53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
+ |
#include "primitives/StuntDouble.hpp" |
57 |
|
#include "UseTheForce/fCutoffPolicy.h" |
58 |
|
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
|
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
|
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
|
#include "UseTheForce/doForces_interface.h" |
62 |
+ |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
|
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
|
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 |
|
#include "utils/MemoryUtils.hpp" |
68 |
|
#include "io/ForceFieldOptions.hpp" |
69 |
|
#include "UseTheForce/ForceField.hpp" |
70 |
|
|
71 |
+ |
|
72 |
|
#ifdef IS_MPI |
73 |
|
#include "UseTheForce/mpiComponentPlan.h" |
74 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
92 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
94 |
|
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
95 |
< |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) { |
95 |
> |
sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false), |
96 |
> |
useAtomicVirial_(true) { |
97 |
|
|
98 |
|
MoleculeStamp* molStamp; |
99 |
|
int nMolWithSameStamp; |
156 |
|
+ nGlobalRigidBodies_; |
157 |
|
|
158 |
|
nGlobalMols_ = molStampIds_.size(); |
155 |
– |
|
156 |
– |
#ifdef IS_MPI |
159 |
|
molToProcMap_.resize(nGlobalMols_); |
158 |
– |
#endif |
159 |
– |
|
160 |
|
} |
161 |
|
|
162 |
|
SimInfo::~SimInfo() { |
600 |
|
/** @deprecate */ |
601 |
|
int isError = 0; |
602 |
|
|
603 |
+ |
setupCutoff(); |
604 |
+ |
|
605 |
|
setupElectrostaticSummationMethod( isError ); |
606 |
|
setupSwitchingFunction(); |
607 |
|
setupAccumulateBoxDipole(); |
612 |
|
painCave.isFatal = 1; |
613 |
|
simError(); |
614 |
|
} |
613 |
– |
|
614 |
– |
|
615 |
– |
setupCutoff(); |
615 |
|
|
616 |
|
calcNdf(); |
617 |
|
calcNdfRaw(); |
663 |
|
int useSF; |
664 |
|
int useSP; |
665 |
|
int useBoxDipole; |
666 |
+ |
|
667 |
|
std::string myMethod; |
668 |
|
|
669 |
|
// set the useRF logical |
670 |
|
useRF = 0; |
671 |
|
useSF = 0; |
672 |
+ |
useSP = 0; |
673 |
|
|
674 |
|
|
675 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
676 |
|
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
677 |
|
toUpper(myMethod); |
678 |
|
if (myMethod == "REACTION_FIELD"){ |
679 |
< |
useRF=1; |
679 |
> |
useRF = 1; |
680 |
|
} else if (myMethod == "SHIFTED_FORCE"){ |
681 |
|
useSF = 1; |
682 |
|
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
688 |
|
if (simParams_->getAccumulateBoxDipole()) |
689 |
|
useBoxDipole = 1; |
690 |
|
|
691 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
692 |
+ |
|
693 |
|
//loop over all of the atom types |
694 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
695 |
|
useLennardJones |= (*i)->isLennardJones(); |
767 |
|
temp = useBoxDipole; |
768 |
|
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
769 |
|
|
770 |
+ |
temp = useAtomicVirial_; |
771 |
+ |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
772 |
+ |
|
773 |
|
#endif |
774 |
|
|
775 |
|
fInfo_.SIM_uses_PBC = usePBC; |
789 |
|
fInfo_.SIM_uses_SF = useSF; |
790 |
|
fInfo_.SIM_uses_SP = useSP; |
791 |
|
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
792 |
< |
|
787 |
< |
if( myMethod == "REACTION_FIELD") { |
788 |
< |
|
789 |
< |
if (simParams_->haveDielectric()) { |
790 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
791 |
< |
} else { |
792 |
< |
sprintf(painCave.errMsg, |
793 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
794 |
< |
"\tYou are trying to use Reaction Field without" |
795 |
< |
"\tsetting a dielectric constant!\n"); |
796 |
< |
painCave.isFatal = 1; |
797 |
< |
simError(); |
798 |
< |
} |
799 |
< |
} |
800 |
< |
|
792 |
> |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
793 |
|
} |
794 |
|
|
795 |
|
void SimInfo::setupFortranSim() { |
856 |
|
int nGlobalExcludes = 0; |
857 |
|
int* globalExcludes = NULL; |
858 |
|
int* excludeList = exclude_.getExcludeList(); |
859 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
860 |
< |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
861 |
