    
623 >        oneThreeInteractions_.removePair(c, d);      
624 >      } else {
625 >        excludedInteractions_.removePair(b, c);
626 >        excludedInteractions_.removePair(b, d);
627 >        excludedInteractions_.removePair(c, d);
628 >      }
629 >    }
630 >
631 >    for (rb = mol->beginRigidBody(rbIter); rb != NULL;
632 >         rb = mol->nextRigidBody(rbIter)) {
633 >      vector<Atom*> atoms = rb->getAtoms();
634 >      for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) {
635 >        for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) {
636            a = atoms[i]->getGlobalIndex();
637            b = atoms[j]->getGlobalIndex();
638 <          exclude_.removePair(a, b);
638 >          excludedInteractions_.removePair(a, b);
639          }
640        }
641      }        
642 <
642 >    
643    }
644 <
645 <
644 >  
645 >  
646    void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
647      int curStampId;
648 <
648 >    
649      //index from 0
650      curStampId = moleculeStamps_.size();
651  
# Line 449 | Line 653 | namespace oopse {
653      molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
654    }
655  
656 +
657 +  /**
658 +   * update
659 +   *
660 +   *  Performs the global checks and variable settings after the objects have been
661 +   *  created.
662 +   *
663 +   */
664    void SimInfo::update() {
665 +    
666 +    setupSimVariables();
667 +    setupCutoffs();
668 +    setupSwitching();
669 +    setupElectrostatics();
670 +    setupNeighborlists();
671  
454    setupSimType();
455
672   #ifdef IS_MPI
673      setupFortranParallel();
674   #endif
459
675      setupFortranSim();
676 +    fortranInitialized_ = true;
677  
462    //setup fortran force field
463    /** @deprecate */    
464    int isError = 0;
465    initFortranFF( &fInfo_.SIM_uses_RF , &isError );
466    if(isError){
467      sprintf( painCave.errMsg,
468               "ForceField error: There was an error initializing the forceField in fortran.\n" );
469      painCave.isFatal = 1;
470      simError();
471    }
472  
473    
474    setupCutoff();
475
678      calcNdf();
679      calcNdfRaw();
680      calcNdfTrans();
479
480    fortranInitialized_ = true;
681    }
682 <
683 <  std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
682 >  
683 >  set<AtomType*> SimInfo::getSimulatedAtomTypes() {
684      SimInfo::MoleculeIterator mi;
685      Molecule* mol;
686      Molecule::AtomIterator ai;
687      Atom* atom;
688 <    std::set<AtomType*> atomTypes;
689 <
690 <    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
491 <
688 >    set<AtomType*> atomTypes;
689 >    
690 >    for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {      
691        for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
692          atomTypes.insert(atom->getAtomType());
693 <      }
694 <        
496 <    }
497 <
693 >      }      
694 >    }    
695      return atomTypes;        
696    }
697  
698 <  void SimInfo::setupSimType() {
699 <    std::set<AtomType*>::iterator i;
700 <    std::set<AtomType*> atomTypes;
701 <    atomTypes = getUniqueAtomTypes();
698 >  /**
699 >   * setupCutoffs
700 >   *
701 >   * Sets the values of cutoffRadius and cutoffMethod
702 >   *
703 >   * cutoffRadius : realType
704 >   *  If the cutoffRadius was explicitly set, use that value.
705 >   *  If the cutoffRadius was not explicitly set:
706 >   *      Are there electrostatic atoms?  Use 12.0 Angstroms.
707 >   *      No electrostatic atoms?  Poll the atom types present in the
708 >   *      simulation for suggested cutoff values (e.g. 2.5 * sigma).
709 >   *      Use the maximum suggested value that was found.
710 >   *
711 >   * cutoffMethod : (one of HARD, SWITCHED, SHIFTED_FORCE, SHIFTED_POTENTIAL)
712 >   *      If cutoffMethod was explicitly set, use that choice.
