ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
(Generate patch)

Comparing trunk/src/brains/SimInfo.cpp (file contents):
Revision 705 by chrisfen, Tue Nov 1 19:14:27 2005 UTC vs.
Revision 1050 by chrisfen, Fri Sep 22 22:19:59 2006 UTC

# Line 48 | Line 48
48  
49   #include <algorithm>
50   #include <set>
51 + #include <map>
52  
53   #include "brains/SimInfo.hpp"
54   #include "math/Vector3.hpp"
55   #include "primitives/Molecule.hpp"
56 + #include "primitives/StuntDouble.hpp"
57   #include "UseTheForce/fCutoffPolicy.h"
58   #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 + #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61   #include "UseTheForce/doForces_interface.h"
62   #include "UseTheForce/DarkSide/electrostatic_interface.h"
63 < #include "UseTheForce/notifyCutoffs_interface.h"
63 > #include "UseTheForce/DarkSide/switcheroo_interface.h"
64   #include "utils/MemoryUtils.hpp"
65   #include "utils/simError.h"
66   #include "selection/SelectionManager.hpp"
67 + #include "io/ForceFieldOptions.hpp"
68 + #include "UseTheForce/ForceField.hpp"
69  
70   #ifdef IS_MPI
71   #include "UseTheForce/mpiComponentPlan.h"
# Line 67 | Line 73 | namespace oopse {
73   #endif
74  
75   namespace oopse {
76 +  std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
77 +    std::map<int, std::set<int> >::iterator i = container.find(index);
78 +    std::set<int> result;
79 +    if (i != container.end()) {
80 +        result = i->second;
81 +    }
82  
83 <  SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs,
84 <                   ForceField* ff, Globals* simParams) :
85 <    stamps_(stamps), forceField_(ff), simParams_(simParams),
86 <    ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
83 >    return result;
84 >  }
85 >  
86 >  SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
87 >    forceField_(ff), simParams_(simParams),
88 >    ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
89      nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
90      nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
91      nAtoms_(0), nBonds_(0),  nBends_(0), nTorsions_(0), nRigidBodies_(0),
92      nIntegrableObjects_(0),  nCutoffGroups_(0), nConstraints_(0),
93 <    sman_(NULL), fortranInitialized_(false) {
93 >    sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false) {
94  
81            
82      std::vector<std::pair<MoleculeStamp*, int> >::iterator i;
95        MoleculeStamp* molStamp;
96        int nMolWithSameStamp;
97        int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
# Line 87 | Line 99 | namespace oopse {
99        CutoffGroupStamp* cgStamp;    
100        RigidBodyStamp* rbStamp;
101        int nRigidAtoms = 0;
102 <    
103 <      for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) {
104 <        molStamp = i->first;
105 <        nMolWithSameStamp = i->second;
102 >      std::vector<Component*> components = simParams->getComponents();
103 >      
104 >      for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
105 >        molStamp = (*i)->getMoleculeStamp();
106 >        nMolWithSameStamp = (*i)->getNMol();
107          
108          addMoleculeStamp(molStamp, nMolWithSameStamp);
109  
110          //calculate atoms in molecules
111          nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;  
112  
100
113          //calculate atoms in cutoff groups
114          int nAtomsInGroups = 0;
115          int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
116          
117          for (int j=0; j < nCutoffGroupsInStamp; j++) {
118 <          cgStamp = molStamp->getCutoffGroup(j);
118 >          cgStamp = molStamp->getCutoffGroupStamp(j);
119            nAtomsInGroups += cgStamp->getNMembers();
120          }
121  
# Line 116 | Line 128 | namespace oopse {
128          int nRigidBodiesInStamp = molStamp->getNRigidBodies();
129          
130          for (int j=0; j < nRigidBodiesInStamp; j++) {
131 <          rbStamp = molStamp->getRigidBody(j);
131 >          rbStamp = molStamp->getRigidBodyStamp(j);
132            nAtomsInRigidBodies += rbStamp->getNMembers();
133          }
134  
# Line 155 | Line 167 | namespace oopse {
167      }
168      molecules_.clear();
169        
158    delete stamps_;
170      delete sman_;
171      delete simParams_;
172      delete forceField_;
# Line 262 | Line 273 | namespace oopse {
273            }
274          }
275              
276 <      }//end for (integrableObject)
277 <    }// end for (mol)
276 >      }
277 >    }
278      
279      // n_constraints is local, so subtract them on each processor
280      ndf_local -= nConstraints_;
# Line 280 | Line 291 | namespace oopse {
291  
292    }
293  
294 +  int SimInfo::getFdf() {
295 + #ifdef IS_MPI