< |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
862 |
< |
|
859 |
> |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
860 |
> |
&nExclude, excludeList , &nGlobalExcludes, globalExcludes, |
861 |
> |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
862 |
> |
&fortranGlobalGroupMembership[0], &isError); |
863 |
> |
|
864 |
|
if( isError ){ |
865 |
< |
|
865 |
> |
|
866 |
|
sprintf( painCave.errMsg, |
867 |
|
"There was an error setting the simulation information in fortran.\n" ); |
868 |
|
painCave.isFatal = 1; |
869 |
|
painCave.severity = OOPSE_ERROR; |
870 |
|
simError(); |
871 |
|
} |
872 |
< |
|
873 |
< |
#ifdef IS_MPI |
872 |
> |
|
873 |
> |
|
874 |
|
sprintf( checkPointMsg, |
875 |
|
"succesfully sent the simulation information to fortran.\n"); |
876 |
< |
MPIcheckPoint(); |
877 |
< |
#endif // is_mpi |
876 |
> |
|
877 |
> |
errorCheckPoint(); |
878 |
> |
|
879 |
> |
// Setup number of neighbors in neighbor list if present |
880 |
> |
if (simParams_->haveNeighborListNeighbors()) { |
881 |
> |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
882 |
> |
setNeighbors(&nlistNeighbors); |
883 |
> |
} |
884 |
> |
|
885 |
> |
|
886 |
|
} |
887 |
|
|
888 |
|
|
888 |
– |
#ifdef IS_MPI |
889 |
|
void SimInfo::setupFortranParallel() { |
890 |
< |
|
890 |
> |
#ifdef IS_MPI |
891 |
|
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
892 |
|
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
893 |
|
std::vector<int> localToGlobalCutoffGroupIndex; |
937 |
|
} |
938 |
|
|
939 |
|
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
940 |
< |
MPIcheckPoint(); |
940 |
> |
errorCheckPoint(); |
941 |
|
|
942 |
< |
|
942 |
> |
#endif |
943 |
|
} |
944 |
|
|
945 |
– |
#endif |
946 |
– |
|
945 |
|
void SimInfo::setupCutoff() { |
946 |
|
|
947 |
|
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
949 |
|
// Check the cutoff policy |
950 |
|
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
951 |
|
|
952 |
+ |
// Set LJ shifting bools to false |
953 |
+ |
ljsp_ = false; |
954 |
+ |
ljsf_ = false; |
955 |
+ |
|
956 |
|
std::string myPolicy; |
957 |
|
if (forceFieldOptions_.haveCutoffPolicy()){ |
958 |
|
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1016 |
|
simError(); |
1017 |
|
} |
1018 |
|
} |
1019 |
+ |
|
1020 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
1021 |
+ |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1022 |
+ |
toUpper(myMethod); |
1023 |
+ |
|
1024 |
+ |
if (myMethod == "SHIFTED_POTENTIAL") { |
1025 |
+ |
ljsp_ = true; |
1026 |
+ |
} else if (myMethod == "SHIFTED_FORCE") { |
1027 |
+ |
ljsf_ = true; |
1028 |
+ |
} |
1029 |
+ |
} |
1030 |
+ |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1031 |
|
|
1018 |
– |
notifyFortranCutoffs(&rcut_, &rsw_); |
1019 |
– |
|
1032 |
|
} else { |
1033 |
|
|
1034 |
|
// For electrostatic atoms, we'll assume a large safe value: |
1044 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
1045 |
|
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1046 |
|
toUpper(myMethod); |
1047 |
< |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1047 |
> |
|
1048 |
> |
// For the time being, we're tethering the LJ shifted behavior to the |
1049 |
> |
// electrostaticSummationMethod keyword options |
1050 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1051 |
> |
ljsp_ = true; |
1052 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1053 |
> |
ljsf_ = true; |
1054 |
> |
} |
1055 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1056 |
|
if (simParams_->haveSwitchingRadius()){ |
1057 |
|
sprintf(painCave.errMsg, |
1058 |
|
"SimInfo Warning: A value was set for the switchingRadius\n" |
1075 |
|
simError(); |
1076 |
|
rsw_ = 0.85 * rcut_; |
1077 |
|
} |
1078 |
< |
notifyFortranCutoffs(&rcut_, &rsw_); |
1078 |
> |
|
1079 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1080 |
> |
|
1081 |
|
} else { |
1082 |
|
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1083 |
|
// We'll punt and let fortran figure out the cutoffs later. |
1095 |
|
int sm = UNDAMPED; |
1096 |
|
RealType alphaVal; |
1097 |
|
RealType dielectric; |
1098 |
< |
|
1098 |
> |
|
1099 |
|
errorOut = isError; |
1078 |
– |
alphaVal = simParams_->getDampingAlpha(); |
1079 |
– |
dielectric = simParams_->getDielectric(); |
1100 |
|
|
1101 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
1102 |
|
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1113 |
|
if (myMethod == "SHIFTED_FORCE") { |
1114 |
|
esm = SHIFTED_FORCE; |
1115 |
|
} else { |
1116 |
< |
if (myMethod == "REACTION_FIELD") { |
1116 |
> |
if (myMethod == "REACTION_FIELD") { |
1117 |
|
esm = REACTION_FIELD; |
1118 |
+ |
dielectric = simParams_->getDielectric(); |
1119 |
+ |
if (!simParams_->haveDielectric()) { |
1120 |
+ |
// throw warning |
1121 |
+ |
sprintf( painCave.errMsg, |
1122 |
+ |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1123 |
+ |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1124 |
+ |
painCave.isFatal = 0; |
1125 |
+ |
simError(); |
1126 |
+ |
} |
1127 |
|
} else { |
1128 |
|
// throw error |
1129 |
|
sprintf( painCave.errMsg, |
1150 |
|
if (myScreen == "DAMPED") { |
1151 |
|
sm = DAMPED; |
1152 |
|
if (!simParams_->haveDampingAlpha()) { |
1153 |
< |
//throw error |
1153 |
> |
// first set a cutoff dependent alpha value |
1154 |
> |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1155 |
> |
alphaVal = 0.5125 - rcut_* 0.025; |
1156 |
> |
// for values rcut > 20.5, alpha is zero |
1157 |
> |
if (alphaVal < 0) alphaVal = 0; |
1158 |
> |
|
1159 |
> |
// throw warning |
1160 |
|
sprintf( painCave.errMsg, |
1161 |
|
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1162 |
< |
"\tA default value of %f (1/ang) will be used.\n", alphaVal); |
1162 |
> |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1163 |
|
painCave.isFatal = 0; |
1164 |
|
simError(); |
1165 |
+ |
} else { |
1166 |
+ |
alphaVal = simParams_->getDampingAlpha(); |
1167 |
|
} |
1168 |
+ |
|
1169 |
|
} else { |
1170 |
|
// throw error |
1171 |
|
sprintf( painCave.errMsg, |
1474 |
|
return angularMomentum; |
1475 |
|
} |
1476 |
|
|
1477 |
< |
|
1477 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1478 |
> |
return IOIndexToIntegrableObject.at(index); |
1479 |
> |
} |
1480 |
> |
|
1481 |
> |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1482 |
> |
IOIndexToIntegrableObject= v; |
1483 |
> |
} |
1484 |
> |
|
1485 |
> |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1486 |
> |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1487 |
> |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1488 |
> |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1489 |
> |
*/ |
1490 |
> |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1491 |
> |
Mat3x3d intTensor; |
1492 |
> |
RealType det; |
1493 |
> |
Vector3d dummyAngMom; |
1494 |
> |
RealType sysconstants; |
1495 |
> |
RealType geomCnst; |
1496 |
> |
|
1497 |
> |
geomCnst = 3.0/2.0; |
1498 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1499 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1500 |
> |
|
1501 |
> |
det = intTensor.determinant(); |
1502 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1503 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1504 |
> |
return; |
1505 |
> |
} |
1506 |
> |
|
1507 |
> |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1508 |
> |
Mat3x3d intTensor; |
1509 |
> |
Vector3d dummyAngMom; |
1510 |
> |
RealType sysconstants; |
1511 |
> |
RealType geomCnst; |
1512 |
> |
|
1513 |
> |
geomCnst = 3.0/2.0; |
1514 |
> |
/* Get the inertial tensor and angular momentum for free*/ |
1515 |
> |
getInertiaTensor(intTensor,dummyAngMom); |
1516 |
> |
|
1517 |
> |
detI = intTensor.determinant(); |
1518 |
> |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1519 |
> |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1520 |
> |
return; |
1521 |
> |
} |
1522 |
> |
/* |
1523 |
> |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1524 |
> |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1525 |
> |
sdByGlobalIndex_ = v; |
1526 |
> |
} |
1527 |
> |
|
1528 |
> |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1529 |
> |
//assert(index < nAtoms_ + nRigidBodies_); |
1530 |
> |
return sdByGlobalIndex_.at(index); |
1531 |
> |
} |
1532 |
> |
*/ |
1533 |
|
}//end namespace oopse |
1534 |
|
|