713 >   *      If cutoffMethod was not explicitly set, use SHIFTED_FORCE
714 >   */
715 >  void SimInfo::setupCutoffs() {
716      
717 <    int useLennardJones = 0;
718 <    int useElectrostatic = 0;
719 <    int useEAM = 0;
720 <    int useCharge = 0;
721 <    int useDirectional = 0;
722 <    int useDipole = 0;
723 <    int useGayBerne = 0;
724 <    int useSticky = 0;
725 <    int useShape = 0;
726 <    int useFLARB = 0; //it is not in AtomType yet
727 <    int useDirectionalAtom = 0;    
728 <    int useElectrostatics = 0;
729 <    //usePBC and useRF are from simParams
730 <    int usePBC = simParams_->getPBC();
731 <    int useRF = simParams_->getUseRF();
732 <
733 <    //loop over all of the atom types
734 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
735 <      useLennardJones |= (*i)->isLennardJones();
736 <      useElectrostatic |= (*i)->isElectrostatic();
737 <      useEAM |= (*i)->isEAM();
738 <      useCharge |= (*i)->isCharge();
739 <      useDirectional |= (*i)->isDirectional();
740 <      useDipole |= (*i)->isDipole();
741 <      useGayBerne |= (*i)->isGayBerne();
742 <      useSticky |= (*i)->isSticky();
743 <      useShape |= (*i)->isShape();
717 >    if (simParams_->haveCutoffRadius()) {
718 >      cutoffRadius_ = simParams_->getCutoffRadius();
719 >    } else {      
720 >      if (usesElectrostaticAtoms_) {
721 >        sprintf(painCave.errMsg,
722 >                "SimInfo: No value was set for the cutoffRadius.\n"
723 >                "\tOpenMD will use a default value of 12.0 angstroms"
724 >                "\tfor the cutoffRadius.\n");
725 >        painCave.isFatal = 0;
726 >        painCave.severity = OPENMD_INFO;
727 >        simError();
728 >        cutoffRadius_ = 12.0;
729 >      } else {
730 >        RealType thisCut;
731 >        set<AtomType*>::iterator i;
732 >        set<AtomType*> atomTypes;
733 >        atomTypes = getSimulatedAtomTypes();        
734 >        for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
735 >          thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i));
736 >          cutoffRadius_ = max(thisCut, cutoffRadius_);
737 >        }
738 >        sprintf(painCave.errMsg,
739 >                "SimInfo: No value was set for the cutoffRadius.\n"
740 >                "\tOpenMD will use %lf angstroms.\n",
741 >                cutoffRadius_);
742 >        painCave.isFatal = 0;
743 >        painCave.severity = OPENMD_INFO;
744 >        simError();
745 >      }            
746      }
747  
748 <    if (useSticky || useDipole || useGayBerne || useShape) {
536 <      useDirectionalAtom = 1;
537 <    }
748 >    InteractionManager::Instance()->setCutoffRadius(cutoffRadius_);
749  
750 <    if (useCharge || useDipole) {
751 <      useElectrostatics = 1;
750 >    map<string, CutoffMethod> stringToCutoffMethod;
751 >    stringToCutoffMethod["HARD"] = HARD;
752 >    stringToCutoffMethod["SWITCHING_FUNCTION"] = SWITCHING_FUNCTION;
753 >    stringToCutoffMethod["SHIFTED_POTENTIAL"] = SHIFTED_POTENTIAL;    
754 >    stringToCutoffMethod["SHIFTED_FORCE"] = SHIFTED_FORCE;
755 >  
756 >    if (simParams_->haveCutoffMethod()) {
757 >      string cutMeth = toUpperCopy(simParams_->getCutoffMethod());
758 >      map<string, CutoffMethod>::iterator i;
759 >      i = stringToCutoffMethod.find(cutMeth);
760 >      if (i == stringToCutoffMethod.end()) {
761 >        sprintf(painCave.errMsg,
762 >                "SimInfo: Could not find chosen cutoffMethod %s\n"
763 >                "\tShould be one of: "
764 >                "HARD, SWITCHING_FUNCTION, SHIFTED_POTENTIAL, or SHIFTED_FORCE\n",
765 >                cutMeth.c_str());
766 >        painCave.isFatal = 1;
767 >        painCave.severity = OPENMD_ERROR;
768 >        simError();
769 >      } else {
770 >        cutoffMethod_ = i->second;
771 >      }
772 >    } else {
773 >      sprintf(painCave.errMsg,
774 >              "SimInfo: No value was set for the cutoffMethod.\n"
775 >              "\tOpenMD will use SHIFTED_FORCE.\n");
776 >        painCave.isFatal = 0;
777 >        painCave.severity = OPENMD_INFO;
778 >        simError();
779 >        cutoffMethod_ = SHIFTED_FORCE;        
780      }
781  
782 < #ifdef IS_MPI    
783 <    int temp;
782 >    InteractionManager::Instance()->setCutoffMethod(cutoffMethod_);
783 >  }
784 >  
785 >  /**
786 >   * setupSwitching
787 >   *
788 >   * Sets the values of switchingRadius and
789 >   *  If the switchingRadius was explicitly set, use that value (but check it)