296 +    MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
297 + #else
298 +    fdf_ = fdf_local;
299 + #endif
300 +    return fdf_;
301 +  }
302 +    
303    void SimInfo::calcNdfRaw() {
304      int ndfRaw_local;
305  
# Line 342 | Line 362 | namespace oopse {
362      int b;
363      int c;
364      int d;
365 +
366 +    std::map<int, std::set<int> > atomGroups;
367 +
368 +    Molecule::RigidBodyIterator rbIter;
369 +    RigidBody* rb;
370 +    Molecule::IntegrableObjectIterator ii;
371 +    StuntDouble* integrableObject;
372 +    
373 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
374 +           integrableObject = mol->nextIntegrableObject(ii)) {
375 +
376 +      if (integrableObject->isRigidBody()) {
377 +          rb = static_cast<RigidBody*>(integrableObject);
378 +          std::vector<Atom*> atoms = rb->getAtoms();
379 +          std::set<int> rigidAtoms;
380 +          for (int i = 0; i < atoms.size(); ++i) {
381 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
382 +          }
383 +          for (int i = 0; i < atoms.size(); ++i) {
384 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
385 +          }      
386 +      } else {
387 +        std::set<int> oneAtomSet;
388 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
389 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
390 +      }
391 +    }  
392 +
393 +    
394      
395      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
396        a = bond->getAtomA()->getGlobalIndex();
# Line 353 | Line 402 | namespace oopse {
402        a = bend->getAtomA()->getGlobalIndex();
403        b = bend->getAtomB()->getGlobalIndex();        
404        c = bend->getAtomC()->getGlobalIndex();
405 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
406 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
407 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
408  
409 <      exclude_.addPair(a, b);
410 <      exclude_.addPair(a, c);
411 <      exclude_.addPair(b, c);        
409 >      exclude_.addPairs(rigidSetA, rigidSetB);
410 >      exclude_.addPairs(rigidSetA, rigidSetC);
411 >      exclude_.addPairs(rigidSetB, rigidSetC);
412 >      
413 >      //exclude_.addPair(a, b);
414 >      //exclude_.addPair(a, c);
415 >      //exclude_.addPair(b, c);        
416      }
417  
418      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 364 | Line 420 | namespace oopse {
420        b = torsion->getAtomB()->getGlobalIndex();        
421        c = torsion->getAtomC()->getGlobalIndex();        
422        d = torsion->getAtomD()->getGlobalIndex();        
423 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
424 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
425 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
426 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
427  
428 +      exclude_.addPairs(rigidSetA, rigidSetB);
429 +      exclude_.addPairs(rigidSetA, rigidSetC);
430 +      exclude_.addPairs(rigidSetA, rigidSetD);
431 +      exclude_.addPairs(rigidSetB, rigidSetC);
432 +      exclude_.addPairs(rigidSetB, rigidSetD);
433 +      exclude_.addPairs(rigidSetC, rigidSetD);
434 +
435 +      /*
436 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
437 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
438 +      exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
439 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
440 +      exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
441 +      exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
442 +        
443 +      
444        exclude_.addPair(a, b);
445        exclude_.addPair(a, c);
446        exclude_.addPair(a, d);
447        exclude_.addPair(b, c);
448        exclude_.addPair(b, d);
449        exclude_.addPair(c, d);        
450 +      */
451      }
452  
376    Molecule::RigidBodyIterator rbIter;
377    RigidBody* rb;
453      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
454        std::vector<Atom*> atoms = rb->getAtoms();
455        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 399 | Line 474 | namespace oopse {
474      int b;
475      int c;
476      int d;
477 +
478 +    std::map<int, std::set<int> > atomGroups;
479 +
480 +    Molecule::RigidBodyIterator rbIter;
481 +    RigidBody* rb;
482 +    Molecule::IntegrableObjectIterator ii;
483 +    StuntDouble* integrableObject;
484      
485 +    for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
486 +           integrableObject = mol->nextIntegrableObject(ii)) {
487 +
488 +      if (integrableObject->isRigidBody()) {
489 +          rb = static_cast<RigidBody*>(integrableObject);
490 +          std::vector<Atom*> atoms = rb->getAtoms();
491 +          std::set<int> rigidAtoms;
492 +          for (int i = 0; i < atoms.size(); ++i) {
493 +            rigidAtoms.insert(atoms[i]->getGlobalIndex());
494 +          }
495 +          for (int i = 0; i < atoms.size(); ++i) {
496 +            atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
497 +          }      
498 +      } else {
499 +        std::set<int> oneAtomSet;
500 +        oneAtomSet.insert(integrableObject->getGlobalIndex());
501 +        atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));        
502 +      }
503 +    }  
504 +
505 +    
506      for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
507        a = bond->getAtomA()->getGlobalIndex();
508        b = bond->getAtomB()->getGlobalIndex();        
# Line 411 | Line 514 | namespace oopse {
514        b = bend->getAtomB()->getGlobalIndex();        
515        c = bend->getAtomC()->getGlobalIndex();
516  
517 <      exclude_.removePair(a, b);
518 <      exclude_.removePair(a, c);
519 <      exclude_.removePair(b, c);        
517 >      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
518 >      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
519 >      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
520 >
521 >      exclude_.removePairs(rigidSetA, rigidSetB);
522 >      exclude_.removePairs(rigidSetA, rigidSetC);
523 >      exclude_.removePairs(rigidSetB, rigidSetC);
524 >      
525 >      //exclude_.removePair(a, b);
526 >      //exclude_.removePair(a, c);
527 >      //exclude_.removePair(b, c);        
528      }
529  
530      for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
# Line 421 | Line 532 | namespace oopse {
532        b = torsion->getAtomB()->getGlobalIndex();        
533        c = torsion->getAtomC()->getGlobalIndex();        
534        d = torsion->getAtomD()->getGlobalIndex();        
535 +
536 +      std::set<int> rigidSetA = getRigidSet(a, atomGroups);
537 +      std::set<int> rigidSetB = getRigidSet(b, atomGroups);
538 +      std::set<int> rigidSetC = getRigidSet(c, atomGroups);
539 +      std::set<int> rigidSetD = getRigidSet(d, atomGroups);
540 +
541 +      exclude_.removePairs(rigidSetA, rigidSetB);
542 +      exclude_.removePairs(rigidSetA, rigidSetC);
543 +      exclude_.removePairs(rigidSetA, rigidSetD);
544 +      exclude_.removePairs(rigidSetB, rigidSetC);
545 +      exclude_.removePairs(rigidSetB, rigidSetD);
546 +      exclude_.removePairs(rigidSetC, rigidSetD);
547  
548 +      /*
549 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
550 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
551 +      exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
552 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
553 +      exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
554 +      exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
555 +
556 +      
557        exclude_.removePair(a, b);
558        exclude_.removePair(a, c);
559        exclude_.removePair(a, d);
560        exclude_.removePair(b, c);
561        exclude_.removePair(b, d);
562        exclude_.removePair(c, d);        
563 +      */
564      }
565  
433    Molecule::RigidBodyIterator rbIter;
434    RigidBody* rb;
566      for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
567        std::vector<Atom*> atoms = rb->getAtoms();
568        for (int i = 0; i < atoms.size() -1 ; ++i) {
# Line 470 | Line 601 | namespace oopse {
601      /** @deprecate */    
602      int isError = 0;
603      
604 +    setupCutoff();
605 +    
606      setupElectrostaticSummationMethod( isError );
607 +    setupSwitchingFunction();
608 +    setupAccumulateBoxDipole();
609  
610      if(isError){
611        sprintf( painCave.errMsg,
# Line 478 | Line 613 | namespace oopse {
613        painCave.isFatal = 1;
614        simError();
615      }
481  
482    
483    setupCutoff();
616  
617      calcNdf();
618      calcNdfRaw();
# Line 515 | Line 647 | namespace oopse {
647      int useLennardJones = 0;
648      int useElectrostatic = 0;
649      int useEAM = 0;
650 +    int useSC = 0;
651      int useCharge = 0;
652      int useDirectional = 0;
653      int useDipole = 0;
# Line 528 | Line 661 | namespace oopse {
661      //usePBC and useRF are from simParams
662      int usePBC = simParams_->getUsePeriodicBoundaryConditions();
663      int useRF;
664 <    int useDW;
664 >    int useSF;
665 >    int useSP;
666 >    int useBoxDipole;
667      std::string myMethod;
668  
669      // set the useRF logical
670      useRF = 0;
671 <    useDW = 0;
671 >    useSF = 0;
672  
673  
674      if (simParams_->haveElectrostaticSummationMethod()) {
675        std::string myMethod = simParams_->getElectrostaticSummationMethod();
676        toUpper(myMethod);
677 <      if (myMethod == "REACTION_FIELD") {
677 >      if (myMethod == "REACTION_FIELD"){
678          useRF=1;
679 <      } else {
680 <        if (myMethod == "DAMPED_WOLF") {
681 <          useDW = 1;
682 <        }
679 >      } else if (myMethod == "SHIFTED_FORCE"){
680 >        useSF = 1;
681 >      } else if (myMethod == "SHIFTED_POTENTIAL"){
682 >        useSP = 1;
683        }
684      }
685 +    
686 +    if (simParams_->haveAccumulateBoxDipole())
687 +      if (simParams_->getAccumulateBoxDipole())
688 +        useBoxDipole = 1;
689  
690      //loop over all of the atom types
691      for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
692        useLennardJones |= (*i)->isLennardJones();
693        useElectrostatic |= (*i)->isElectrostatic();
694        useEAM |= (*i)->isEAM();
695 +      useSC |= (*i)->isSC();
696        useCharge |= (*i)->isCharge();
697        useDirectional |= (*i)->isDirectional();
698        useDipole |= (*i)->isDipole();
# Line 603 | Line 743 | namespace oopse {
743      temp = useEAM;
744      MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
745  
746 +    temp = useSC;
747 +    MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
748 +    
749      temp = useShape;
750      MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
751  
# Line 612 | Line 755 | namespace oopse {
755      temp = useRF;
756      MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
757  
758 <    temp = useDW;
759 <    MPI_Allreduce(&temp, &useDW, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);    
758 >    temp = useSF;
759 >    MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);  
760  
761 +    temp = useSP;
762 +    MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
763 +
764 +    temp = useBoxDipole;
765 +    MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
766 +
767   #endif
768  
769      fInfo_.SIM_uses_PBC = usePBC;    
# Line 627 | Line 776 | namespace oopse {
776      fInfo_.SIM_uses_StickyPower = useStickyPower;
777      fInfo_.SIM_uses_GayBerne = useGayBerne;
778      fInfo_.SIM_uses_EAM = useEAM;
779 +    fInfo_.SIM_uses_SC = useSC;
780      fInfo_.SIM_uses_Shapes = useShape;
781      fInfo_.SIM_uses_FLARB = useFLARB;
782      fInfo_.SIM_uses_RF = useRF;
783 <    fInfo_.SIM_uses_DampedWolf = useDW;
784 <
785 <    if( myMethod == "REACTION_FIELD") {
636 <      
637 <      if (simParams_->haveDielectric()) {
638 <        fInfo_.dielect = simParams_->getDielectric();
639 <      } else {
640 <        sprintf(painCave.errMsg,
641 <                "SimSetup Error: No Dielectric constant was set.\n"
642 <                "\tYou are trying to use Reaction Field without"
643 <                "\tsetting a dielectric constant!\n");
644 <        painCave.isFatal = 1;
645 <        simError();
646 <      }      
647 <    }
648 <
783 >    fInfo_.SIM_uses_SF = useSF;
784 >    fInfo_.SIM_uses_SP = useSP;
785 >    fInfo_.SIM_uses_BoxDipole = useBoxDipole;
786    }
787  
788    void SimInfo::setupFortranSim() {
# Line 662 | Line 799 | namespace oopse {
799      }
800  
801      //calculate mass ratio of cutoff group
802 <    std::vector<double> mfact;
802 >    std::vector<RealType> mfact;
803      SimInfo::MoleculeIterator mi;
804      Molecule* mol;
805      Molecule::CutoffGroupIterator ci;
806      CutoffGroup* cg;
807      Molecule::AtomIterator ai;
808      Atom* atom;
809 <    double totalMass;
809 >    RealType totalMass;
810  
811      //to avoid memory reallocation, reserve enough space for mfact
812      mfact.reserve(getNCutoffGroups());
# Line 792 | Line 929 | namespace oopse {
929  
930   #endif
931  
932 <  double SimInfo::calcMaxCutoffRadius() {
796 <
797 <
798 <    std::set<AtomType*> atomTypes;
799 <    std::set<AtomType*>::iterator i;
800 <    std::vector<double> cutoffRadius;
801 <
802 <    //get the unique atom types
803 <    atomTypes = getUniqueAtomTypes();
804 <
805 <    //query the max cutoff radius among these atom types
806 <    for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
807 <      cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i));
808 <    }
809 <
810 <    double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end()));
811 < #ifdef IS_MPI
812 <    //pick the max cutoff radius among the processors
813 < #endif
814 <
815 <    return maxCutoffRadius;
816 <  }
817 <
818 <  void SimInfo::getCutoff(double& rcut, double& rsw) {
932 >  void SimInfo::setupCutoff() {          
933      
934 <    if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
821 <        
822 <      if (!simParams_->haveCutoffRadius()){
823 <        sprintf(painCave.errMsg,
824 <                "SimCreator Warning: No value was set for the cutoffRadius.\n"
825 <                "\tOOPSE will use a default value of 15.0 angstroms"
826 <                "\tfor the cutoffRadius.\n");
827 <        painCave.isFatal = 0;
828 <        simError();
829 <        rcut = 15.0;
830 <      } else{
831 <        rcut = simParams_->getCutoffRadius();
832 <      }
934 >    ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
935  
936 <      if (!simParams_->haveSwitchingRadius()){
937 <        sprintf(painCave.errMsg,
836 <                "SimCreator Warning: No value was set for switchingRadius.\n"
837 <                "\tOOPSE will use a default value of\n"
838 <                "\t0.85 * cutoffRadius for the switchingRadius\n");
839 <        painCave.isFatal = 0;
840 <        simError();
841 <        rsw = 0.85 * rcut;
842 <      } else{
843 <        rsw = simParams_->getSwitchingRadius();
844 <      }
936 >    // Check the cutoff policy
937 >    int cp =  TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
938  
939 <    } else {
940 <      // if charge, dipole or reaction field is not used and the cutofff radius is not specified in
941 <      //meta-data file, the maximum cutoff radius calculated from forcefiled will be used
942 <        
943 <      if (simParams_->haveCutoffRadius()) {
851 <        rcut = simParams_->getCutoffRadius();
852 <      } else {
853 <        //set cutoff radius to the maximum cutoff radius based on atom types in the whole system
854 <        rcut = calcMaxCutoffRadius();
855 <      }
856 <
857 <      if (simParams_->haveSwitchingRadius()) {
858 <        rsw  = simParams_->getSwitchingRadius();
859 <      } else {
860 <        rsw = rcut;
861 <      }
862 <    
939 >    std::string myPolicy;
940 >    if (forceFieldOptions_.haveCutoffPolicy()){
941 >      myPolicy = forceFieldOptions_.getCutoffPolicy();
942 >    }else if (simParams_->haveCutoffPolicy()) {
943 >      myPolicy = simParams_->getCutoffPolicy();
944      }
864  }
945  
946 <  void SimInfo::setupCutoff() {    
867 <    getCutoff(rcut_, rsw_);    
868 <    double rnblist = rcut_ + 1; // skin of neighbor list
869 <
870 <    //Pass these cutoff radius etc. to fortran. This function should be called once and only once
871 <    
872 <    int cp =  TRADITIONAL_CUTOFF_POLICY;
873 <    if (simParams_->haveCutoffPolicy()) {
874 <      std::string myPolicy = simParams_->getCutoffPolicy();
946 >    if (!myPolicy.empty()){
947        toUpper(myPolicy);
948        if (myPolicy == "MIX") {
949          cp = MIX_CUTOFF_POLICY;
# Line 890 | Line 962 | namespace oopse {
962            }    
963          }          
964        }
965 <    }
965 >    }          
966 >    notifyFortranCutoffPolicy(&cp);
967  
968 <
968 >    // Check the Skin Thickness for neighborlists
969 >    RealType skin;
970      if (simParams_->haveSkinThickness()) {
971 <      double skinThickness = simParams_->getSkinThickness();
972 <    }
971 >      skin = simParams_->getSkinThickness();
972 >      notifyFortranSkinThickness(&skin);
973 >    }            
974 >        
975 >    // Check if the cutoff was set explicitly:
976 >    if (simParams_->haveCutoffRadius()) {
977 >      rcut_ = simParams_->getCutoffRadius();
978 >      if (simParams_->haveSwitchingRadius()) {
979 >        rsw_  = simParams_->getSwitchingRadius();
980 >      } else {
981 >        if (fInfo_.SIM_uses_Charges |
982 >            fInfo_.SIM_uses_Dipoles |
983 >            fInfo_.SIM_uses_RF) {
984 >          
985 >          rsw_ = 0.85 * rcut_;
986 >          sprintf(painCave.errMsg,
987 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
988 >                  "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
989 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
990 >        painCave.isFatal = 0;
991 >        simError();
992 >        } else {
993 >          rsw_ = rcut_;
994 >          sprintf(painCave.errMsg,
995 >                  "SimCreator Warning: No value was set for the switchingRadius.\n"
996 >                  "\tOOPSE will use the same value as the cutoffRadius.\n"
997 >                  "\tswitchingRadius = %f. for this simulation\n", rsw_);
998 >          painCave.isFatal = 0;
999 >          simError();
1000 >        }
1001 >      }
1002 >      
1003 >      notifyFortranCutoffs(&rcut_, &rsw_);
1004 >      
1005 >    } else {
1006 >      
1007 >      // For electrostatic atoms, we'll assume a large safe value:
1008 >      if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1009 >        sprintf(painCave.errMsg,
1010 >                "SimCreator Warning: No value was set for the cutoffRadius.\n"
1011 >                "\tOOPSE will use a default value of 15.0 angstroms"
1012 >                "\tfor the cutoffRadius.\n");
1013 >        painCave.isFatal = 0;
1014 >        simError();
1015 >        rcut_ = 15.0;
1016 >      
1017 >        if (simParams_->haveElectrostaticSummationMethod()) {
1018 >          std::string myMethod = simParams_->getElectrostaticSummationMethod();
1019 >          toUpper(myMethod);
1020 >          if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1021 >            if (simParams_->haveSwitchingRadius()){
1022 >              sprintf(painCave.errMsg,
1023 >                      "SimInfo Warning: A value was set for the switchingRadius\n"
1024 >                      "\teven though the electrostaticSummationMethod was\n"
1025 >                      "\tset to %s\n", myMethod.c_str());
1026 >              painCave.isFatal = 1;
1027 >              simError();            
1028 >            }
1029 >          }
1030 >        }
1031 >      
1032 >        if (simParams_->haveSwitchingRadius()){
1033 >          rsw_ = simParams_->getSwitchingRadius();
1034 >        } else {        
1035 >          sprintf(painCave.errMsg,
1036 >                  "SimCreator Warning: No value was set for switchingRadius.\n"
1037 >                  "\tOOPSE will use a default value of\n"
1038 >                  "\t0.85 * cutoffRadius for the switchingRadius\n");
1039 >          painCave.isFatal = 0;
1040 >          simError();
1041 >          rsw_ = 0.85 * rcut_;
1042 >        }
1043 >        notifyFortranCutoffs(&rcut_, &rsw_);
1044 >      } else {
1045 >        // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1046 >        // We'll punt and let fortran figure out the cutoffs later.
1047 >        
1048 >        notifyFortranYouAreOnYourOwn();
1049  
1050 <    notifyFortranCutoffs(&rcut_, &rsw_, &rnblist, &cp);
1051 <    // also send cutoff notification to electrostatics
902 <    setElectrostaticCutoffRadius(&rcut_, &rsw_);
1050 >      }
1051 >    }
1052    }
1053  
1054    void SimInfo::setupElectrostaticSummationMethod( int isError ) {    
1055      
1056      int errorOut;
1057      int esm =  NONE;
1058 <    double alphaVal;
1059 <    double dielectric;
1060 <
1058 >    int sm = UNDAMPED;
1059 >    RealType alphaVal;
1060 >    RealType dielectric;
1061 >    
1062      errorOut = isError;
913    alphaVal = simParams_->getDampingAlpha();
914    dielectric = simParams_->getDielectric();
1063  
1064      if (simParams_->haveElectrostaticSummationMethod()) {
1065        std::string myMethod = simParams_->getElectrostaticSummationMethod();
# Line 919 | Line 1067 | namespace oopse {
1067        if (myMethod == "NONE") {
1068          esm = NONE;
1069        } else {
1070 <        if (myMethod == "UNDAMPED_WOLF") {
1071 <          esm = UNDAMPED_WOLF;
1070 >        if (myMethod == "SWITCHING_FUNCTION") {
1071 >          esm = SWITCHING_FUNCTION;
1072          } else {
1073 <          if (myMethod == "DAMPED_WOLF") {            
1074 <            esm = DAMPED_WOLF;
1075 <            if (!simParams_->haveDampingAlpha()) {
1076 <              //throw error
1077 <              sprintf( painCave.errMsg,
930 <                       "SimInfo warning: dampingAlpha was not specified in the input file. A default value of %f (1/ang) will be used for the Damped Wolf Method.", alphaVal);
931 <              painCave.isFatal = 0;
932 <              simError();
933 <            }
934 <          } else {
935 <            if (myMethod == "REACTION_FIELD") {      
936 <              esm = REACTION_FIELD;
1073 >          if (myMethod == "SHIFTED_POTENTIAL") {
1074 >            esm = SHIFTED_POTENTIAL;
1075 >          } else {
1076 >            if (myMethod == "SHIFTED_FORCE") {            
1077 >              esm = SHIFTED_FORCE;
1078              } else {
1079 <              // throw error        
1080 <              sprintf( painCave.errMsg,
1081 <                       "SimInfo error: Unknown electrostaticSummationMethod. (Input file specified %s .)\n\telectrostaticSummationMethod must be one of: \"none\", \"undamped_wolf\", \"damped_wolf\", or \"reaction_field\".", myMethod.c_str() );
1082 <              painCave.isFatal = 1;
1083 <              simError();
1084 <            }    
1085 <          }          
1079 >              if (myMethod == "REACTION_FIELD") {
1080 >                esm = REACTION_FIELD;
1081 >                dielectric = simParams_->getDielectric();
1082 >                if (!simParams_->haveDielectric()) {
1083 >                  // throw warning
1084 >                  sprintf( painCave.errMsg,
1085 >                           "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1086 >                           "\tA default value of %f will be used for the dielectric.\n", dielectric);
1087 >                  painCave.isFatal = 0;
1088 >                  simError();
1089 >                }
1090 >              } else {
1091 >                // throw error        
1092 >                sprintf( painCave.errMsg,
1093 >                         "SimInfo error: Unknown electrostaticSummationMethod.\n"
1094 >                         "\t(Input file specified %s .)\n"
1095 >                         "\telectrostaticSummationMethod must be one of: \"none\",\n"
1096 >                         "\t\"shifted_potential\", \"shifted_force\", or \n"
1097 >                         "\t\"reaction_field\".\n", myMethod.c_str() );
1098 >                painCave.isFatal = 1;
1099 >                simError();
1100 >              }    
1101 >            }          
1102 >          }
1103          }
1104        }
1105      }
1106 +    
1107 +    if (simParams_->haveElectrostaticScreeningMethod()) {
1108 +      std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1109 +      toUpper(myScreen);
1110 +      if (myScreen == "UNDAMPED") {
1111 +        sm = UNDAMPED;
1112 +      } else {
1113 +        if (myScreen == "DAMPED") {
1114 +          sm = DAMPED;
1115 +          if (!simParams_->haveDampingAlpha()) {
1116 +            // first set a cutoff dependent alpha value
1117 +            // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1118 +            alphaVal = 0.5125 - rcut_* 0.025;
1119 +            // for values rcut > 20.5, alpha is zero
1120 +            if (alphaVal < 0) alphaVal = 0;
1121 +
1122 +            // throw warning
1123 +            sprintf( painCave.errMsg,
1124 +                     "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1125 +                     "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1126 +            painCave.isFatal = 0;
1127 +            simError();
1128 +          }
1129 +        } else {
1130 +          // throw error        
1131 +          sprintf( painCave.errMsg,
1132 +                   "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1133 +                   "\t(Input file specified %s .)\n"
1134 +                   "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1135 +                   "or \"damped\".\n", myScreen.c_str() );
1136 +          painCave.isFatal = 1;
1137 +          simError();
1138 +        }
1139 +      }
1140 +    }
1141 +    
1142      // let's pass some summation method variables to fortran
1143      setElectrostaticSummationMethod( &esm );
1144 <    setDampedWolfAlpha( &alphaVal );
1144 >    setFortranElectrostaticMethod( &esm );
1145 >    setScreeningMethod( &sm );
1146 >    setDampingAlpha( &alphaVal );
1147      setReactionFieldDielectric( &dielectric );
1148 <    initFortranFF( &esm, &errorOut );
1148 >    initFortranFF( &errorOut );
1149    }
1150  
1151 +  void SimInfo::setupSwitchingFunction() {    
1152 +    int ft = CUBIC;
1153 +
1154 +    if (simParams_->haveSwitchingFunctionType()) {
1155 +      std::string funcType = simParams_->getSwitchingFunctionType();
1156 +      toUpper(funcType);
1157 +      if (funcType == "CUBIC") {
1158 +        ft = CUBIC;
1159 +      } else {
1160 +        if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1161 +          ft = FIFTH_ORDER_POLY;
1162 +        } else {
1163 +          // throw error        
1164 +          sprintf( painCave.errMsg,
1165 +                   "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1166 +          painCave.isFatal = 1;
1167 +          simError();
1168 +        }          
1169 +      }
1170 +    }
1171 +
1172 +    // send switching function notification to switcheroo
1173 +    setFunctionType(&ft);
1174 +
1175 +  }
1176 +
1177 +  void SimInfo::setupAccumulateBoxDipole() {    
1178 +
1179 +    // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1180 +    if ( simParams_->haveAccumulateBoxDipole() )
1181 +      if ( simParams_->getAccumulateBoxDipole() ) {
1182 +        setAccumulateBoxDipole();
1183 +        calcBoxDipole_ = true;
1184 +      }
1185 +
1186 +  }
1187 +
1188    void SimInfo::addProperty(GenericData* genData) {
1189      properties_.addProperty(genData);  
1190    }
# Line 1008 | Line 1241 | namespace oopse {
1241      Molecule* mol;
1242  
1243      Vector3d comVel(0.0);
1244 <    double totalMass = 0.0;
1244 >    RealType totalMass = 0.0;
1245      
1246  
1247      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1248 <      double mass = mol->getMass();
1248 >      RealType mass = mol->getMass();
1249        totalMass += mass;
1250        comVel += mass * mol->getComVel();
1251      }  
1252  
1253   #ifdef IS_MPI
1254 <    double tmpMass = totalMass;
1254 >    RealType tmpMass = totalMass;
1255      Vector3d tmpComVel(comVel);    
1256 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1257 <    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1256 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1257 >    MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1258   #endif
1259  
1260      comVel /= totalMass;
# Line 1034 | Line 1267 | namespace oopse {
1267      Molecule* mol;
1268  
1269      Vector3d com(0.0);
1270 <    double totalMass = 0.0;
1270 >    RealType totalMass = 0.0;
1271      
1272      for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1273 <      double mass = mol->getMass();
1273 >      RealType mass = mol->getMass();
1274        totalMass += mass;
1275        com += mass * mol->getCom();
1276      }  
1277  
1278   #ifdef IS_MPI
1279 <    double tmpMass = totalMass;
1279 >    RealType tmpMass = totalMass;
1280      Vector3d tmpCom(com);    
1281 <    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1282 <    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1281 >    MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1282 >    MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1283   #endif
1284  
1285      com /= totalMass;
# Line 1070 | Line 1303 | namespace oopse {
1303        Molecule* mol;
1304        
1305      
1306 <      double totalMass = 0.0;
1306 >      RealType totalMass = 0.0;
1307      
1308  
1309        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1310 <         double mass = mol->getMass();
1310 >         RealType mass = mol->getMass();
1311           totalMass += mass;
1312           com += mass * mol->getCom();
1313           comVel += mass * mol->getComVel();          
1314        }  
1315        
1316   #ifdef IS_MPI
1317 <      double tmpMass = totalMass;
1317 >      RealType tmpMass = totalMass;
1318        Vector3d tmpCom(com);  
1319        Vector3d tmpComVel(comVel);
1320 <      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1321 <      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1322 <      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1320 >      MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1321 >      MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1322 >      MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1323   #endif
1324        
1325        com /= totalMass;
# Line 1105 | Line 1338 | namespace oopse {
1338     void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1339        
1340  
1341 <      double xx = 0.0;
1342 <      double yy = 0.0;
1343 <      double zz = 0.0;
1344 <      double xy = 0.0;
1345 <      double xz = 0.0;
1346 <      double yz = 0.0;
1341 >      RealType xx = 0.0;
1342 >      RealType yy = 0.0;
1343 >      RealType zz = 0.0;
1344 >      RealType xy = 0.0;
1345 >      RealType xz = 0.0;
1346 >      RealType yz = 0.0;
1347        Vector3d com(0.0);
1348        Vector3d comVel(0.0);
1349        
# Line 1122 | Line 1355 | namespace oopse {
1355        Vector3d thisq(0.0);
1356        Vector3d thisv(0.0);
1357  
1358 <      double thisMass = 0.0;
1358 >      RealType thisMass = 0.0;
1359      
1360        
1361        
# Line 1160 | Line 1393 | namespace oopse {
1393   #ifdef IS_MPI
1394        Mat3x3d tmpI(inertiaTensor);
1395        Vector3d tmpAngMom;
1396 <      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1397 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1396 >      MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1397 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1398   #endif
1399                
1400        return;
# Line 1182 | Line 1415 | namespace oopse {
1415        Vector3d thisr(0.0);
1416        Vector3d thisp(0.0);
1417        
1418 <      double thisMass;
1418 >      RealType thisMass;
1419        
1420        for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {        
1421          thisMass = mol->getMass();
# Line 1195 | Line 1428 | namespace oopse {
1428        
1429   #ifdef IS_MPI
1430        Vector3d tmpAngMom;
1431 <      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
1431 >      MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1432   #endif
1433        
1434        return angularMomentum;
1435     }
1436    
1437 <  
1437 >  StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1438 >    return IOIndexToIntegrableObject.at(index);
1439 >  }
1440 >  
1441 >  void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1442 >    IOIndexToIntegrableObject= v;
1443 >  }
1444 >
1445 > /*
1446 >   void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1447 >      assert( v.size() == nAtoms_ + nRigidBodies_);
1448 >      sdByGlobalIndex_ = v;
1449 >    }
1450 >
1451 >    StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1452 >      //assert(index < nAtoms_ + nRigidBodies_);
1453 >      return sdByGlobalIndex_.at(index);
1454 >    }  
1455 > */  
1456   }//end namespace oopse
1457  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines