6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
/** |
48 |
|
|
49 |
|
#include <algorithm> |
50 |
|
#include <set> |
51 |
+ |
#include <map> |
52 |
|
|
53 |
|
#include "brains/SimInfo.hpp" |
54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
+ |
#include "primitives/StuntDouble.hpp" |
57 |
+ |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h" |
59 |
+ |
#include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h" |
60 |
+ |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
61 |
|
#include "UseTheForce/doForces_interface.h" |
62 |
< |
#include "UseTheForce/notifyCutoffs_interface.h" |
62 |
> |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
63 |
> |
#include "UseTheForce/DarkSide/electrostatic_interface.h" |
64 |
> |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
65 |
|
#include "utils/MemoryUtils.hpp" |
66 |
|
#include "utils/simError.h" |
67 |
|
#include "selection/SelectionManager.hpp" |
68 |
+ |
#include "io/ForceFieldOptions.hpp" |
69 |
+ |
#include "UseTheForce/ForceField.hpp" |
70 |
|
|
71 |
+ |
|
72 |
|
#ifdef IS_MPI |
73 |
|
#include "UseTheForce/mpiComponentPlan.h" |
74 |
|
#include "UseTheForce/DarkSide/simParallel_interface.h" |
75 |
|
#endif |
76 |
|
|
77 |
< |
namespace oopse { |
77 |
> |
namespace OpenMD { |
78 |
> |
std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) { |
79 |
> |
std::map<int, std::set<int> >::iterator i = container.find(index); |
80 |
> |
std::set<int> result; |
81 |
> |
if (i != container.end()) { |
82 |
> |
result = i->second; |
83 |
> |
} |
84 |
|
|
85 |
< |
SimInfo::SimInfo(MakeStamps* stamps, std::vector<std::pair<MoleculeStamp*, int> >& molStampPairs, |
86 |
< |
ForceField* ff, Globals* simParams) : |
87 |
< |
stamps_(stamps), forceField_(ff), simParams_(simParams), |
88 |
< |
ndf_(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
85 |
> |
return result; |
86 |
> |
} |
87 |
> |
|
88 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
89 |
> |
forceField_(ff), simParams_(simParams), |
90 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
91 |
|
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
92 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
93 |
< |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0), |
94 |
< |
nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0), |
95 |
< |
sman_(NULL), fortranInitialized_(false) { |
93 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
94 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
95 |
> |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
96 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
97 |
|
|
98 |
< |
|
79 |
< |
std::vector<std::pair<MoleculeStamp*, int> >::iterator i; |
98 |
> |
|
99 |
|
MoleculeStamp* molStamp; |
100 |
|
int nMolWithSameStamp; |
101 |
|
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
102 |
< |
int nGroups = 0; //total cutoff groups defined in meta-data file |
102 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
103 |
|
CutoffGroupStamp* cgStamp; |
104 |
|
RigidBodyStamp* rbStamp; |
105 |
|
int nRigidAtoms = 0; |
106 |
< |
|
107 |
< |
for (i = molStampPairs.begin(); i !=molStampPairs.end(); ++i) { |
108 |
< |
molStamp = i->first; |
109 |
< |
nMolWithSameStamp = i->second; |
106 |
> |
|
107 |
> |
std::vector<Component*> components = simParams->getComponents(); |
108 |
> |
|
109 |
> |
for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
110 |
> |
molStamp = (*i)->getMoleculeStamp(); |
111 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
112 |
|
|
113 |
|
addMoleculeStamp(molStamp, nMolWithSameStamp); |
114 |
|
|
115 |
|
//calculate atoms in molecules |
116 |
|
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
117 |
|
|
97 |
– |
|
118 |
|
//calculate atoms in cutoff groups |
119 |
|
int nAtomsInGroups = 0; |
120 |
|
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
121 |
|
|
122 |
|
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
123 |
< |
cgStamp = molStamp->getCutoffGroup(j); |
123 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
124 |
|
nAtomsInGroups += cgStamp->getNMembers(); |
125 |
|
} |
126 |
|
|
127 |
|
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
128 |
+ |
|
129 |
|
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
130 |
|
|
131 |
|
//calculate atoms in rigid bodies |
133 |
|
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
134 |
|
|
135 |
|
for (int j=0; j < nRigidBodiesInStamp; j++) { |
136 |
< |
rbStamp = molStamp->getRigidBody(j); |
136 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
137 |
|
nAtomsInRigidBodies += rbStamp->getNMembers(); |
138 |
|
} |
139 |
|
|
142 |
|
|
143 |
|
} |
144 |
|
|
145 |
< |
//every free atom (atom does not belong to cutoff groups) is a cutoff group |
146 |
< |
//therefore the total number of cutoff groups in the system is equal to |
147 |
< |
//the total number of atoms minus number of atoms belong to cutoff group defined in meta-data |
148 |
< |
//file plus the number of cutoff groups defined in meta-data file |
145 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
146 |
> |
//group therefore the total number of cutoff groups in the system is |
147 |
> |
//equal to the total number of atoms minus number of atoms belong to |
148 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
149 |
> |
//groups defined in meta-data file |
150 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
151 |
|
|
152 |
< |
//every free atom (atom does not belong to rigid bodies) is an integrable object |
153 |
< |
//therefore the total number of integrable objects in the system is equal to |
154 |
< |
//the total number of atoms minus number of atoms belong to rigid body defined in meta-data |
155 |
< |
//file plus the number of rigid bodies defined in meta-data file |
156 |
< |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms + nGlobalRigidBodies_; |
157 |
< |
|
152 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
153 |
> |
//integrable object therefore the total number of integrable objects |
154 |
> |
//in the system is equal to the total number of atoms minus number of |
155 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
156 |
> |
//of rigid bodies defined in meta-data file |
157 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
158 |
> |
+ nGlobalRigidBodies_; |
159 |
> |
|
160 |
|
nGlobalMols_ = molStampIds_.size(); |
137 |
– |
|
138 |
– |
#ifdef IS_MPI |
161 |
|
molToProcMap_.resize(nGlobalMols_); |
140 |
– |
#endif |
141 |
– |
|
162 |
|
} |
163 |
|
|
164 |
|
SimInfo::~SimInfo() { |
168 |
|
} |
169 |
|
molecules_.clear(); |
170 |
|
|
151 |
– |
delete stamps_; |
171 |
|
delete sman_; |
172 |
|
delete simParams_; |
173 |
|
delete forceField_; |
196 |
|
nBonds_ += mol->getNBonds(); |
197 |
|
nBends_ += mol->getNBends(); |
198 |
|
nTorsions_ += mol->getNTorsions(); |
199 |
+ |
nInversions_ += mol->getNInversions(); |
200 |
|
nRigidBodies_ += mol->getNRigidBodies(); |
201 |
|
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
202 |
|
nCutoffGroups_ += mol->getNCutoffGroups(); |
203 |
|
nConstraints_ += mol->getNConstraintPairs(); |
204 |
|
|
205 |
< |
addExcludePairs(mol); |
206 |
< |
|
205 |
> |
addInteractionPairs(mol); |
206 |
> |
|
207 |
|
return true; |
208 |
|
} else { |
209 |
|
return false; |
222 |
|
nBonds_ -= mol->getNBonds(); |
223 |
|
nBends_ -= mol->getNBends(); |
224 |
|
nTorsions_ -= mol->getNTorsions(); |
225 |
+ |
nInversions_ -= mol->getNInversions(); |
226 |
|
nRigidBodies_ -= mol->getNRigidBodies(); |
227 |
|
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
228 |
|
nCutoffGroups_ -= mol->getNCutoffGroups(); |
229 |
|
nConstraints_ -= mol->getNConstraintPairs(); |
230 |
|
|
231 |
< |
removeExcludePairs(mol); |
231 |
> |
removeInteractionPairs(mol); |
232 |
|
molecules_.erase(mol->getGlobalIndex()); |
233 |
|
|
234 |
|
delete mol; |
276 |
|
} |
277 |
|
} |
278 |
|
|
279 |
< |
}//end for (integrableObject) |
280 |
< |
}// end for (mol) |
279 |
> |
} |
280 |
> |
} |
281 |
|
|
282 |
|
// n_constraints is local, so subtract them on each processor |
283 |
|
ndf_local -= nConstraints_; |
294 |
|
|
295 |
|
} |
296 |
|
|
297 |
+ |
int SimInfo::getFdf() { |
298 |
+ |
#ifdef IS_MPI |
299 |
+ |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
300 |
+ |
#else |
301 |
+ |
fdf_ = fdf_local; |
302 |
+ |
#endif |
303 |
+ |
return fdf_; |
304 |
+ |
} |
305 |
+ |
|
306 |
|
void SimInfo::calcNdfRaw() { |
307 |
|
int ndfRaw_local; |
308 |
|
|
354 |
|
|
355 |
|
} |
356 |
|
|
357 |
< |
void SimInfo::addExcludePairs(Molecule* mol) { |
357 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
358 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
359 |
|
std::vector<Bond*>::iterator bondIter; |
360 |
|
std::vector<Bend*>::iterator bendIter; |
361 |
|
std::vector<Torsion*>::iterator torsionIter; |
362 |
+ |
std::vector<Inversion*>::iterator inversionIter; |
363 |
|
Bond* bond; |
364 |
|
Bend* bend; |
365 |
|
Torsion* torsion; |
366 |
+ |
Inversion* inversion; |
367 |
|
int a; |
368 |
|
int b; |
369 |
|
int c; |
370 |
|
int d; |
371 |
< |
|
372 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
373 |
< |
a = bond->getAtomA()->getGlobalIndex(); |
374 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
375 |
< |
exclude_.addPair(a, b); |
371 |
> |
|
372 |
> |
// atomGroups can be used to add special interaction maps between |
373 |
> |
// groups of atoms that are in two separate rigid bodies. |
374 |
> |
// However, most site-site interactions between two rigid bodies |
375 |
> |
// are probably not special, just the ones between the physically |
376 |
> |
// bonded atoms. Interactions *within* a single rigid body should |
377 |
> |
// always be excluded. These are done at the bottom of this |
378 |
> |
// function. |
379 |
> |
|
380 |
> |
std::map<int, std::set<int> > atomGroups; |
381 |
> |
Molecule::RigidBodyIterator rbIter; |
382 |
> |
RigidBody* rb; |
383 |
> |
Molecule::IntegrableObjectIterator ii; |
384 |
> |
StuntDouble* integrableObject; |
385 |
> |
|
386 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
387 |
> |
integrableObject != NULL; |
388 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
389 |
> |
|
390 |
> |
if (integrableObject->isRigidBody()) { |
391 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
392 |
> |
std::vector<Atom*> atoms = rb->getAtoms(); |
393 |
> |
std::set<int> rigidAtoms; |
394 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
395 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
396 |
> |
} |
397 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
398 |
> |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
399 |
> |
} |
400 |
> |
} else { |
401 |
> |
std::set<int> oneAtomSet; |
402 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
403 |
> |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
404 |
> |
} |
405 |
> |
} |
406 |
> |
|
407 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
408 |
> |
bond = mol->nextBond(bondIter)) { |
409 |
> |
|
410 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
411 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
412 |
> |
|
413 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
414 |
> |
oneTwoInteractions_.addPair(a, b); |
415 |
> |
} else { |
416 |
> |
excludedInteractions_.addPair(a, b); |
417 |
> |
} |
418 |
|
} |
419 |
|
|
420 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
420 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
421 |
> |
bend = mol->nextBend(bendIter)) { |
422 |
> |
|
423 |
|
a = bend->getAtomA()->getGlobalIndex(); |
424 |
|
b = bend->getAtomB()->getGlobalIndex(); |
425 |
|
c = bend->getAtomC()->getGlobalIndex(); |
426 |
+ |
|
427 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
428 |
+ |
oneTwoInteractions_.addPair(a, b); |
429 |
+ |
oneTwoInteractions_.addPair(b, c); |
430 |
+ |
} else { |
431 |
+ |
excludedInteractions_.addPair(a, b); |
432 |
+ |
excludedInteractions_.addPair(b, c); |
433 |
+ |
} |
434 |
|
|
435 |
< |
exclude_.addPair(a, b); |
436 |
< |
exclude_.addPair(a, c); |
437 |
< |
exclude_.addPair(b, c); |
435 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
436 |
> |
oneThreeInteractions_.addPair(a, c); |
437 |
> |
} else { |
438 |
> |
excludedInteractions_.addPair(a, c); |
439 |
> |
} |
440 |
|
} |
441 |
|
|
442 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
442 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
443 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
444 |
> |
|
445 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
446 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
447 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
448 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
448 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
449 |
|
|
450 |
< |
exclude_.addPair(a, b); |
451 |
< |
exclude_.addPair(a, c); |
452 |
< |
exclude_.addPair(a, d); |
453 |
< |
exclude_.addPair(b, c); |
454 |
< |
exclude_.addPair(b, d); |
455 |
< |
exclude_.addPair(c, d); |
450 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
451 |
> |
oneTwoInteractions_.addPair(a, b); |
452 |
> |
oneTwoInteractions_.addPair(b, c); |
453 |
> |
oneTwoInteractions_.addPair(c, d); |
454 |
> |
} else { |
455 |
> |
excludedInteractions_.addPair(a, b); |
456 |
> |
excludedInteractions_.addPair(b, c); |
457 |
> |
excludedInteractions_.addPair(c, d); |
458 |
> |
} |
459 |
> |
|
460 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
461 |
> |
oneThreeInteractions_.addPair(a, c); |
462 |
> |
oneThreeInteractions_.addPair(b, d); |
463 |
> |
} else { |
464 |
> |
excludedInteractions_.addPair(a, c); |
465 |
> |
excludedInteractions_.addPair(b, d); |
466 |
> |
} |
467 |
> |
|
468 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
469 |
> |
oneFourInteractions_.addPair(a, d); |
470 |
> |
} else { |
471 |
> |
excludedInteractions_.addPair(a, d); |
472 |
> |
} |
473 |
|
} |
474 |
|
|
475 |
< |
Molecule::RigidBodyIterator rbIter; |
476 |
< |
RigidBody* rb; |
477 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
475 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
476 |
> |
inversion = mol->nextInversion(inversionIter)) { |
477 |
> |
|
478 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
479 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
480 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
481 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
482 |
> |
|
483 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
484 |
> |
oneTwoInteractions_.addPair(a, b); |
485 |
> |
oneTwoInteractions_.addPair(a, c); |
486 |
> |
oneTwoInteractions_.addPair(a, d); |
487 |
> |
} else { |
488 |
> |
excludedInteractions_.addPair(a, b); |
489 |
> |
excludedInteractions_.addPair(a, c); |
490 |
> |
excludedInteractions_.addPair(a, d); |
491 |
> |
} |
492 |
> |
|
493 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
494 |
> |
oneThreeInteractions_.addPair(b, c); |
495 |
> |
oneThreeInteractions_.addPair(b, d); |
496 |
> |
oneThreeInteractions_.addPair(c, d); |
497 |
> |
} else { |
498 |
> |
excludedInteractions_.addPair(b, c); |
499 |
> |
excludedInteractions_.addPair(b, d); |
500 |
> |
excludedInteractions_.addPair(c, d); |
501 |
> |
} |
502 |
> |
} |
503 |
> |
|
504 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
505 |
> |
rb = mol->nextRigidBody(rbIter)) { |
506 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
507 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
508 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
507 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
508 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
509 |
|
a = atoms[i]->getGlobalIndex(); |
510 |
|
b = atoms[j]->getGlobalIndex(); |
511 |
< |
exclude_.addPair(a, b); |
511 |
> |
excludedInteractions_.addPair(a, b); |
512 |
|
} |
513 |
|
} |
514 |
|
} |
515 |
|
|
516 |
|
} |
517 |
|
|
518 |
< |
void SimInfo::removeExcludePairs(Molecule* mol) { |
518 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
519 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
520 |
|
std::vector<Bond*>::iterator bondIter; |
521 |
|
std::vector<Bend*>::iterator bendIter; |
522 |
|
std::vector<Torsion*>::iterator torsionIter; |
523 |
+ |
std::vector<Inversion*>::iterator inversionIter; |
524 |
|
Bond* bond; |
525 |
|
Bend* bend; |
526 |
|
Torsion* torsion; |
527 |
+ |
Inversion* inversion; |
528 |
|
int a; |
529 |
|
int b; |
530 |
|
int c; |
531 |
|
int d; |
532 |
+ |
|
533 |
+ |
std::map<int, std::set<int> > atomGroups; |
534 |
+ |
Molecule::RigidBodyIterator rbIter; |
535 |
+ |
RigidBody* rb; |
536 |
+ |
Molecule::IntegrableObjectIterator ii; |
537 |
+ |
StuntDouble* integrableObject; |
538 |
|
|
539 |
< |
for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) { |
539 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
540 |
> |
integrableObject != NULL; |
541 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
542 |
> |
|
543 |
> |
if (integrableObject->isRigidBody()) { |
544 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
545 |
> |
std::vector<Atom*> atoms = rb->getAtoms(); |
546 |
> |
std::set<int> rigidAtoms; |
547 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
548 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
549 |
> |
} |
550 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
551 |
> |
atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
552 |
> |
} |
553 |
> |
} else { |
554 |
> |
std::set<int> oneAtomSet; |
555 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
556 |
> |
atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
557 |
> |
} |
558 |
> |
} |
559 |
> |
|
560 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
561 |
> |
bond = mol->nextBond(bondIter)) { |
562 |
> |
|
563 |
|
a = bond->getAtomA()->getGlobalIndex(); |
564 |
< |
b = bond->getAtomB()->getGlobalIndex(); |
565 |
< |
exclude_.removePair(a, b); |
564 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
565 |
> |
|
566 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
567 |
> |
oneTwoInteractions_.removePair(a, b); |
568 |
> |
} else { |
569 |
> |
excludedInteractions_.removePair(a, b); |
570 |
> |
} |
571 |
|
} |
572 |
|
|
573 |
< |
for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) { |
573 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
574 |
> |
bend = mol->nextBend(bendIter)) { |
575 |
> |
|
576 |
|
a = bend->getAtomA()->getGlobalIndex(); |
577 |
|
b = bend->getAtomB()->getGlobalIndex(); |
578 |
|
c = bend->getAtomC()->getGlobalIndex(); |
579 |
+ |
|
580 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
581 |
+ |
oneTwoInteractions_.removePair(a, b); |
582 |
+ |
oneTwoInteractions_.removePair(b, c); |
583 |
+ |
} else { |
584 |
+ |
excludedInteractions_.removePair(a, b); |
585 |
+ |
excludedInteractions_.removePair(b, c); |
586 |
+ |
} |
587 |
|
|
588 |
< |
exclude_.removePair(a, b); |
589 |
< |
exclude_.removePair(a, c); |
590 |
< |
exclude_.removePair(b, c); |
588 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
589 |
> |
oneThreeInteractions_.removePair(a, c); |
590 |
> |
} else { |
591 |
> |
excludedInteractions_.removePair(a, c); |
592 |
> |
} |
593 |
|
} |
594 |
|
|
595 |
< |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) { |
595 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
596 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
597 |
> |
|
598 |
|
a = torsion->getAtomA()->getGlobalIndex(); |
599 |
|
b = torsion->getAtomB()->getGlobalIndex(); |
600 |
|
c = torsion->getAtomC()->getGlobalIndex(); |
601 |
< |
d = torsion->getAtomD()->getGlobalIndex(); |
601 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
602 |
> |
|
603 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
604 |
> |
oneTwoInteractions_.removePair(a, b); |
605 |
> |
oneTwoInteractions_.removePair(b, c); |
606 |
> |
oneTwoInteractions_.removePair(c, d); |
607 |
> |
} else { |
608 |
> |
excludedInteractions_.removePair(a, b); |
609 |
> |
excludedInteractions_.removePair(b, c); |
610 |
> |
excludedInteractions_.removePair(c, d); |
611 |
> |
} |
612 |
|
|
613 |
< |
exclude_.removePair(a, b); |
614 |
< |
exclude_.removePair(a, c); |
615 |
< |
exclude_.removePair(a, d); |
616 |
< |
exclude_.removePair(b, c); |
617 |
< |
exclude_.removePair(b, d); |
618 |
< |
exclude_.removePair(c, d); |
613 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
614 |
> |
oneThreeInteractions_.removePair(a, c); |
615 |
> |
oneThreeInteractions_.removePair(b, d); |
616 |
> |
} else { |
617 |
> |
excludedInteractions_.removePair(a, c); |
618 |
> |
excludedInteractions_.removePair(b, d); |
619 |
> |
} |
620 |
> |
|
621 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
622 |
> |
oneFourInteractions_.removePair(a, d); |
623 |
> |
} else { |
624 |
> |
excludedInteractions_.removePair(a, d); |
625 |
> |
} |
626 |
|
} |
627 |
|
|
628 |
< |
Molecule::RigidBodyIterator rbIter; |
629 |
< |
RigidBody* rb; |
630 |
< |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
628 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
629 |
> |
inversion = mol->nextInversion(inversionIter)) { |
630 |
> |
|
631 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
632 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
633 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
634 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
635 |
> |
|
636 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
637 |
> |
oneTwoInteractions_.removePair(a, b); |
638 |
> |
oneTwoInteractions_.removePair(a, c); |
639 |
> |
oneTwoInteractions_.removePair(a, d); |
640 |
> |
} else { |
641 |
> |
excludedInteractions_.removePair(a, b); |
642 |
> |
excludedInteractions_.removePair(a, c); |
643 |
> |
excludedInteractions_.removePair(a, d); |
644 |
> |
} |
645 |
> |
|
646 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
647 |
> |
oneThreeInteractions_.removePair(b, c); |
648 |
> |
oneThreeInteractions_.removePair(b, d); |
649 |
> |
oneThreeInteractions_.removePair(c, d); |
650 |
> |
} else { |
651 |
> |
excludedInteractions_.removePair(b, c); |
652 |
> |
excludedInteractions_.removePair(b, d); |
653 |
> |
excludedInteractions_.removePair(c, d); |
654 |
> |
} |
655 |
> |
} |
656 |
> |
|
657 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
658 |
> |
rb = mol->nextRigidBody(rbIter)) { |
659 |
|
std::vector<Atom*> atoms = rb->getAtoms(); |
660 |
< |
for (int i = 0; i < atoms.size() -1 ; ++i) { |
661 |
< |
for (int j = i + 1; j < atoms.size(); ++j) { |
660 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
661 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
662 |
|
a = atoms[i]->getGlobalIndex(); |
663 |
|
b = atoms[j]->getGlobalIndex(); |
664 |
< |
exclude_.removePair(a, b); |
664 |
> |
excludedInteractions_.removePair(a, b); |
665 |
|
} |
666 |
|
} |
667 |
|
} |
668 |
< |
|
668 |
> |
|
669 |
|
} |
670 |
< |
|
671 |
< |
|
670 |
> |
|
671 |
> |
|
672 |
|
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
673 |
|
int curStampId; |
674 |
< |
|
674 |
> |
|
675 |
|
//index from 0 |
676 |
|
curStampId = moleculeStamps_.size(); |
677 |
|
|
692 |
|
//setup fortran force field |
693 |
|
/** @deprecate */ |
694 |
|
int isError = 0; |
695 |
< |
initFortranFF( &fInfo_.SIM_uses_RF , &isError ); |
695 |
> |
|
696 |
> |
setupCutoff(); |
697 |
> |
|
698 |
> |
setupElectrostaticSummationMethod( isError ); |
699 |
> |
setupSwitchingFunction(); |
700 |
> |
setupAccumulateBoxDipole(); |
701 |
> |
|
702 |
|
if(isError){ |
703 |
|
sprintf( painCave.errMsg, |
704 |
|
"ForceField error: There was an error initializing the forceField in fortran.\n" ); |
705 |
|
painCave.isFatal = 1; |
706 |
|
simError(); |
707 |
|
} |
472 |
– |
|
473 |
– |
|
474 |
– |
setupCutoff(); |
708 |
|
|
709 |
|
calcNdf(); |
710 |
|
calcNdfRaw(); |
739 |
|
int useLennardJones = 0; |
740 |
|
int useElectrostatic = 0; |
741 |
|
int useEAM = 0; |
742 |
+ |
int useSC = 0; |
743 |
|
int useCharge = 0; |
744 |
|
int useDirectional = 0; |
745 |
|
int useDipole = 0; |
751 |
|
int useDirectionalAtom = 0; |
752 |
|
int useElectrostatics = 0; |
753 |
|
//usePBC and useRF are from simParams |
754 |
< |
int usePBC = simParams_->getPBC(); |
755 |
< |
int useRF = simParams_->getUseRF(); |
754 |
> |
int usePBC = simParams_->getUsePeriodicBoundaryConditions(); |
755 |
> |
int useRF; |
756 |
> |
int useSF; |
757 |
> |
int useSP; |
758 |
> |
int useBoxDipole; |
759 |
|
|
760 |
+ |
std::string myMethod; |
761 |
+ |
|
762 |
+ |
// set the useRF logical |
763 |
+ |
useRF = 0; |
764 |
+ |
useSF = 0; |
765 |
+ |
useSP = 0; |
766 |
+ |
useBoxDipole = 0; |
767 |
+ |
|
768 |
+ |
|
769 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
770 |
+ |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
771 |
+ |
toUpper(myMethod); |
772 |
+ |
if (myMethod == "REACTION_FIELD"){ |
773 |
+ |
useRF = 1; |
774 |
+ |
} else if (myMethod == "SHIFTED_FORCE"){ |
775 |
+ |
useSF = 1; |
776 |
+ |
} else if (myMethod == "SHIFTED_POTENTIAL"){ |
777 |
+ |
useSP = 1; |
778 |
+ |
} |
779 |
+ |
} |
780 |
+ |
|
781 |
+ |
if (simParams_->haveAccumulateBoxDipole()) |
782 |
+ |
if (simParams_->getAccumulateBoxDipole()) |
783 |
+ |
useBoxDipole = 1; |
784 |
+ |
|
785 |
+ |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
786 |
+ |
|
787 |
|
//loop over all of the atom types |
788 |
|
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
789 |
|
useLennardJones |= (*i)->isLennardJones(); |
790 |
|
useElectrostatic |= (*i)->isElectrostatic(); |
791 |
|
useEAM |= (*i)->isEAM(); |
792 |
+ |
useSC |= (*i)->isSC(); |
793 |
|
useCharge |= (*i)->isCharge(); |
794 |
|
useDirectional |= (*i)->isDirectional(); |
795 |
|
useDipole |= (*i)->isDipole(); |
840 |
|
temp = useEAM; |
841 |
|
MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
842 |
|
|
843 |
+ |
temp = useSC; |
844 |
+ |
MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
845 |
+ |
|
846 |
|
temp = useShape; |
847 |
|
MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
848 |
|
|
851 |
|
|
852 |
|
temp = useRF; |
853 |
|
MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
854 |
< |
|
854 |
> |
|
855 |
> |
temp = useSF; |
856 |
> |
MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
857 |
> |
|
858 |
> |
temp = useSP; |
859 |
> |
MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
860 |
> |
|
861 |
> |
temp = useBoxDipole; |
862 |
> |
MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
863 |
> |
|
864 |
> |
temp = useAtomicVirial_; |
865 |
> |
MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
866 |
> |
|
867 |
|
#endif |
868 |
|
|
869 |
|
fInfo_.SIM_uses_PBC = usePBC; |
876 |
|
fInfo_.SIM_uses_StickyPower = useStickyPower; |
877 |
|
fInfo_.SIM_uses_GayBerne = useGayBerne; |
878 |
|
fInfo_.SIM_uses_EAM = useEAM; |
879 |
+ |
fInfo_.SIM_uses_SC = useSC; |
880 |
|
fInfo_.SIM_uses_Shapes = useShape; |
881 |
|
fInfo_.SIM_uses_FLARB = useFLARB; |
882 |
|
fInfo_.SIM_uses_RF = useRF; |
883 |
< |
|
884 |
< |
if( fInfo_.SIM_uses_Dipoles && fInfo_.SIM_uses_RF) { |
885 |
< |
|
886 |
< |
if (simParams_->haveDielectric()) { |
606 |
< |
fInfo_.dielect = simParams_->getDielectric(); |
607 |
< |
} else { |
608 |
< |
sprintf(painCave.errMsg, |
609 |
< |
"SimSetup Error: No Dielectric constant was set.\n" |
610 |
< |
"\tYou are trying to use Reaction Field without" |
611 |
< |
"\tsetting a dielectric constant!\n"); |
612 |
< |
painCave.isFatal = 1; |
613 |
< |
simError(); |
614 |
< |
} |
615 |
< |
|
616 |
< |
} else { |
617 |
< |
fInfo_.dielect = 0.0; |
618 |
< |
} |
619 |
< |
|
883 |
> |
fInfo_.SIM_uses_SF = useSF; |
884 |
> |
fInfo_.SIM_uses_SP = useSP; |
885 |
> |
fInfo_.SIM_uses_BoxDipole = useBoxDipole; |
886 |
> |
fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_; |
887 |
|
} |
888 |
|
|
889 |
|
void SimInfo::setupFortranSim() { |
890 |
|
int isError; |
891 |
< |
int nExclude; |
891 |
> |
int nExclude, nOneTwo, nOneThree, nOneFour; |
892 |
|
std::vector<int> fortranGlobalGroupMembership; |
893 |
|
|
627 |
– |
nExclude = exclude_.getSize(); |
894 |
|
isError = 0; |
895 |
|
|
896 |
|
//globalGroupMembership_ is filled by SimCreator |
899 |
|
} |
900 |
|
|
901 |
|
//calculate mass ratio of cutoff group |
902 |
< |
std::vector<double> mfact; |
902 |
> |
std::vector<RealType> mfact; |
903 |
|
SimInfo::MoleculeIterator mi; |
904 |
|
Molecule* mol; |
905 |
|
Molecule::CutoffGroupIterator ci; |
906 |
|
CutoffGroup* cg; |
907 |
|
Molecule::AtomIterator ai; |
908 |
|
Atom* atom; |
909 |
< |
double totalMass; |
909 |
> |
RealType totalMass; |
910 |
|
|
911 |
|
//to avoid memory reallocation, reserve enough space for mfact |
912 |
|
mfact.reserve(getNCutoffGroups()); |
916 |
|
|
917 |
|
totalMass = cg->getMass(); |
918 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
919 |
< |
mfact.push_back(atom->getMass()/totalMass); |
919 |
> |
// Check for massless groups - set mfact to 1 if true |
920 |
> |
if (totalMass != 0) |
921 |
> |
mfact.push_back(atom->getMass()/totalMass); |
922 |
> |
else |
923 |
> |
mfact.push_back( 1.0 ); |
924 |
|
} |
655 |
– |
|
925 |
|
} |
926 |
|
} |
927 |
|
|
945 |
|
} |
946 |
|
|
947 |
|
//setup fortran simulation |
679 |
– |
int nGlobalExcludes = 0; |
680 |
– |
int* globalExcludes = NULL; |
681 |
– |
int* excludeList = exclude_.getExcludeList(); |
682 |
– |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList , |
683 |
– |
&nGlobalExcludes, globalExcludes, &molMembershipArray[0], |
684 |
– |
&mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError); |
948 |
|
|
949 |
< |
if( isError ){ |
949 |
> |
nExclude = excludedInteractions_.getSize(); |
950 |
> |
nOneTwo = oneTwoInteractions_.getSize(); |
951 |
> |
nOneThree = oneThreeInteractions_.getSize(); |
952 |
> |
nOneFour = oneFourInteractions_.getSize(); |
953 |
|
|
954 |
+ |
int* excludeList = excludedInteractions_.getPairList(); |
955 |
+ |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
956 |
+ |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
957 |
+ |
int* oneFourList = oneFourInteractions_.getPairList(); |
958 |
+ |
|
959 |
+ |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
960 |
+ |
&nExclude, excludeList, |
961 |
+ |
&nOneTwo, oneTwoList, |
962 |
+ |
&nOneThree, oneThreeList, |
963 |
+ |
&nOneFour, oneFourList, |
964 |
+ |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
965 |
+ |
&fortranGlobalGroupMembership[0], &isError); |
966 |
+ |
|
967 |
+ |
if( isError ){ |
968 |
+ |
|
969 |
|
sprintf( painCave.errMsg, |
970 |
|
"There was an error setting the simulation information in fortran.\n" ); |
971 |
|
painCave.isFatal = 1; |
972 |
< |
painCave.severity = OOPSE_ERROR; |
972 |
> |
painCave.severity = OPENMD_ERROR; |
973 |
|
simError(); |
974 |
|
} |
975 |
< |
|
976 |
< |
#ifdef IS_MPI |
975 |
> |
|
976 |
> |
|
977 |
|
sprintf( checkPointMsg, |
978 |
|
"succesfully sent the simulation information to fortran.\n"); |
979 |
< |
MPIcheckPoint(); |
980 |
< |
#endif // is_mpi |
979 |
> |
|
980 |
> |
errorCheckPoint(); |
981 |
> |
|
982 |
> |
// Setup number of neighbors in neighbor list if present |
983 |
> |
if (simParams_->haveNeighborListNeighbors()) { |
984 |
> |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
985 |
> |
setNeighbors(&nlistNeighbors); |
986 |
> |
} |
987 |
> |
|
988 |
> |
|
989 |
|
} |
990 |
|
|
991 |
|
|
703 |
– |
#ifdef IS_MPI |
992 |
|
void SimInfo::setupFortranParallel() { |
993 |
< |
|
993 |
> |
#ifdef IS_MPI |
994 |
|
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
995 |
|
std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
996 |
|
std::vector<int> localToGlobalCutoffGroupIndex; |
1040 |
|
} |
1041 |
|
|
1042 |
|
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
1043 |
< |
MPIcheckPoint(); |
1043 |
> |
errorCheckPoint(); |
1044 |
|
|
1045 |
< |
|
1045 |
> |
#endif |
1046 |
|
} |
1047 |
|
|
1048 |
< |
#endif |
1048 |
> |
void SimInfo::setupCutoff() { |
1049 |
> |
|
1050 |
> |
ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions(); |
1051 |
|
|
1052 |
< |
double SimInfo::calcMaxCutoffRadius() { |
1052 |
> |
// Check the cutoff policy |
1053 |
> |
int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default |
1054 |
|
|
1055 |
+ |
// Set LJ shifting bools to false |
1056 |
+ |
ljsp_ = 0; |
1057 |
+ |
ljsf_ = 0; |
1058 |
|
|
1059 |
< |
std::set<AtomType*> atomTypes; |
1060 |
< |
std::set<AtomType*>::iterator i; |
1061 |
< |
std::vector<double> cutoffRadius; |
1062 |
< |
|
1063 |
< |
//get the unique atom types |
770 |
< |
atomTypes = getUniqueAtomTypes(); |
771 |
< |
|
772 |
< |
//query the max cutoff radius among these atom types |
773 |
< |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
774 |
< |
cutoffRadius.push_back(forceField_->getRcutFromAtomType(*i)); |
1059 |
> |
std::string myPolicy; |
1060 |
> |
if (forceFieldOptions_.haveCutoffPolicy()){ |
1061 |
> |
myPolicy = forceFieldOptions_.getCutoffPolicy(); |
1062 |
> |
}else if (simParams_->haveCutoffPolicy()) { |
1063 |
> |
myPolicy = simParams_->getCutoffPolicy(); |
1064 |
|
} |
1065 |
|
|
1066 |
< |
double maxCutoffRadius = *(std::max_element(cutoffRadius.begin(), cutoffRadius.end())); |
1067 |
< |
#ifdef IS_MPI |
1068 |
< |
//pick the max cutoff radius among the processors |
1069 |
< |
#endif |
1066 |
> |
if (!myPolicy.empty()){ |
1067 |
> |
toUpper(myPolicy); |
1068 |
> |
if (myPolicy == "MIX") { |
1069 |
> |
cp = MIX_CUTOFF_POLICY; |
1070 |
> |
} else { |
1071 |
> |
if (myPolicy == "MAX") { |
1072 |
> |
cp = MAX_CUTOFF_POLICY; |
1073 |
> |
} else { |
1074 |
> |
if (myPolicy == "TRADITIONAL") { |
1075 |
> |
cp = TRADITIONAL_CUTOFF_POLICY; |
1076 |
> |
} else { |
1077 |
> |
// throw error |
1078 |
> |
sprintf( painCave.errMsg, |
1079 |
> |
"SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() ); |
1080 |
> |
painCave.isFatal = 1; |
1081 |
> |
simError(); |
1082 |
> |
} |
1083 |
> |
} |
1084 |
> |
} |
1085 |
> |
} |
1086 |
> |
notifyFortranCutoffPolicy(&cp); |
1087 |
|
|
1088 |
< |
return maxCutoffRadius; |
1089 |
< |
} |
1090 |
< |
|
1091 |
< |
void SimInfo::getCutoff(double& rcut, double& rsw) { |
1092 |
< |
|
1093 |
< |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1088 |
> |
// Check the Skin Thickness for neighborlists |
1089 |
> |
RealType skin; |
1090 |
> |
if (simParams_->haveSkinThickness()) { |
1091 |
> |
skin = simParams_->getSkinThickness(); |
1092 |
> |
notifyFortranSkinThickness(&skin); |
1093 |
> |
} |
1094 |
|
|
1095 |
< |
if (!simParams_->haveRcut()){ |
1096 |
< |
sprintf(painCave.errMsg, |
1097 |
< |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1098 |
< |
"\tOOPSE will use a default value of 15.0 angstroms" |
1099 |
< |
"\tfor the cutoffRadius.\n"); |
1100 |
< |
painCave.isFatal = 0; |
1095 |
> |
// Check if the cutoff was set explicitly: |
1096 |
> |
if (simParams_->haveCutoffRadius()) { |
1097 |
> |
rcut_ = simParams_->getCutoffRadius(); |
1098 |
> |
if (simParams_->haveSwitchingRadius()) { |
1099 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
1100 |
> |
} else { |
1101 |
> |
if (fInfo_.SIM_uses_Charges | |
1102 |
> |
fInfo_.SIM_uses_Dipoles | |
1103 |
> |
fInfo_.SIM_uses_RF) { |
1104 |
> |
|
1105 |
> |
rsw_ = 0.85 * rcut_; |
1106 |
> |
sprintf(painCave.errMsg, |
1107 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1108 |
> |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
1109 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1110 |
> |
painCave.isFatal = 0; |
1111 |
|
simError(); |
1112 |
< |
rcut = 15.0; |
1113 |
< |
} else{ |
1114 |
< |
rcut = simParams_->getRcut(); |
1112 |
> |
} else { |
1113 |
> |
rsw_ = rcut_; |
1114 |
> |
sprintf(painCave.errMsg, |
1115 |
> |
"SimCreator Warning: No value was set for the switchingRadius.\n" |
1116 |
> |
"\tOpenMD will use the same value as the cutoffRadius.\n" |
1117 |
> |
"\tswitchingRadius = %f. for this simulation\n", rsw_); |
1118 |
> |
painCave.isFatal = 0; |
1119 |
> |
simError(); |
1120 |
> |
} |
1121 |
|
} |
1122 |
|
|
1123 |
< |
if (!simParams_->haveRsw()){ |
1124 |
< |
sprintf(painCave.errMsg, |
1125 |
< |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1126 |
< |
"\tOOPSE will use a default value of\n" |
1127 |
< |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
1128 |
< |
painCave.isFatal = 0; |
1129 |
< |
simError(); |
1130 |
< |
rsw = 0.95 * rcut; |
1131 |
< |
} else{ |
810 |
< |
rsw = simParams_->getRsw(); |
1123 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1124 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1125 |
> |
toUpper(myMethod); |
1126 |
> |
|
1127 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1128 |
> |
ljsp_ = 1; |
1129 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1130 |
> |
ljsf_ = 1; |
1131 |
> |
} |
1132 |
|
} |
1133 |
|
|
1134 |
+ |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1135 |
+ |
|
1136 |
|
} else { |
1137 |
< |
// if charge, dipole or reaction field is not used and the cutofff radius is not specified in |
1138 |
< |
//meta-data file, the maximum cutoff radius calculated from forcefiled will be used |
1139 |
< |
|
1140 |
< |
if (simParams_->haveRcut()) { |
1141 |
< |
rcut = simParams_->getRcut(); |
1137 |
> |
|
1138 |
> |
// For electrostatic atoms, we'll assume a large safe value: |
1139 |
> |
if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) { |
1140 |
> |
sprintf(painCave.errMsg, |
1141 |
> |
"SimCreator Warning: No value was set for the cutoffRadius.\n" |
1142 |
> |
"\tOpenMD will use a default value of 15.0 angstroms" |
1143 |
> |
"\tfor the cutoffRadius.\n"); |
1144 |
> |
painCave.isFatal = 0; |
1145 |
> |
simError(); |
1146 |
> |
rcut_ = 15.0; |
1147 |
> |
|
1148 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1149 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1150 |
> |
toUpper(myMethod); |
1151 |
> |
|
1152 |
> |
// For the time being, we're tethering the LJ shifted behavior to the |
1153 |
> |
// electrostaticSummationMethod keyword options |
1154 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1155 |
> |
ljsp_ = 1; |
1156 |
> |
} else if (myMethod == "SHIFTED_FORCE") { |
1157 |
> |
ljsf_ = 1; |
1158 |
> |
} |
1159 |
> |
if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") { |
1160 |
> |
if (simParams_->haveSwitchingRadius()){ |
1161 |
> |
sprintf(painCave.errMsg, |
1162 |
> |
"SimInfo Warning: A value was set for the switchingRadius\n" |
1163 |
> |
"\teven though the electrostaticSummationMethod was\n" |
1164 |
> |
"\tset to %s\n", myMethod.c_str()); |
1165 |
> |
painCave.isFatal = 1; |
1166 |
> |
simError(); |
1167 |
> |
} |
1168 |
> |
} |
1169 |
> |
} |
1170 |
> |
|
1171 |
> |
if (simParams_->haveSwitchingRadius()){ |
1172 |
> |
rsw_ = simParams_->getSwitchingRadius(); |
1173 |
> |
} else { |
1174 |
> |
sprintf(painCave.errMsg, |
1175 |
> |
"SimCreator Warning: No value was set for switchingRadius.\n" |
1176 |
> |
"\tOpenMD will use a default value of\n" |
1177 |
> |
"\t0.85 * cutoffRadius for the switchingRadius\n"); |
1178 |
> |
painCave.isFatal = 0; |
1179 |
> |
simError(); |
1180 |
> |
rsw_ = 0.85 * rcut_; |
1181 |
> |
} |
1182 |
> |
|
1183 |
> |
notifyFortranCutoffs(&rcut_, &rsw_, &ljsp_, &ljsf_); |
1184 |
> |
|
1185 |
|
} else { |
1186 |
< |
//set cutoff radius to the maximum cutoff radius based on atom types in the whole system |
1187 |
< |
rcut = calcMaxCutoffRadius(); |
1186 |
> |
// We didn't set rcut explicitly, and we don't have electrostatic atoms, so |
1187 |
> |
// We'll punt and let fortran figure out the cutoffs later. |
1188 |
> |
|
1189 |
> |
notifyFortranYouAreOnYourOwn(); |
1190 |
> |
|
1191 |
|
} |
1192 |
+ |
} |
1193 |
+ |
} |
1194 |
|
|
1195 |
< |
if (simParams_->haveRsw()) { |
1196 |
< |
rsw = simParams_->getRsw(); |
1197 |
< |
} else { |
1198 |
< |
rsw = rcut; |
1195 |
> |
void SimInfo::setupElectrostaticSummationMethod( int isError ) { |
1196 |
> |
|
1197 |
> |
int errorOut; |
1198 |
> |
int esm = NONE; |
1199 |
> |
int sm = UNDAMPED; |
1200 |
> |
RealType alphaVal; |
1201 |
> |
RealType dielectric; |
1202 |
> |
|
1203 |
> |
errorOut = isError; |
1204 |
> |
|
1205 |
> |
if (simParams_->haveElectrostaticSummationMethod()) { |
1206 |
> |
std::string myMethod = simParams_->getElectrostaticSummationMethod(); |
1207 |
> |
toUpper(myMethod); |
1208 |
> |
if (myMethod == "NONE") { |
1209 |
> |
esm = NONE; |
1210 |
> |
} else { |
1211 |
> |
if (myMethod == "SWITCHING_FUNCTION") { |
1212 |
> |
esm = SWITCHING_FUNCTION; |
1213 |
> |
} else { |
1214 |
> |
if (myMethod == "SHIFTED_POTENTIAL") { |
1215 |
> |
esm = SHIFTED_POTENTIAL; |
1216 |
> |
} else { |
1217 |
> |
if (myMethod == "SHIFTED_FORCE") { |
1218 |
> |
esm = SHIFTED_FORCE; |
1219 |
> |
} else { |
1220 |
> |
if (myMethod == "REACTION_FIELD") { |
1221 |
> |
esm = REACTION_FIELD; |
1222 |
> |
dielectric = simParams_->getDielectric(); |
1223 |
> |
if (!simParams_->haveDielectric()) { |
1224 |
> |
// throw warning |
1225 |
> |
sprintf( painCave.errMsg, |
1226 |
> |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
1227 |
> |
"\tA default value of %f will be used for the dielectric.\n", dielectric); |
1228 |
> |
painCave.isFatal = 0; |
1229 |
> |
simError(); |
1230 |
> |
} |
1231 |
> |
} else { |
1232 |
> |
// throw error |
1233 |
> |
sprintf( painCave.errMsg, |
1234 |
> |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
1235 |
> |
"\t(Input file specified %s .)\n" |
1236 |
> |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
1237 |
> |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
1238 |
> |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
1239 |
> |
painCave.isFatal = 1; |
1240 |
> |
simError(); |
1241 |
> |
} |
1242 |
> |
} |
1243 |
> |
} |
1244 |
> |
} |
1245 |
|
} |
1246 |
+ |
} |
1247 |
|
|
1248 |
+ |
if (simParams_->haveElectrostaticScreeningMethod()) { |
1249 |
+ |
std::string myScreen = simParams_->getElectrostaticScreeningMethod(); |
1250 |
+ |
toUpper(myScreen); |
1251 |
+ |
if (myScreen == "UNDAMPED") { |
1252 |
+ |
sm = UNDAMPED; |
1253 |
+ |
} else { |
1254 |
+ |
if (myScreen == "DAMPED") { |
1255 |
+ |
sm = DAMPED; |
1256 |
+ |
if (!simParams_->haveDampingAlpha()) { |
1257 |
+ |
// first set a cutoff dependent alpha value |
1258 |
+ |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
1259 |
+ |
alphaVal = 0.5125 - rcut_* 0.025; |
1260 |
+ |
// for values rcut > 20.5, alpha is zero |
1261 |
+ |
if (alphaVal < 0) alphaVal = 0; |
1262 |
+ |
|
1263 |
+ |
// throw warning |
1264 |
+ |
sprintf( painCave.errMsg, |
1265 |
+ |
"SimInfo warning: dampingAlpha was not specified in the input file.\n" |
1266 |
+ |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_); |
1267 |
+ |
painCave.isFatal = 0; |
1268 |
+ |
simError(); |
1269 |
+ |
} else { |
1270 |
+ |
alphaVal = simParams_->getDampingAlpha(); |
1271 |
+ |
} |
1272 |
+ |
|
1273 |
+ |
} else { |
1274 |
+ |
// throw error |
1275 |
+ |
sprintf( painCave.errMsg, |
1276 |
+ |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
1277 |
+ |
"\t(Input file specified %s .)\n" |
1278 |
+ |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
1279 |
+ |
"or \"damped\".\n", myScreen.c_str() ); |
1280 |
+ |
painCave.isFatal = 1; |
1281 |
+ |
simError(); |
1282 |
+ |
} |
1283 |
+ |
} |
1284 |
|
} |
1285 |
+ |
|
1286 |
+ |
// let's pass some summation method variables to fortran |
1287 |
+ |
setElectrostaticSummationMethod( &esm ); |
1288 |
+ |
setFortranElectrostaticMethod( &esm ); |
1289 |
+ |
setScreeningMethod( &sm ); |
1290 |
+ |
setDampingAlpha( &alphaVal ); |
1291 |
+ |
setReactionFieldDielectric( &dielectric ); |
1292 |
+ |
initFortranFF( &errorOut ); |
1293 |
|
} |
1294 |
|
|
1295 |
< |
void SimInfo::setupCutoff() { |
1296 |
< |
getCutoff(rcut_, rsw_); |
835 |
< |
double rnblist = rcut_ + 1; // skin of neighbor list |
1295 |
> |
void SimInfo::setupSwitchingFunction() { |
1296 |
> |
int ft = CUBIC; |
1297 |
|
|
1298 |
< |
//Pass these cutoff radius etc. to fortran. This function should be called once and only once |
1299 |
< |
notifyFortranCutoffs(&rcut_, &rsw_, &rnblist); |
1298 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
1299 |
> |
std::string funcType = simParams_->getSwitchingFunctionType(); |
1300 |
> |
toUpper(funcType); |
1301 |
> |
if (funcType == "CUBIC") { |
1302 |
> |
ft = CUBIC; |
1303 |
> |
} else { |
1304 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1305 |
> |
ft = FIFTH_ORDER_POLY; |
1306 |
> |
} else { |
1307 |
> |
// throw error |
1308 |
> |
sprintf( painCave.errMsg, |
1309 |
> |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1310 |
> |
painCave.isFatal = 1; |
1311 |
> |
simError(); |
1312 |
> |
} |
1313 |
> |
} |
1314 |
> |
} |
1315 |
> |
|
1316 |
> |
// send switching function notification to switcheroo |
1317 |
> |
setFunctionType(&ft); |
1318 |
> |
|
1319 |
> |
} |
1320 |
> |
|
1321 |
> |
void SimInfo::setupAccumulateBoxDipole() { |
1322 |
> |
|
1323 |
> |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1324 |
> |
if ( simParams_->haveAccumulateBoxDipole() ) |
1325 |
> |
if ( simParams_->getAccumulateBoxDipole() ) { |
1326 |
> |
setAccumulateBoxDipole(); |
1327 |
> |
calcBoxDipole_ = true; |
1328 |
> |
} |
1329 |
> |
|
1330 |
|
} |
1331 |
|
|
1332 |
|
void SimInfo::addProperty(GenericData* genData) { |
1385 |
|
Molecule* mol; |
1386 |
|
|
1387 |
|
Vector3d comVel(0.0); |
1388 |
< |
double totalMass = 0.0; |
1388 |
> |
RealType totalMass = 0.0; |
1389 |
|
|
1390 |
|
|
1391 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1392 |
< |
double mass = mol->getMass(); |
1392 |
> |
RealType mass = mol->getMass(); |
1393 |
|
totalMass += mass; |
1394 |
|
comVel += mass * mol->getComVel(); |
1395 |
|
} |
1396 |
|
|
1397 |
|
#ifdef IS_MPI |
1398 |
< |
double tmpMass = totalMass; |
1398 |
> |
RealType tmpMass = totalMass; |
1399 |
|
Vector3d tmpComVel(comVel); |
1400 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1401 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1400 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1401 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1402 |
|
#endif |
1403 |
|
|
1404 |
|
comVel /= totalMass; |
1411 |
|
Molecule* mol; |
1412 |
|
|
1413 |
|
Vector3d com(0.0); |
1414 |
< |
double totalMass = 0.0; |
1414 |
> |
RealType totalMass = 0.0; |
1415 |
|
|
1416 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1417 |
< |
double mass = mol->getMass(); |
1417 |
> |
RealType mass = mol->getMass(); |
1418 |
|
totalMass += mass; |
1419 |
|
com += mass * mol->getCom(); |
1420 |
|
} |
1421 |
|
|
1422 |
|
#ifdef IS_MPI |
1423 |
< |
double tmpMass = totalMass; |
1423 |
> |
RealType tmpMass = totalMass; |
1424 |
|
Vector3d tmpCom(com); |
1425 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1426 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1425 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1426 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1427 |
|
#endif |
1428 |
|
|
1429 |
|
com /= totalMass; |
1447 |
|
Molecule* mol; |
1448 |
|
|
1449 |
|
|
1450 |
< |
double totalMass = 0.0; |
1450 |
> |
RealType totalMass = 0.0; |
1451 |
|
|
1452 |
|
|
1453 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1454 |
< |
double mass = mol->getMass(); |
1454 |
> |
RealType mass = mol->getMass(); |
1455 |
|
totalMass += mass; |
1456 |
|
com += mass * mol->getCom(); |
1457 |
|
comVel += mass * mol->getComVel(); |
1458 |
|
} |
1459 |
|
|
1460 |
|
#ifdef IS_MPI |
1461 |
< |
double tmpMass = totalMass; |
1461 |
> |
RealType tmpMass = totalMass; |
1462 |
|
Vector3d tmpCom(com); |
1463 |
|
Vector3d tmpComVel(comVel); |
1464 |
< |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1465 |
< |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1466 |
< |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1464 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1465 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1466 |
> |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1467 |
|
#endif |
1468 |
|
|
1469 |
|
com /= totalMass; |
1482 |
|
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1483 |
|
|
1484 |
|
|
1485 |
< |
double xx = 0.0; |
1486 |
< |
double yy = 0.0; |
1487 |
< |
double zz = 0.0; |
1488 |
< |
double xy = 0.0; |
1489 |
< |
double xz = 0.0; |
1490 |
< |
double yz = 0.0; |
1485 |
> |
RealType xx = 0.0; |
1486 |
> |
RealType yy = 0.0; |
1487 |
> |
RealType zz = 0.0; |
1488 |
> |
RealType xy = 0.0; |
1489 |
> |
RealType xz = 0.0; |
1490 |
> |
RealType yz = 0.0; |
1491 |
|
Vector3d com(0.0); |
1492 |
|
Vector3d comVel(0.0); |
1493 |
|
|
1499 |
|
Vector3d thisq(0.0); |
1500 |
|
Vector3d thisv(0.0); |
1501 |
|
|
1502 |
< |
double thisMass = 0.0; |
1502 |
> |
RealType thisMass = 0.0; |
1503 |
|
|
1504 |
|
|
1505 |
|
|
1537 |
|
#ifdef IS_MPI |
1538 |
|
Mat3x3d tmpI(inertiaTensor); |
1539 |
|
Vector3d tmpAngMom; |
1540 |
< |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1541 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1540 |
> |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1541 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1542 |
|
#endif |
1543 |
|
|
1544 |
|
return; |
1559 |
|
Vector3d thisr(0.0); |
1560 |
|
Vector3d thisp(0.0); |
1561 |
|
|
1562 |
< |
double thisMass; |
1562 |
> |
RealType thisMass; |
1563 |
|
|
1564 |
|
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1565 |
|
thisMass = mol->getMass(); |
1572 |
|
|
1573 |
|
#ifdef IS_MPI |
1574 |
|
Vector3d tmpAngMom; |
1575 |
< |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
1575 |
> |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1576 |
|
#endif |
1577 |
|
|
1578 |
|
return angularMomentum; |
1579 |
|
} |
1089 |
– |
|
1580 |
|
|
1581 |
< |
}//end namespace oopse |
1581 |
> |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1582 |
> |
return IOIndexToIntegrableObject.at(index); |
1583 |
> |
} |
1584 |
> |
|
1585 |
> |
void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) { |
1586 |
> |
IOIndexToIntegrableObject= v; |
1587 |
> |
} |
1588 |
|
|
1589 |
+ |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1590 |
+ |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1591 |
+ |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1592 |
+ |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1593 |
+ |
*/ |
1594 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1595 |
+ |
Mat3x3d intTensor; |
1596 |
+ |
RealType det; |
1597 |
+ |
Vector3d dummyAngMom; |
1598 |
+ |
RealType sysconstants; |
1599 |
+ |
RealType geomCnst; |
1600 |
+ |
|
1601 |
+ |
geomCnst = 3.0/2.0; |
1602 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1603 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1604 |
+ |
|
1605 |
+ |
det = intTensor.determinant(); |
1606 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1607 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1608 |
+ |
return; |
1609 |
+ |
} |
1610 |
+ |
|
1611 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1612 |
+ |
Mat3x3d intTensor; |
1613 |
+ |
Vector3d dummyAngMom; |
1614 |
+ |
RealType sysconstants; |
1615 |
+ |
RealType geomCnst; |
1616 |
+ |
|
1617 |
+ |
geomCnst = 3.0/2.0; |
1618 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1619 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1620 |
+ |
|
1621 |
+ |
detI = intTensor.determinant(); |
1622 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1623 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1624 |
+ |
return; |
1625 |
+ |
} |
1626 |
+ |
/* |
1627 |
+ |
void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) { |
1628 |
+ |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1629 |
+ |
sdByGlobalIndex_ = v; |
1630 |
+ |
} |
1631 |
+ |
|
1632 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1633 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1634 |
+ |
return sdByGlobalIndex_.at(index); |
1635 |
+ |
} |
1636 |
+ |
*/ |
1637 |
+ |
}//end namespace OpenMD |
1638 |
+ |
|