790 >   *  If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_
791 >   */
792 >  void SimInfo::setupSwitching() {
793 >    
794 >    if (simParams_->haveSwitchingRadius()) {
795 >      switchingRadius_ = simParams_->getSwitchingRadius();
796 >      if (switchingRadius_ > cutoffRadius_) {        
797 >        sprintf(painCave.errMsg,
798 >                "SimInfo: switchingRadius (%f) is larger than cutoffRadius(%f)\n",
799 >                switchingRadius_, cutoffRadius_);
800 >        painCave.isFatal = 1;
801 >        painCave.severity = OPENMD_ERROR;
802 >        simError();
803 >      }
804 >    } else {      
805 >      switchingRadius_ = 0.85 * cutoffRadius_;
806 >      sprintf(painCave.errMsg,
807 >              "SimInfo: No value was set for the switchingRadius.\n"
808 >              "\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n"
809 >              "\tswitchingRadius = %f. for this simulation\n", switchingRadius_);
810 >      painCave.isFatal = 0;
811 >      painCave.severity = OPENMD_WARNING;
812 >      simError();
813 >    }          
814 >  
815 >    InteractionManager::Instance()->setSwitchingRadius(switchingRadius_);
816  
817 <    temp = usePBC;
818 <    MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
817 >    SwitchingFunctionType ft;
818 >    
819 >    if (simParams_->haveSwitchingFunctionType()) {
820 >      string funcType = simParams_->getSwitchingFunctionType();
821 >      toUpper(funcType);
822 >      if (funcType == "CUBIC") {
823 >        ft = cubic;
824 >      } else {
825 >        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
826 >          ft = fifth_order_poly;
827 >        } else {
828 >          // throw error        
829 >          sprintf( painCave.errMsg,
830 >                   "SimInfo : Unknown switchingFunctionType. (Input file specified %s .)\n"
831 >                   "\tswitchingFunctionType must be one of: "
832 >                   "\"cubic\" or \"fifth_order_polynomial\".",
833 >                   funcType.c_str() );
834 >          painCave.isFatal = 1;
835 >          painCave.severity = OPENMD_ERROR;
836 >          simError();
837 >        }          
838 >      }
839 >    }
840  
841 <    temp = useDirectionalAtom;
842 <    MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
841 >    InteractionManager::Instance()->setSwitchingFunctionType(ft);
842 >  }
843  
844 <    temp = useLennardJones;
845 <    MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
844 >  /**
845 >   * setupSkinThickness
846 >   *
847 >   *  If the skinThickness was explicitly set, use that value (but check it)
848 >   *  If the skinThickness was not explicitly set: use 1.0 angstroms
849 >   */
850 >  void SimInfo::setupSkinThickness() {    
851 >    if (simParams_->haveSkinThickness()) {
852 >      skinThickness_ = simParams_->getSkinThickness();
853 >    } else {      
854 >      skinThickness_ = 1.0;
855 >      sprintf(painCave.errMsg,
856 >              "SimInfo Warning: No value was set for the skinThickness.\n"
857 >              "\tOpenMD will use a default value of %f Angstroms\n"
858 >              "\tfor this simulation\n", skinThickness_);
859 >      painCave.isFatal = 0;
860 >      simError();
861 >    }            
862 >  }
863  
864 <    temp = useElectrostatics;
865 <    MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
864 >  void SimInfo::setupSimType() {
865 >    set<AtomType*>::iterator i;
866 >    set<AtomType*> atomTypes;
867 >    atomTypes = getSimulatedAtomTypes();
868  
869 <    temp = useCharge;
559 <    MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
869 >    useAtomicVirial_ = simParams_->getUseAtomicVirial();
870  
871 <    temp = useDipole;
872 <    MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
871 >    int usesElectrostatic = 0;
872 >    int usesMetallic = 0;
873 >    int usesDirectional = 0;
874 >    //loop over all of the atom types
875 >    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
876 >      usesElectrostatic |= (*i)->isElectrostatic();
877 >      usesMetallic |= (*i)->isMetal();
878 >      usesDirectional |= (*i)->isDirectional();
879 >    }
880  
881 <    temp = useSticky;
882 <    MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
881 > #ifdef IS_MPI    
882 >    int temp;
883 >    temp = usesDirectional;
884 >    MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
885  
886 <    temp = useGayBerne;
887 <    MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
886 >    temp = usesMetallic;
887 >    MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
888  
889 <    temp = useEAM;
890 <    MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
572 <
573 <    temp = useShape;
574 <    MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
575 <
576 <    temp = useFLARB;
577 <    MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
578 <
579 <    temp = useRF;
580 <    MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
581 <    
889 >    temp = usesElectrostatic;
890 >    MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
891   #endif
892 <
893 <    fInfo_.SIM_uses_PBC = usePBC;    
894 <    fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
895 <    fInfo_.SIM_uses_LennardJones = useLennardJones;
896 <    fInfo_.SIM_uses_Electrostatics = useElectrostatics;    
897 <    fInfo_.SIM_uses_Charges = useCharge;
589 <    fInfo_.SIM_uses_Dipoles = useDipole;
590 <    fInfo_.SIM_uses_Sticky = useSticky;
591 <    fInfo_.SIM_uses_GayBerne = useGayBerne;
592 <    fInfo_.SIM_uses_EAM = useEAM;
593 <    fInfo_.SIM_uses_Shapes = useShape;
594 <    fInfo_.SIM_uses_FLARB = useFLARB;
595 <    fInfo_.SIM_uses_RF = useRF;
596 <
597 <    if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) {
598 <
599 <      if (simParams_->haveDielectric()) {
600 <        fInfo_.dielect = simParams_->getDielectric();
601 <      } else {
602 <        sprintf(painCave.errMsg,
603 <                "SimSetup Error: No Dielectric constant was set.\n"
604 <                "\tYou are trying to use Reaction Field without"
605 <                "\tsetting a dielectric constant!\n");
606 <        painCave.isFatal = 1;
607 <        simError();
608 <      }
609 <        
610 <    } else {
611 <      fInfo_.dielect = 0.0;
612 <    }
613 <
892 >    fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_;    
893 >    fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_;
894 >    fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_;
895 >    fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_;
896 >    fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_;
897 >    fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_;
898    }
899  
900    void SimInfo::setupFortranSim() {
901      int isError;
902 <    int nExclude;
903 <    std::vector<int> fortranGlobalGroupMembership;
902 >    int nExclude, nOneTwo, nOneThree, nOneFour;
903 >    vector<int> fortranGlobalGroupMembership;
904      
905 <    nExclude = exclude_.getSize();
905 >    notifyFortranSkinThickness(&skinThickness_);
906 >
907 >    int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0;
908 >    int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0;
909 >    notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf);
910 >
911      isError = 0;
912  
913      //globalGroupMembership_ is filled by SimCreator    
# Line 627 | Line 916 | namespace oopse {
916      }
917  
918      //calculate mass ratio of cutoff group
919 <    std::vector<double> mfact;
919 >    vector<RealType> mfact;
920      SimInfo::MoleculeIterator mi;
921      Molecule* mol;
922      Molecule::CutoffGroupIterator ci;
923      CutoffGroup* cg;
924      Molecule::AtomIterator ai;
925      Atom* atom;
926 <    double totalMass;
926 >    RealType totalMass;
927  
928      //to avoid memory reallocation, reserve enough space for mfact
929      mfact.reserve(getNCutoffGroups());
# Line 644 | Line 933 | namespace oopse {
933  
934          totalMass = cg->getMass();
935          for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
936 <          mfact.push_back(atom->getMass()/totalMass);
936 >          // Check for massless groups - set mfact to 1 if true
937 >          if (totalMass != 0)
938 >            mfact.push_back(atom->getMass()/totalMass);
939 >          else
940 >            mfact.push_back( 1.0 );
941          }
649
942        }      
943      }
944  
945      //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
946 <    std::vector<int> identArray;
946 >    vector<int> identArray;
947  
948      //to avoid memory reallocation, reserve enough space identArray
949      identArray.reserve(getNAtoms());
# Line 664 | Line 956 | namespace oopse {
956  
957      //fill molMembershipArray
958      //molMembershipArray is filled by SimCreator    
959 <    std::vector<int> molMembershipArray(nGlobalAtoms_);
959 >    vector<int> molMembershipArray(nGlobalAtoms_);
960      for (int i = 0; i < nGlobalAtoms_; i++) {
961        molMembershipArray[i] = globalMolMembership_[i] + 1;
962      }
963      
964      //setup fortran simulation
673    int nGlobalExcludes = 0;
674    int* globalExcludes = NULL;
675    int* excludeList = exclude_.getExcludeList();
676    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
677                   &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
678                   &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
965  
966 <    if( isError ){
966 >    nExclude = excludedInteractions_.getSize();
967 >    nOneTwo = oneTwoInteractions_.getSize();
968 >    nOneThree = oneThreeInteractions_.getSize();
969 >    nOneFour = oneFourInteractions_.getSize();
970  
971 +    int* excludeList = excludedInteractions_.getPairList();
972 +    int* oneTwoList = oneTwoInteractions_.getPairList();
973 +    int* oneThreeList = oneThreeInteractions_.getPairList();
974 +    int* oneFourList = oneFourInteractions_.getPairList();
975 +
976 +    setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0],
977 +                   &nExclude, excludeList,
978 +                   &nOneTwo, oneTwoList,
979 +                   &nOneThree, oneThreeList,
980 +                   &nOneFour, oneFourList,
981 +                   &molMembershipArray[0], &mfact[0], &nCutoffGroups_,
982 +                   &fortranGlobalGroupMembership[0], &isError);
983 +    
984 +    if( isError ){
985 +      
986        sprintf( painCave.errMsg,
987                 "There was an error setting the simulation information in fortran.\n" );
988        painCave.isFatal = 1;
989 <      painCave.severity = OOPSE_ERROR;
989 >      painCave.severity = OPENMD_ERROR;
990        simError();
991      }
992 <
993 < #ifdef IS_MPI
992 >    
993 >    
994      sprintf( checkPointMsg,
995               "succesfully sent the simulation information to fortran.\n");
996 <    MPIcheckPoint();
997 < #endif // is_mpi
996 >    
997 >    errorCheckPoint();
998 >    
999 >    // Setup number of neighbors in neighbor list if present
1000 >    if (simParams_->haveNeighborListNeighbors()) {
1001 >      int nlistNeighbors = simParams_->getNeighborListNeighbors();
1002 >      setNeighbors(&nlistNeighbors);
1003 >    }
1004 >  
1005 >
1006    }
1007  
1008  
697 #ifdef IS_MPI
1009    void SimInfo::setupFortranParallel() {
1010 <    
1010 > #ifdef IS_MPI    
1011      //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
1012 <    std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1013 <    std::vector<int> localToGlobalCutoffGroupIndex;
1012 >    vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
1013 >    vector<int> localToGlobalCutoffGroupIndex;
1014      SimInfo::MoleculeIterator mi;
1015      Molecule::AtomIterator ai;
1016      Molecule::CutoffGroupIterator ci;
# Line 746 | Line 1057 | namespace oopse {
1057      }
1058  
1059      sprintf(checkPointMsg, " mpiRefresh successful.\n");
1060 <    MPIcheckPoint();
1060 >    errorCheckPoint();
1061  
1062 <
1062 > #endif
1063    }
1064  
754 #endif
1065  
1066 <  double SimInfo::calcMaxCutoffRadius() {
757 <
758 <
759 <    std::set<AtomType*> atomTypes;
760 <    std::set<AtomType*>::iterator i;
761 <    std::vector<double> cutoffRadius;
762 <
763 <    //get the unique atom types
764 <    atomTypes = getUniqueAtomTypes();
765 <
766 <    //query the max cutoff radius among these atom types
767 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
768 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
769 <    }
1066 >  void SimInfo::setupSwitchingFunction() {    
1067  
771    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
772 #ifdef IS_MPI
773    //pick the max cutoff radius among the processors
774 #endif
775
776    return maxCutoffRadius;
1068    }
1069  
1070 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
780 <    
781 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
782 <        
783 <      if (!simParams_->haveRcut()){
784 <        sprintf(painCave.errMsg,
785 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
786 <                "\tOOPSE will use a default value of 15.0 angstroms"
787 <                "\tfor the cutoffRadius.\n");
788 <        painCave.isFatal = 0;
789 <        simError();
790 <        rcut = 15.0;
791 <      } else{
792 <        rcut = simParams_->getRcut();
793 <      }
1070 >  void SimInfo::setupAccumulateBoxDipole() {    
1071  
1072 <      if (!simParams_->haveRsw()){
1073 <        sprintf(painCave.errMsg,
1074 <                "SimCreator Warning: No value was set for switchingRadius.\n"
1075 <                "\tOOPSE will use a default value of\n"
799 <                "\t0.95 * cutoffRadius for the switchingRadius\n");
800 <        painCave.isFatal = 0;
801 <        simError();
802 <        rsw = 0.95 * rcut;
803 <      } else{
804 <        rsw = simParams_->getRsw();
1072 >    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1073 >    if ( simParams_->haveAccumulateBoxDipole() )
1074 >      if ( simParams_->getAccumulateBoxDipole() ) {
1075 >        calcBoxDipole_ = true;
1076        }
1077  
807    } else {
808      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
809      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
810        
811      if (simParams_->haveRcut()) {
812        rcut = simParams_->getRcut();
813      } else {
814        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
815        rcut = calcMaxCutoffRadius();
816      }
817
818      if (simParams_->haveRsw()) {
819        rsw  = simParams_->getRsw();
820      } else {
821        rsw = rcut;
822      }
823    
824    }
1078    }
1079  
827  void SimInfo::setupCutoff() {
828    getCutoff(rcut_, rsw_);    
829    double rnblist = rcut_ + 1; // skin of neighbor list
830
831    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
832    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist);
833  }
834
1080    void SimInfo::addProperty(GenericData* genData) {
1081      properties_.addProperty(genData);  
1082    }
1083  
1084 <  void SimInfo::removeProperty(const std::string& propName) {
1084 >  void SimInfo::removeProperty(const string& propName) {
1085      properties_.removeProperty(propName);  
1086    }
1087  
# Line 844 | Line 1089 | namespace oopse {
1089      properties_.clearProperties();
1090    }
1091  
1092 <  std::vector<std::string> SimInfo::getPropertyNames() {
1092 >  vector<string> SimInfo::getPropertyNames() {
1093      return properties_.getPropertyNames();  
1094    }
1095        
1096 <  std::vector<GenericData*> SimInfo::getProperties() {
1096 >  vector<GenericData*> SimInfo::getProperties() {
1097      return properties_.getProperties();
1098    }
1099  
1100 <  GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1100 >  GenericData* SimInfo::getPropertyByName(const string& propName) {
1101      return properties_.getPropertyByName(propName);
1102    }
1103  
# Line 888 | Line 1133 | namespace oopse {
1133      Molecule* mol;
1134  
1135      Vector3d comVel(0.0);
1136 <    double totalMass = 0.0;
1136 >    RealType totalMass = 0.0;
1137      
1138  
1139      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1140 <      double mass = mol->getMass();
1140 >      RealType mass = mol->getMass();
1141        totalMass += mass;
1142        comVel += mass * mol->getComVel();
1143      }  
1144  
1145   #ifdef IS_MPI
1146 <    double tmpMass = totalMass;
1146 >    RealType tmpMass = totalMass;
1147      Vector3d tmpComVel(comVel);    
1148 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1149 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1148 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1149 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1150   #endif
1151  
1152      comVel /= totalMass;
# Line 914 | Line 1159 | namespace oopse {
1159      Molecule* mol;
1160  
1161      Vector3d com(0.0);
1162 <    double totalMass = 0.0;
1162 >    RealType totalMass = 0.0;
1163      
1164      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1165 <      double mass = mol->getMass();
1165 >      RealType mass = mol->getMass();
1166        totalMass += mass;
1167        com += mass * mol->getCom();
1168      }  
1169  
1170   #ifdef IS_MPI
1171 <    double tmpMass = totalMass;
1171 >    RealType tmpMass = totalMass;
1172      Vector3d tmpCom(com);    
1173 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1174 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1173 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1174 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1175   #endif
1176  
1177      com /= totalMass;
# Line 935 | Line 1180 | namespace oopse {
1180  
1181    }        
1182  
1183 <  std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1183 >  ostream& operator <<(ostream& o, SimInfo& info) {
1184  
1185      return o;
1186    }
1187 +  
1188 +  
1189 +   /*
1190 +   Returns center of mass and center of mass velocity in one function call.
1191 +   */
1192 +  
1193 +   void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1194 +      SimInfo::MoleculeIterator i;
1195 +      Molecule* mol;
1196 +      
1197 +    
1198 +      RealType totalMass = 0.0;
1199 +    
1200  
1201 < }//end namespace oopse
1201 >      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1202 >         RealType mass = mol->getMass();
1203 >         totalMass += mass;
1204 >         com += mass * mol->getCom();
1205 >         comVel += mass * mol->getComVel();          
1206 >      }  
1207 >      
1208 > #ifdef IS_MPI
1209 >      RealType tmpMass = totalMass;
1210 >      Vector3d tmpCom(com);  
1211 >      Vector3d tmpComVel(comVel);
1212 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1213 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1214 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1215 > #endif
1216 >      
1217 >      com /= totalMass;
1218 >      comVel /= totalMass;
1219 >   }        
1220 >  
1221 >   /*
1222 >   Return intertia tensor for entire system and angular momentum Vector.
1223  
1224 +
1225 +       [  Ixx -Ixy  -Ixz ]
1226 +    J =| -Iyx  Iyy  -Iyz |
1227 +       [ -Izx -Iyz   Izz ]
1228 +    */
1229 +
1230 +   void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1231 +      
1232 +
1233 +      RealType xx = 0.0;
1234 +      RealType yy = 0.0;
1235 +      RealType zz = 0.0;
1236 +      RealType xy = 0.0;
1237 +      RealType xz = 0.0;
1238 +      RealType yz = 0.0;
1239 +      Vector3d com(0.0);
1240 +      Vector3d comVel(0.0);
1241 +      
1242 +      getComAll(com, comVel);
1243 +      
1244 +      SimInfo::MoleculeIterator i;
1245 +      Molecule* mol;
1246 +      
1247 +      Vector3d thisq(0.0);
1248 +      Vector3d thisv(0.0);
1249 +
1250 +      RealType thisMass = 0.0;
1251 +    
1252 +      
1253 +      
1254 +  
1255 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1256 +        
1257 +         thisq = mol->getCom()-com;
1258 +         thisv = mol->getComVel()-comVel;
1259 +         thisMass = mol->getMass();
1260 +         // Compute moment of intertia coefficients.
1261 +         xx += thisq[0]*thisq[0]*thisMass;
1262 +         yy += thisq[1]*thisq[1]*thisMass;
1263 +         zz += thisq[2]*thisq[2]*thisMass;
1264 +        
1265 +         // compute products of intertia
1266 +         xy += thisq[0]*thisq[1]*thisMass;
1267 +         xz += thisq[0]*thisq[2]*thisMass;
1268 +         yz += thisq[1]*thisq[2]*thisMass;
1269 +            
1270 +         angularMomentum += cross( thisq, thisv ) * thisMass;
1271 +            
1272 +      }  
1273 +      
1274 +      
1275 +      inertiaTensor(0,0) = yy + zz;
1276 +      inertiaTensor(0,1) = -xy;
1277 +      inertiaTensor(0,2) = -xz;
1278 +      inertiaTensor(1,0) = -xy;
1279 +      inertiaTensor(1,1) = xx + zz;
1280 +      inertiaTensor(1,2) = -yz;
1281 +      inertiaTensor(2,0) = -xz;
1282 +      inertiaTensor(2,1) = -yz;
1283 +      inertiaTensor(2,2) = xx + yy;
1284 +      
1285 + #ifdef IS_MPI
1286 +      Mat3x3d tmpI(inertiaTensor);
1287 +      Vector3d tmpAngMom;
1288 +      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1289 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1290 + #endif
1291 +              
1292 +      return;
1293 +   }
1294 +
1295 +   //Returns the angular momentum of the system
1296 +   Vector3d SimInfo::getAngularMomentum(){
1297 +      
1298 +      Vector3d com(0.0);
1299 +      Vector3d comVel(0.0);
1300 +      Vector3d angularMomentum(0.0);
1301 +      
1302 +      getComAll(com,comVel);
1303 +      
1304 +      SimInfo::MoleculeIterator i;
1305 +      Molecule* mol;
1306 +      
1307 +      Vector3d thisr(0.0);
1308 +      Vector3d thisp(0.0);
1309 +      
1310 +      RealType thisMass;
1311 +      
1312 +      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1313 +        thisMass = mol->getMass();
1314 +        thisr = mol->getCom()-com;
1315 +        thisp = (mol->getComVel()-comVel)*thisMass;
1316 +        
1317 +        angularMomentum += cross( thisr, thisp );
1318 +        
1319 +      }  
1320 +      
1321 + #ifdef IS_MPI
1322 +      Vector3d tmpAngMom;
1323 +      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1324 + #endif
1325 +      
1326 +      return angularMomentum;
1327 +   }
1328 +  
1329 +  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1330 +    return IOIndexToIntegrableObject.at(index);
1331 +  }
1332 +  
1333 +  void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) {
1334 +    IOIndexToIntegrableObject= v;
1335 +  }
1336 +
1337 +  /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1338 +     based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1339 +     where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1340 +     V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1341 +  */
1342 +  void SimInfo::getGyrationalVolume(RealType &volume){
1343 +    Mat3x3d intTensor;
1344 +    RealType det;
1345 +    Vector3d dummyAngMom;
1346 +    RealType sysconstants;
1347 +    RealType geomCnst;
1348 +
1349 +    geomCnst = 3.0/2.0;
1350 +    /* Get the inertial tensor and angular momentum for free*/
1351 +    getInertiaTensor(intTensor,dummyAngMom);
1352 +    
1353 +    det = intTensor.determinant();
1354 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1355 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1356 +    return;
1357 +  }
1358 +
1359 +  void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1360 +    Mat3x3d intTensor;
1361 +    Vector3d dummyAngMom;
1362 +    RealType sysconstants;
1363 +    RealType geomCnst;
1364 +
1365 +    geomCnst = 3.0/2.0;
1366 +    /* Get the inertial tensor and angular momentum for free*/
1367 +    getInertiaTensor(intTensor,dummyAngMom);
1368 +    
1369 +    detI = intTensor.determinant();
1370 +    sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1371 +    volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1372 +    return;
1373 +  }
1374 + /*
1375 +   void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) {
1376 +      assert( v.size() == nAtoms_ + nRigidBodies_);
1377 +      sdByGlobalIndex_ = v;
1378 +    }
1379 +
1380 +    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1381 +      //assert(index < nAtoms_ + nRigidBodies_);
1382 +      return sdByGlobalIndex_.at(index);
1383 +    }  
1384 + */  
1385 +  int SimInfo::getNGlobalConstraints() {
1386 +    int nGlobalConstraints;
1387 + #ifdef IS_MPI
1388 +    MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
1389 +                  MPI_COMM_WORLD);    
1390 + #else
1391 +    nGlobalConstraints =  nConstraints_;
1392 + #endif
1393 +    return nGlobalConstraints;
1394 +  }
1395 +
1396 + }//end namespace OpenMD
1397 +

Comparing:
trunk/src/brains/SimInfo.cpp (property svn:keywords), Revision 507 by gezelter, Fri Apr 15 22:04:00 2005 UTC vs.
branches/development/src/brains/SimInfo.cpp (property svn:keywords), Revision 1532 by gezelter, Wed Dec 29 19:59:21 2010 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines