ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/brains/SimInfo.cpp
Revision: 1126
Committed: Fri Apr 6 21:53:43 2007 UTC (18 years ago) by gezelter
Original Path: trunk/src/brains/SimInfo.cpp
File size: 48065 byte(s)
Log Message:
Massive update to do virials (both atomic and cutoff-group) correctly.
The rigid body constraint contributions had been missing and this was
masked by the use of cutoff groups...

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 /**
43 * @file SimInfo.cpp
44 * @author tlin
45 * @date 11/02/2004
46 * @version 1.0
47 */
48
49 #include <algorithm>
50 #include <set>
51 #include <map>
52
53 #include "brains/SimInfo.hpp"
54 #include "math/Vector3.hpp"
55 #include "primitives/Molecule.hpp"
56 #include "primitives/StuntDouble.hpp"
57 #include "UseTheForce/fCutoffPolicy.h"
58 #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
59 #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
60 #include "UseTheForce/DarkSide/fSwitchingFunctionType.h"
61 #include "UseTheForce/doForces_interface.h"
62 #include "UseTheForce/DarkSide/neighborLists_interface.h"
63 #include "UseTheForce/DarkSide/electrostatic_interface.h"
64 #include "UseTheForce/DarkSide/switcheroo_interface.h"
65 #include "utils/MemoryUtils.hpp"
66 #include "utils/simError.h"
67 #include "selection/SelectionManager.hpp"
68 #include "io/ForceFieldOptions.hpp"
69 #include "UseTheForce/ForceField.hpp"
70
71
72 #ifdef IS_MPI
73 #include "UseTheForce/mpiComponentPlan.h"
74 #include "UseTheForce/DarkSide/simParallel_interface.h"
75 #endif
76
77 namespace oopse {
78 std::set<int> getRigidSet(int index, std::map<int, std::set<int> >& container) {
79 std::map<int, std::set<int> >::iterator i = container.find(index);
80 std::set<int> result;
81 if (i != container.end()) {
82 result = i->second;
83 }
84
85 return result;
86 }
87
88 SimInfo::SimInfo(ForceField* ff, Globals* simParams) :
89 forceField_(ff), simParams_(simParams),
90 ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0),
91 nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0),
92 nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0),
93 nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nRigidBodies_(0),
94 nIntegrableObjects_(0), nCutoffGroups_(0), nConstraints_(0),
95 sman_(NULL), fortranInitialized_(false), calcBoxDipole_(false),
96 useAtomicVirial_(true) {
97
98 MoleculeStamp* molStamp;
99 int nMolWithSameStamp;
100 int nCutoffAtoms = 0; // number of atoms belong to cutoff groups
101 int nGroups = 0; //total cutoff groups defined in meta-data file
102 CutoffGroupStamp* cgStamp;
103 RigidBodyStamp* rbStamp;
104 int nRigidAtoms = 0;
105 std::vector<Component*> components = simParams->getComponents();
106
107 for (std::vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) {
108 molStamp = (*i)->getMoleculeStamp();
109 nMolWithSameStamp = (*i)->getNMol();
110
111 addMoleculeStamp(molStamp, nMolWithSameStamp);
112
113 //calculate atoms in molecules
114 nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp;
115
116 //calculate atoms in cutoff groups
117 int nAtomsInGroups = 0;
118 int nCutoffGroupsInStamp = molStamp->getNCutoffGroups();
119
120 for (int j=0; j < nCutoffGroupsInStamp; j++) {
121 cgStamp = molStamp->getCutoffGroupStamp(j);
122 nAtomsInGroups += cgStamp->getNMembers();
123 }
124
125 nGroups += nCutoffGroupsInStamp * nMolWithSameStamp;
126
127 nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp;
128
129 //calculate atoms in rigid bodies
130 int nAtomsInRigidBodies = 0;
131 int nRigidBodiesInStamp = molStamp->getNRigidBodies();
132
133 for (int j=0; j < nRigidBodiesInStamp; j++) {
134 rbStamp = molStamp->getRigidBodyStamp(j);
135 nAtomsInRigidBodies += rbStamp->getNMembers();
136 }
137
138 nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp;
139 nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp;
140
141 }
142
143 //every free atom (atom does not belong to cutoff groups) is a cutoff
144 //group therefore the total number of cutoff groups in the system is
145 //equal to the total number of atoms minus number of atoms belong to
146 //cutoff group defined in meta-data file plus the number of cutoff
147 //groups defined in meta-data file
148 nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups;
149
150 //every free atom (atom does not belong to rigid bodies) is an
151 //integrable object therefore the total number of integrable objects
152 //in the system is equal to the total number of atoms minus number of
153 //atoms belong to rigid body defined in meta-data file plus the number
154 //of rigid bodies defined in meta-data file
155 nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms
156 + nGlobalRigidBodies_;
157
158 nGlobalMols_ = molStampIds_.size();
159
160 #ifdef IS_MPI
161 molToProcMap_.resize(nGlobalMols_);
162 #endif
163
164 }
165
166 SimInfo::~SimInfo() {
167 std::map<int, Molecule*>::iterator i;
168 for (i = molecules_.begin(); i != molecules_.end(); ++i) {
169 delete i->second;
170 }
171 molecules_.clear();
172
173 delete sman_;
174 delete simParams_;
175 delete forceField_;
176 }
177
178 int SimInfo::getNGlobalConstraints() {
179 int nGlobalConstraints;
180 #ifdef IS_MPI
181 MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM,
182 MPI_COMM_WORLD);
183 #else
184 nGlobalConstraints = nConstraints_;
185 #endif
186 return nGlobalConstraints;
187 }
188
189 bool SimInfo::addMolecule(Molecule* mol) {
190 MoleculeIterator i;
191
192 i = molecules_.find(mol->getGlobalIndex());
193 if (i == molecules_.end() ) {
194
195 molecules_.insert(std::make_pair(mol->getGlobalIndex(), mol));
196
197 nAtoms_ += mol->getNAtoms();
198 nBonds_ += mol->getNBonds();
199 nBends_ += mol->getNBends();
200 nTorsions_ += mol->getNTorsions();
201 nRigidBodies_ += mol->getNRigidBodies();
202 nIntegrableObjects_ += mol->getNIntegrableObjects();
203 nCutoffGroups_ += mol->getNCutoffGroups();
204 nConstraints_ += mol->getNConstraintPairs();
205
206 addExcludePairs(mol);
207
208 return true;
209 } else {
210 return false;
211 }
212 }
213
214 bool SimInfo::removeMolecule(Molecule* mol) {
215 MoleculeIterator i;
216 i = molecules_.find(mol->getGlobalIndex());
217
218 if (i != molecules_.end() ) {
219
220 assert(mol == i->second);
221
222 nAtoms_ -= mol->getNAtoms();
223 nBonds_ -= mol->getNBonds();
224 nBends_ -= mol->getNBends();
225 nTorsions_ -= mol->getNTorsions();
226 nRigidBodies_ -= mol->getNRigidBodies();
227 nIntegrableObjects_ -= mol->getNIntegrableObjects();
228 nCutoffGroups_ -= mol->getNCutoffGroups();
229 nConstraints_ -= mol->getNConstraintPairs();
230
231 removeExcludePairs(mol);
232 molecules_.erase(mol->getGlobalIndex());
233
234 delete mol;
235
236 return true;
237 } else {
238 return false;
239 }
240
241
242 }
243
244
245 Molecule* SimInfo::beginMolecule(MoleculeIterator& i) {
246 i = molecules_.begin();
247 return i == molecules_.end() ? NULL : i->second;
248 }
249
250 Molecule* SimInfo::nextMolecule(MoleculeIterator& i) {
251 ++i;
252 return i == molecules_.end() ? NULL : i->second;
253 }
254
255
256 void SimInfo::calcNdf() {
257 int ndf_local;
258 MoleculeIterator i;
259 std::vector<StuntDouble*>::iterator j;
260 Molecule* mol;
261 StuntDouble* integrableObject;
262
263 ndf_local = 0;
264
265 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
266 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
267 integrableObject = mol->nextIntegrableObject(j)) {
268
269 ndf_local += 3;
270
271 if (integrableObject->isDirectional()) {
272 if (integrableObject->isLinear()) {
273 ndf_local += 2;
274 } else {
275 ndf_local += 3;
276 }
277 }
278
279 }
280 }
281
282 // n_constraints is local, so subtract them on each processor
283 ndf_local -= nConstraints_;
284
285 #ifdef IS_MPI
286 MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
287 #else
288 ndf_ = ndf_local;
289 #endif
290
291 // nZconstraints_ is global, as are the 3 COM translations for the
292 // entire system:
293 ndf_ = ndf_ - 3 - nZconstraint_;
294
295 }
296
297 int SimInfo::getFdf() {
298 #ifdef IS_MPI
299 MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
300 #else
301 fdf_ = fdf_local;
302 #endif
303 return fdf_;
304 }
305
306 void SimInfo::calcNdfRaw() {
307 int ndfRaw_local;
308
309 MoleculeIterator i;
310 std::vector<StuntDouble*>::iterator j;
311 Molecule* mol;
312 StuntDouble* integrableObject;
313
314 // Raw degrees of freedom that we have to set
315 ndfRaw_local = 0;
316
317 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
318 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
319 integrableObject = mol->nextIntegrableObject(j)) {
320
321 ndfRaw_local += 3;
322
323 if (integrableObject->isDirectional()) {
324 if (integrableObject->isLinear()) {
325 ndfRaw_local += 2;
326 } else {
327 ndfRaw_local += 3;
328 }
329 }
330
331 }
332 }
333
334 #ifdef IS_MPI
335 MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
336 #else
337 ndfRaw_ = ndfRaw_local;
338 #endif
339 }
340
341 void SimInfo::calcNdfTrans() {
342 int ndfTrans_local;
343
344 ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_;
345
346
347 #ifdef IS_MPI
348 MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
349 #else
350 ndfTrans_ = ndfTrans_local;
351 #endif
352
353 ndfTrans_ = ndfTrans_ - 3 - nZconstraint_;
354
355 }
356
357 void SimInfo::addExcludePairs(Molecule* mol) {
358 std::vector<Bond*>::iterator bondIter;
359 std::vector<Bend*>::iterator bendIter;
360 std::vector<Torsion*>::iterator torsionIter;
361 Bond* bond;
362 Bend* bend;
363 Torsion* torsion;
364 int a;
365 int b;
366 int c;
367 int d;
368
369 std::map<int, std::set<int> > atomGroups;
370
371 Molecule::RigidBodyIterator rbIter;
372 RigidBody* rb;
373 Molecule::IntegrableObjectIterator ii;
374 StuntDouble* integrableObject;
375
376 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
377 integrableObject = mol->nextIntegrableObject(ii)) {
378
379 if (integrableObject->isRigidBody()) {
380 rb = static_cast<RigidBody*>(integrableObject);
381 std::vector<Atom*> atoms = rb->getAtoms();
382 std::set<int> rigidAtoms;
383 for (int i = 0; i < atoms.size(); ++i) {
384 rigidAtoms.insert(atoms[i]->getGlobalIndex());
385 }
386 for (int i = 0; i < atoms.size(); ++i) {
387 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
388 }
389 } else {
390 std::set<int> oneAtomSet;
391 oneAtomSet.insert(integrableObject->getGlobalIndex());
392 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
393 }
394 }
395
396
397
398 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
399 a = bond->getAtomA()->getGlobalIndex();
400 b = bond->getAtomB()->getGlobalIndex();
401 exclude_.addPair(a, b);
402 }
403
404 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
405 a = bend->getAtomA()->getGlobalIndex();
406 b = bend->getAtomB()->getGlobalIndex();
407 c = bend->getAtomC()->getGlobalIndex();
408 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
409 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
410 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
411
412 exclude_.addPairs(rigidSetA, rigidSetB);
413 exclude_.addPairs(rigidSetA, rigidSetC);
414 exclude_.addPairs(rigidSetB, rigidSetC);
415
416 //exclude_.addPair(a, b);
417 //exclude_.addPair(a, c);
418 //exclude_.addPair(b, c);
419 }
420
421 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
422 a = torsion->getAtomA()->getGlobalIndex();
423 b = torsion->getAtomB()->getGlobalIndex();
424 c = torsion->getAtomC()->getGlobalIndex();
425 d = torsion->getAtomD()->getGlobalIndex();
426 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
427 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
428 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
429 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
430
431 exclude_.addPairs(rigidSetA, rigidSetB);
432 exclude_.addPairs(rigidSetA, rigidSetC);
433 exclude_.addPairs(rigidSetA, rigidSetD);
434 exclude_.addPairs(rigidSetB, rigidSetC);
435 exclude_.addPairs(rigidSetB, rigidSetD);
436 exclude_.addPairs(rigidSetC, rigidSetD);
437
438 /*
439 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
440 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
441 exclude_.addPairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
442 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
443 exclude_.addPairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
444 exclude_.addPairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
445
446
447 exclude_.addPair(a, b);
448 exclude_.addPair(a, c);
449 exclude_.addPair(a, d);
450 exclude_.addPair(b, c);
451 exclude_.addPair(b, d);
452 exclude_.addPair(c, d);
453 */
454 }
455
456 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
457 std::vector<Atom*> atoms = rb->getAtoms();
458 for (int i = 0; i < atoms.size() -1 ; ++i) {
459 for (int j = i + 1; j < atoms.size(); ++j) {
460 a = atoms[i]->getGlobalIndex();
461 b = atoms[j]->getGlobalIndex();
462 exclude_.addPair(a, b);
463 }
464 }
465 }
466
467 }
468
469 void SimInfo::removeExcludePairs(Molecule* mol) {
470 std::vector<Bond*>::iterator bondIter;
471 std::vector<Bend*>::iterator bendIter;
472 std::vector<Torsion*>::iterator torsionIter;
473 Bond* bond;
474 Bend* bend;
475 Torsion* torsion;
476 int a;
477 int b;
478 int c;
479 int d;
480
481 std::map<int, std::set<int> > atomGroups;
482
483 Molecule::RigidBodyIterator rbIter;
484 RigidBody* rb;
485 Molecule::IntegrableObjectIterator ii;
486 StuntDouble* integrableObject;
487
488 for (integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL;
489 integrableObject = mol->nextIntegrableObject(ii)) {
490
491 if (integrableObject->isRigidBody()) {
492 rb = static_cast<RigidBody*>(integrableObject);
493 std::vector<Atom*> atoms = rb->getAtoms();
494 std::set<int> rigidAtoms;
495 for (int i = 0; i < atoms.size(); ++i) {
496 rigidAtoms.insert(atoms[i]->getGlobalIndex());
497 }
498 for (int i = 0; i < atoms.size(); ++i) {
499 atomGroups.insert(std::map<int, std::set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms));
500 }
501 } else {
502 std::set<int> oneAtomSet;
503 oneAtomSet.insert(integrableObject->getGlobalIndex());
504 atomGroups.insert(std::map<int, std::set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet));
505 }
506 }
507
508
509 for (bond= mol->beginBond(bondIter); bond != NULL; bond = mol->nextBond(bondIter)) {
510 a = bond->getAtomA()->getGlobalIndex();
511 b = bond->getAtomB()->getGlobalIndex();
512 exclude_.removePair(a, b);
513 }
514
515 for (bend= mol->beginBend(bendIter); bend != NULL; bend = mol->nextBend(bendIter)) {
516 a = bend->getAtomA()->getGlobalIndex();
517 b = bend->getAtomB()->getGlobalIndex();
518 c = bend->getAtomC()->getGlobalIndex();
519
520 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
521 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
522 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
523
524 exclude_.removePairs(rigidSetA, rigidSetB);
525 exclude_.removePairs(rigidSetA, rigidSetC);
526 exclude_.removePairs(rigidSetB, rigidSetC);
527
528 //exclude_.removePair(a, b);
529 //exclude_.removePair(a, c);
530 //exclude_.removePair(b, c);
531 }
532
533 for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; torsion = mol->nextTorsion(torsionIter)) {
534 a = torsion->getAtomA()->getGlobalIndex();
535 b = torsion->getAtomB()->getGlobalIndex();
536 c = torsion->getAtomC()->getGlobalIndex();
537 d = torsion->getAtomD()->getGlobalIndex();
538
539 std::set<int> rigidSetA = getRigidSet(a, atomGroups);
540 std::set<int> rigidSetB = getRigidSet(b, atomGroups);
541 std::set<int> rigidSetC = getRigidSet(c, atomGroups);
542 std::set<int> rigidSetD = getRigidSet(d, atomGroups);
543
544 exclude_.removePairs(rigidSetA, rigidSetB);
545 exclude_.removePairs(rigidSetA, rigidSetC);
546 exclude_.removePairs(rigidSetA, rigidSetD);
547 exclude_.removePairs(rigidSetB, rigidSetC);
548 exclude_.removePairs(rigidSetB, rigidSetD);
549 exclude_.removePairs(rigidSetC, rigidSetD);
550
551 /*
552 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetB.begin(), rigidSetB.end());
553 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetC.begin(), rigidSetC.end());
554 exclude_.removePairs(rigidSetA.begin(), rigidSetA.end(), rigidSetD.begin(), rigidSetD.end());
555 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetC.begin(), rigidSetC.end());
556 exclude_.removePairs(rigidSetB.begin(), rigidSetB.end(), rigidSetD.begin(), rigidSetD.end());
557 exclude_.removePairs(rigidSetC.begin(), rigidSetC.end(), rigidSetD.begin(), rigidSetD.end());
558
559
560 exclude_.removePair(a, b);
561 exclude_.removePair(a, c);
562 exclude_.removePair(a, d);
563 exclude_.removePair(b, c);
564 exclude_.removePair(b, d);
565 exclude_.removePair(c, d);
566 */
567 }
568
569 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
570 std::vector<Atom*> atoms = rb->getAtoms();
571 for (int i = 0; i < atoms.size() -1 ; ++i) {
572 for (int j = i + 1; j < atoms.size(); ++j) {
573 a = atoms[i]->getGlobalIndex();
574 b = atoms[j]->getGlobalIndex();
575 exclude_.removePair(a, b);
576 }
577 }
578 }
579
580 }
581
582
583 void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) {
584 int curStampId;
585
586 //index from 0
587 curStampId = moleculeStamps_.size();
588
589 moleculeStamps_.push_back(molStamp);
590 molStampIds_.insert(molStampIds_.end(), nmol, curStampId);
591 }
592
593 void SimInfo::update() {
594
595 setupSimType();
596
597 #ifdef IS_MPI
598 setupFortranParallel();
599 #endif
600
601 setupFortranSim();
602
603 //setup fortran force field
604 /** @deprecate */
605 int isError = 0;
606
607 setupCutoff();
608
609 setupElectrostaticSummationMethod( isError );
610 setupSwitchingFunction();
611 setupAccumulateBoxDipole();
612
613 if(isError){
614 sprintf( painCave.errMsg,
615 "ForceField error: There was an error initializing the forceField in fortran.\n" );
616 painCave.isFatal = 1;
617 simError();
618 }
619
620 calcNdf();
621 calcNdfRaw();
622 calcNdfTrans();
623
624 fortranInitialized_ = true;
625 }
626
627 std::set<AtomType*> SimInfo::getUniqueAtomTypes() {
628 SimInfo::MoleculeIterator mi;
629 Molecule* mol;
630 Molecule::AtomIterator ai;
631 Atom* atom;
632 std::set<AtomType*> atomTypes;
633
634 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
635
636 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
637 atomTypes.insert(atom->getAtomType());
638 }
639
640 }
641
642 return atomTypes;
643 }
644
645 void SimInfo::setupSimType() {
646 std::set<AtomType*>::iterator i;
647 std::set<AtomType*> atomTypes;
648 atomTypes = getUniqueAtomTypes();
649
650 int useLennardJones = 0;
651 int useElectrostatic = 0;
652 int useEAM = 0;
653 int useSC = 0;
654 int useCharge = 0;
655 int useDirectional = 0;
656 int useDipole = 0;
657 int useGayBerne = 0;
658 int useSticky = 0;
659 int useStickyPower = 0;
660 int useShape = 0;
661 int useFLARB = 0; //it is not in AtomType yet
662 int useDirectionalAtom = 0;
663 int useElectrostatics = 0;
664 //usePBC and useRF are from simParams
665 int usePBC = simParams_->getUsePeriodicBoundaryConditions();
666 int useRF;
667 int useSF;
668 int useSP;
669 int useBoxDipole;
670
671 std::string myMethod;
672
673 // set the useRF logical
674 useRF = 0;
675 useSF = 0;
676 useSP = 0;
677
678
679 if (simParams_->haveElectrostaticSummationMethod()) {
680 std::string myMethod = simParams_->getElectrostaticSummationMethod();
681 toUpper(myMethod);
682 if (myMethod == "REACTION_FIELD"){
683 useRF = 1;
684 } else if (myMethod == "SHIFTED_FORCE"){
685 useSF = 1;
686 } else if (myMethod == "SHIFTED_POTENTIAL"){
687 useSP = 1;
688 }
689 }
690
691 if (simParams_->haveAccumulateBoxDipole())
692 if (simParams_->getAccumulateBoxDipole())
693 useBoxDipole = 1;
694
695 useAtomicVirial_ = simParams_->getUseAtomicVirial();
696
697 //loop over all of the atom types
698 for (i = atomTypes.begin(); i != atomTypes.end(); ++i) {
699 useLennardJones |= (*i)->isLennardJones();
700 useElectrostatic |= (*i)->isElectrostatic();
701 useEAM |= (*i)->isEAM();
702 useSC |= (*i)->isSC();
703 useCharge |= (*i)->isCharge();
704 useDirectional |= (*i)->isDirectional();
705 useDipole |= (*i)->isDipole();
706 useGayBerne |= (*i)->isGayBerne();
707 useSticky |= (*i)->isSticky();
708 useStickyPower |= (*i)->isStickyPower();
709 useShape |= (*i)->isShape();
710 }
711
712 if (useSticky || useStickyPower || useDipole || useGayBerne || useShape) {
713 useDirectionalAtom = 1;
714 }
715
716 if (useCharge || useDipole) {
717 useElectrostatics = 1;
718 }
719
720 #ifdef IS_MPI
721 int temp;
722
723 temp = usePBC;
724 MPI_Allreduce(&temp, &usePBC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
725
726 temp = useDirectionalAtom;
727 MPI_Allreduce(&temp, &useDirectionalAtom, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
728
729 temp = useLennardJones;
730 MPI_Allreduce(&temp, &useLennardJones, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
731
732 temp = useElectrostatics;
733 MPI_Allreduce(&temp, &useElectrostatics, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
734
735 temp = useCharge;
736 MPI_Allreduce(&temp, &useCharge, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
737
738 temp = useDipole;
739 MPI_Allreduce(&temp, &useDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
740
741 temp = useSticky;
742 MPI_Allreduce(&temp, &useSticky, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
743
744 temp = useStickyPower;
745 MPI_Allreduce(&temp, &useStickyPower, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
746
747 temp = useGayBerne;
748 MPI_Allreduce(&temp, &useGayBerne, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
749
750 temp = useEAM;
751 MPI_Allreduce(&temp, &useEAM, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
752
753 temp = useSC;
754 MPI_Allreduce(&temp, &useSC, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
755
756 temp = useShape;
757 MPI_Allreduce(&temp, &useShape, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
758
759 temp = useFLARB;
760 MPI_Allreduce(&temp, &useFLARB, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
761
762 temp = useRF;
763 MPI_Allreduce(&temp, &useRF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
764
765 temp = useSF;
766 MPI_Allreduce(&temp, &useSF, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
767
768 temp = useSP;
769 MPI_Allreduce(&temp, &useSP, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
770
771 temp = useBoxDipole;
772 MPI_Allreduce(&temp, &useBoxDipole, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
773
774 temp = useAtomicVirial_;
775 MPI_Allreduce(&temp, &useAtomicVirial_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
776
777 #endif
778
779 fInfo_.SIM_uses_PBC = usePBC;
780 fInfo_.SIM_uses_DirectionalAtoms = useDirectionalAtom;
781 fInfo_.SIM_uses_LennardJones = useLennardJones;
782 fInfo_.SIM_uses_Electrostatics = useElectrostatics;
783 fInfo_.SIM_uses_Charges = useCharge;
784 fInfo_.SIM_uses_Dipoles = useDipole;
785 fInfo_.SIM_uses_Sticky = useSticky;
786 fInfo_.SIM_uses_StickyPower = useStickyPower;
787 fInfo_.SIM_uses_GayBerne = useGayBerne;
788 fInfo_.SIM_uses_EAM = useEAM;
789 fInfo_.SIM_uses_SC = useSC;
790 fInfo_.SIM_uses_Shapes = useShape;
791 fInfo_.SIM_uses_FLARB = useFLARB;
792 fInfo_.SIM_uses_RF = useRF;
793 fInfo_.SIM_uses_SF = useSF;
794 fInfo_.SIM_uses_SP = useSP;
795 fInfo_.SIM_uses_BoxDipole = useBoxDipole;
796 fInfo_.SIM_uses_AtomicVirial = useAtomicVirial_;
797 }
798
799 void SimInfo::setupFortranSim() {
800 int isError;
801 int nExclude;
802 std::vector<int> fortranGlobalGroupMembership;
803
804 nExclude = exclude_.getSize();
805 isError = 0;
806
807 //globalGroupMembership_ is filled by SimCreator
808 for (int i = 0; i < nGlobalAtoms_; i++) {
809 fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1);
810 }
811
812 //calculate mass ratio of cutoff group
813 std::vector<RealType> mfact;
814 SimInfo::MoleculeIterator mi;
815 Molecule* mol;
816 Molecule::CutoffGroupIterator ci;
817 CutoffGroup* cg;
818 Molecule::AtomIterator ai;
819 Atom* atom;
820 RealType totalMass;
821
822 //to avoid memory reallocation, reserve enough space for mfact
823 mfact.reserve(getNCutoffGroups());
824
825 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
826 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
827
828 totalMass = cg->getMass();
829 for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) {
830 // Check for massless groups - set mfact to 1 if true
831 if (totalMass != 0)
832 mfact.push_back(atom->getMass()/totalMass);
833 else
834 mfact.push_back( 1.0 );
835 }
836
837 }
838 }
839
840 //fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!)
841 std::vector<int> identArray;
842
843 //to avoid memory reallocation, reserve enough space identArray
844 identArray.reserve(getNAtoms());
845
846 for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
847 for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
848 identArray.push_back(atom->getIdent());
849 }
850 }
851
852 //fill molMembershipArray
853 //molMembershipArray is filled by SimCreator
854 std::vector<int> molMembershipArray(nGlobalAtoms_);
855 for (int i = 0; i < nGlobalAtoms_; i++) {
856 molMembershipArray[i] = globalMolMembership_[i] + 1;
857 }
858
859 //setup fortran simulation
860 int nGlobalExcludes = 0;
861 int* globalExcludes = NULL;
862 int* excludeList = exclude_.getExcludeList();
863 setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], &nExclude, excludeList ,
864 &nGlobalExcludes, globalExcludes, &molMembershipArray[0],
865 &mfact[0], &nCutoffGroups_, &fortranGlobalGroupMembership[0], &isError);
866
867 if( isError ){
868
869 sprintf( painCave.errMsg,
870 "There was an error setting the simulation information in fortran.\n" );
871 painCave.isFatal = 1;
872 painCave.severity = OOPSE_ERROR;
873 simError();
874 }
875
876 #ifdef IS_MPI
877 sprintf( checkPointMsg,
878 "succesfully sent the simulation information to fortran.\n");
879 MPIcheckPoint();
880 #endif // is_mpi
881
882 // Setup number of neighbors in neighbor list if present
883 if (simParams_->haveNeighborListNeighbors()) {
884 int nlistNeighbors = simParams_->getNeighborListNeighbors();
885 setNeighbors(&nlistNeighbors);
886 }
887
888
889 }
890
891
892 #ifdef IS_MPI
893 void SimInfo::setupFortranParallel() {
894
895 //SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex
896 std::vector<int> localToGlobalAtomIndex(getNAtoms(), 0);
897 std::vector<int> localToGlobalCutoffGroupIndex;
898 SimInfo::MoleculeIterator mi;
899 Molecule::AtomIterator ai;
900 Molecule::CutoffGroupIterator ci;
901 Molecule* mol;
902 Atom* atom;
903 CutoffGroup* cg;
904 mpiSimData parallelData;
905 int isError;
906
907 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
908
909 //local index(index in DataStorge) of atom is important
910 for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) {
911 localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1;
912 }
913
914 //local index of cutoff group is trivial, it only depends on the order of travesing
915 for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) {
916 localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1);
917 }
918
919 }
920
921 //fill up mpiSimData struct
922 parallelData.nMolGlobal = getNGlobalMolecules();
923 parallelData.nMolLocal = getNMolecules();
924 parallelData.nAtomsGlobal = getNGlobalAtoms();
925 parallelData.nAtomsLocal = getNAtoms();
926 parallelData.nGroupsGlobal = getNGlobalCutoffGroups();
927 parallelData.nGroupsLocal = getNCutoffGroups();
928 parallelData.myNode = worldRank;
929 MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors));
930
931 //pass mpiSimData struct and index arrays to fortran
932 setFsimParallel(&parallelData, &(parallelData.nAtomsLocal),
933 &localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal),
934 &localToGlobalCutoffGroupIndex[0], &isError);
935
936 if (isError) {
937 sprintf(painCave.errMsg,
938 "mpiRefresh errror: fortran didn't like something we gave it.\n");
939 painCave.isFatal = 1;
940 simError();
941 }
942
943 sprintf(checkPointMsg, " mpiRefresh successful.\n");
944 MPIcheckPoint();
945
946
947 }
948
949 #endif
950
951 void SimInfo::setupCutoff() {
952
953 ForceFieldOptions& forceFieldOptions_ = forceField_->getForceFieldOptions();
954
955 // Check the cutoff policy
956 int cp = TRADITIONAL_CUTOFF_POLICY; // Set to traditional by default
957
958 std::string myPolicy;
959 if (forceFieldOptions_.haveCutoffPolicy()){
960 myPolicy = forceFieldOptions_.getCutoffPolicy();
961 }else if (simParams_->haveCutoffPolicy()) {
962 myPolicy = simParams_->getCutoffPolicy();
963 }
964
965 if (!myPolicy.empty()){
966 toUpper(myPolicy);
967 if (myPolicy == "MIX") {
968 cp = MIX_CUTOFF_POLICY;
969 } else {
970 if (myPolicy == "MAX") {
971 cp = MAX_CUTOFF_POLICY;
972 } else {
973 if (myPolicy == "TRADITIONAL") {
974 cp = TRADITIONAL_CUTOFF_POLICY;
975 } else {
976 // throw error
977 sprintf( painCave.errMsg,
978 "SimInfo error: Unknown cutoffPolicy. (Input file specified %s .)\n\tcutoffPolicy must be one of: \"Mix\", \"Max\", or \"Traditional\".", myPolicy.c_str() );
979 painCave.isFatal = 1;
980 simError();
981 }
982 }
983 }
984 }
985 notifyFortranCutoffPolicy(&cp);
986
987 // Check the Skin Thickness for neighborlists
988 RealType skin;
989 if (simParams_->haveSkinThickness()) {
990 skin = simParams_->getSkinThickness();
991 notifyFortranSkinThickness(&skin);
992 }
993
994 // Check if the cutoff was set explicitly:
995 if (simParams_->haveCutoffRadius()) {
996 rcut_ = simParams_->getCutoffRadius();
997 if (simParams_->haveSwitchingRadius()) {
998 rsw_ = simParams_->getSwitchingRadius();
999 } else {
1000 if (fInfo_.SIM_uses_Charges |
1001 fInfo_.SIM_uses_Dipoles |
1002 fInfo_.SIM_uses_RF) {
1003
1004 rsw_ = 0.85 * rcut_;
1005 sprintf(painCave.errMsg,
1006 "SimCreator Warning: No value was set for the switchingRadius.\n"
1007 "\tOOPSE will use a default value of 85 percent of the cutoffRadius.\n"
1008 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1009 painCave.isFatal = 0;
1010 simError();
1011 } else {
1012 rsw_ = rcut_;
1013 sprintf(painCave.errMsg,
1014 "SimCreator Warning: No value was set for the switchingRadius.\n"
1015 "\tOOPSE will use the same value as the cutoffRadius.\n"
1016 "\tswitchingRadius = %f. for this simulation\n", rsw_);
1017 painCave.isFatal = 0;
1018 simError();
1019 }
1020 }
1021
1022 notifyFortranCutoffs(&rcut_, &rsw_);
1023
1024 } else {
1025
1026 // For electrostatic atoms, we'll assume a large safe value:
1027 if (fInfo_.SIM_uses_Charges | fInfo_.SIM_uses_Dipoles | fInfo_.SIM_uses_RF) {
1028 sprintf(painCave.errMsg,
1029 "SimCreator Warning: No value was set for the cutoffRadius.\n"
1030 "\tOOPSE will use a default value of 15.0 angstroms"
1031 "\tfor the cutoffRadius.\n");
1032 painCave.isFatal = 0;
1033 simError();
1034 rcut_ = 15.0;
1035
1036 if (simParams_->haveElectrostaticSummationMethod()) {
1037 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1038 toUpper(myMethod);
1039 if (myMethod == "SHIFTED_POTENTIAL" || myMethod == "SHIFTED_FORCE") {
1040 if (simParams_->haveSwitchingRadius()){
1041 sprintf(painCave.errMsg,
1042 "SimInfo Warning: A value was set for the switchingRadius\n"
1043 "\teven though the electrostaticSummationMethod was\n"
1044 "\tset to %s\n", myMethod.c_str());
1045 painCave.isFatal = 1;
1046 simError();
1047 }
1048 }
1049 }
1050
1051 if (simParams_->haveSwitchingRadius()){
1052 rsw_ = simParams_->getSwitchingRadius();
1053 } else {
1054 sprintf(painCave.errMsg,
1055 "SimCreator Warning: No value was set for switchingRadius.\n"
1056 "\tOOPSE will use a default value of\n"
1057 "\t0.85 * cutoffRadius for the switchingRadius\n");
1058 painCave.isFatal = 0;
1059 simError();
1060 rsw_ = 0.85 * rcut_;
1061 }
1062 notifyFortranCutoffs(&rcut_, &rsw_);
1063 } else {
1064 // We didn't set rcut explicitly, and we don't have electrostatic atoms, so
1065 // We'll punt and let fortran figure out the cutoffs later.
1066
1067 notifyFortranYouAreOnYourOwn();
1068
1069 }
1070 }
1071 }
1072
1073 void SimInfo::setupElectrostaticSummationMethod( int isError ) {
1074
1075 int errorOut;
1076 int esm = NONE;
1077 int sm = UNDAMPED;
1078 RealType alphaVal;
1079 RealType dielectric;
1080
1081 errorOut = isError;
1082
1083 if (simParams_->haveElectrostaticSummationMethod()) {
1084 std::string myMethod = simParams_->getElectrostaticSummationMethod();
1085 toUpper(myMethod);
1086 if (myMethod == "NONE") {
1087 esm = NONE;
1088 } else {
1089 if (myMethod == "SWITCHING_FUNCTION") {
1090 esm = SWITCHING_FUNCTION;
1091 } else {
1092 if (myMethod == "SHIFTED_POTENTIAL") {
1093 esm = SHIFTED_POTENTIAL;
1094 } else {
1095 if (myMethod == "SHIFTED_FORCE") {
1096 esm = SHIFTED_FORCE;
1097 } else {
1098 if (myMethod == "REACTION_FIELD") {
1099 esm = REACTION_FIELD;
1100 dielectric = simParams_->getDielectric();
1101 if (!simParams_->haveDielectric()) {
1102 // throw warning
1103 sprintf( painCave.errMsg,
1104 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
1105 "\tA default value of %f will be used for the dielectric.\n", dielectric);
1106 painCave.isFatal = 0;
1107 simError();
1108 }
1109 } else {
1110 // throw error
1111 sprintf( painCave.errMsg,
1112 "SimInfo error: Unknown electrostaticSummationMethod.\n"
1113 "\t(Input file specified %s .)\n"
1114 "\telectrostaticSummationMethod must be one of: \"none\",\n"
1115 "\t\"shifted_potential\", \"shifted_force\", or \n"
1116 "\t\"reaction_field\".\n", myMethod.c_str() );
1117 painCave.isFatal = 1;
1118 simError();
1119 }
1120 }
1121 }
1122 }
1123 }
1124 }
1125
1126 if (simParams_->haveElectrostaticScreeningMethod()) {
1127 std::string myScreen = simParams_->getElectrostaticScreeningMethod();
1128 toUpper(myScreen);
1129 if (myScreen == "UNDAMPED") {
1130 sm = UNDAMPED;
1131 } else {
1132 if (myScreen == "DAMPED") {
1133 sm = DAMPED;
1134 if (!simParams_->haveDampingAlpha()) {
1135 // first set a cutoff dependent alpha value
1136 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
1137 alphaVal = 0.5125 - rcut_* 0.025;
1138 // for values rcut > 20.5, alpha is zero
1139 if (alphaVal < 0) alphaVal = 0;
1140
1141 // throw warning
1142 sprintf( painCave.errMsg,
1143 "SimInfo warning: dampingAlpha was not specified in the input file.\n"
1144 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", alphaVal, rcut_);
1145 painCave.isFatal = 0;
1146 simError();
1147 } else {
1148 alphaVal = simParams_->getDampingAlpha();
1149 }
1150
1151 } else {
1152 // throw error
1153 sprintf( painCave.errMsg,
1154 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
1155 "\t(Input file specified %s .)\n"
1156 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
1157 "or \"damped\".\n", myScreen.c_str() );
1158 painCave.isFatal = 1;
1159 simError();
1160 }
1161 }
1162 }
1163
1164 // let's pass some summation method variables to fortran
1165 setElectrostaticSummationMethod( &esm );
1166 setFortranElectrostaticMethod( &esm );
1167 setScreeningMethod( &sm );
1168 setDampingAlpha( &alphaVal );
1169 setReactionFieldDielectric( &dielectric );
1170 initFortranFF( &errorOut );
1171 }
1172
1173 void SimInfo::setupSwitchingFunction() {
1174 int ft = CUBIC;
1175
1176 if (simParams_->haveSwitchingFunctionType()) {
1177 std::string funcType = simParams_->getSwitchingFunctionType();
1178 toUpper(funcType);
1179 if (funcType == "CUBIC") {
1180 ft = CUBIC;
1181 } else {
1182 if (funcType == "FIFTH_ORDER_POLYNOMIAL") {
1183 ft = FIFTH_ORDER_POLY;
1184 } else {
1185 // throw error
1186 sprintf( painCave.errMsg,
1187 "SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() );
1188 painCave.isFatal = 1;
1189 simError();
1190 }
1191 }
1192 }
1193
1194 // send switching function notification to switcheroo
1195 setFunctionType(&ft);
1196
1197 }
1198
1199 void SimInfo::setupAccumulateBoxDipole() {
1200
1201 // we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true
1202 if ( simParams_->haveAccumulateBoxDipole() )
1203 if ( simParams_->getAccumulateBoxDipole() ) {
1204 setAccumulateBoxDipole();
1205 calcBoxDipole_ = true;
1206 }
1207
1208 }
1209
1210 void SimInfo::addProperty(GenericData* genData) {
1211 properties_.addProperty(genData);
1212 }
1213
1214 void SimInfo::removeProperty(const std::string& propName) {
1215 properties_.removeProperty(propName);
1216 }
1217
1218 void SimInfo::clearProperties() {
1219 properties_.clearProperties();
1220 }
1221
1222 std::vector<std::string> SimInfo::getPropertyNames() {
1223 return properties_.getPropertyNames();
1224 }
1225
1226 std::vector<GenericData*> SimInfo::getProperties() {
1227 return properties_.getProperties();
1228 }
1229
1230 GenericData* SimInfo::getPropertyByName(const std::string& propName) {
1231 return properties_.getPropertyByName(propName);
1232 }
1233
1234 void SimInfo::setSnapshotManager(SnapshotManager* sman) {
1235 if (sman_ == sman) {
1236 return;
1237 }
1238 delete sman_;
1239 sman_ = sman;
1240
1241 Molecule* mol;
1242 RigidBody* rb;
1243 Atom* atom;
1244 SimInfo::MoleculeIterator mi;
1245 Molecule::RigidBodyIterator rbIter;
1246 Molecule::AtomIterator atomIter;;
1247
1248 for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) {
1249
1250 for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) {
1251 atom->setSnapshotManager(sman_);
1252 }
1253
1254 for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) {
1255 rb->setSnapshotManager(sman_);
1256 }
1257 }
1258
1259 }
1260
1261 Vector3d SimInfo::getComVel(){
1262 SimInfo::MoleculeIterator i;
1263 Molecule* mol;
1264
1265 Vector3d comVel(0.0);
1266 RealType totalMass = 0.0;
1267
1268
1269 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1270 RealType mass = mol->getMass();
1271 totalMass += mass;
1272 comVel += mass * mol->getComVel();
1273 }
1274
1275 #ifdef IS_MPI
1276 RealType tmpMass = totalMass;
1277 Vector3d tmpComVel(comVel);
1278 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1279 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1280 #endif
1281
1282 comVel /= totalMass;
1283
1284 return comVel;
1285 }
1286
1287 Vector3d SimInfo::getCom(){
1288 SimInfo::MoleculeIterator i;
1289 Molecule* mol;
1290
1291 Vector3d com(0.0);
1292 RealType totalMass = 0.0;
1293
1294 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1295 RealType mass = mol->getMass();
1296 totalMass += mass;
1297 com += mass * mol->getCom();
1298 }
1299
1300 #ifdef IS_MPI
1301 RealType tmpMass = totalMass;
1302 Vector3d tmpCom(com);
1303 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1304 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1305 #endif
1306
1307 com /= totalMass;
1308
1309 return com;
1310
1311 }
1312
1313 std::ostream& operator <<(std::ostream& o, SimInfo& info) {
1314
1315 return o;
1316 }
1317
1318
1319 /*
1320 Returns center of mass and center of mass velocity in one function call.
1321 */
1322
1323 void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){
1324 SimInfo::MoleculeIterator i;
1325 Molecule* mol;
1326
1327
1328 RealType totalMass = 0.0;
1329
1330
1331 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1332 RealType mass = mol->getMass();
1333 totalMass += mass;
1334 com += mass * mol->getCom();
1335 comVel += mass * mol->getComVel();
1336 }
1337
1338 #ifdef IS_MPI
1339 RealType tmpMass = totalMass;
1340 Vector3d tmpCom(com);
1341 Vector3d tmpComVel(comVel);
1342 MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1343 MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1344 MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1345 #endif
1346
1347 com /= totalMass;
1348 comVel /= totalMass;
1349 }
1350
1351 /*
1352 Return intertia tensor for entire system and angular momentum Vector.
1353
1354
1355 [ Ixx -Ixy -Ixz ]
1356 J =| -Iyx Iyy -Iyz |
1357 [ -Izx -Iyz Izz ]
1358 */
1359
1360 void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){
1361
1362
1363 RealType xx = 0.0;
1364 RealType yy = 0.0;
1365 RealType zz = 0.0;
1366 RealType xy = 0.0;
1367 RealType xz = 0.0;
1368 RealType yz = 0.0;
1369 Vector3d com(0.0);
1370 Vector3d comVel(0.0);
1371
1372 getComAll(com, comVel);
1373
1374 SimInfo::MoleculeIterator i;
1375 Molecule* mol;
1376
1377 Vector3d thisq(0.0);
1378 Vector3d thisv(0.0);
1379
1380 RealType thisMass = 0.0;
1381
1382
1383
1384
1385 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1386
1387 thisq = mol->getCom()-com;
1388 thisv = mol->getComVel()-comVel;
1389 thisMass = mol->getMass();
1390 // Compute moment of intertia coefficients.
1391 xx += thisq[0]*thisq[0]*thisMass;
1392 yy += thisq[1]*thisq[1]*thisMass;
1393 zz += thisq[2]*thisq[2]*thisMass;
1394
1395 // compute products of intertia
1396 xy += thisq[0]*thisq[1]*thisMass;
1397 xz += thisq[0]*thisq[2]*thisMass;
1398 yz += thisq[1]*thisq[2]*thisMass;
1399
1400 angularMomentum += cross( thisq, thisv ) * thisMass;
1401
1402 }
1403
1404
1405 inertiaTensor(0,0) = yy + zz;
1406 inertiaTensor(0,1) = -xy;
1407 inertiaTensor(0,2) = -xz;
1408 inertiaTensor(1,0) = -xy;
1409 inertiaTensor(1,1) = xx + zz;
1410 inertiaTensor(1,2) = -yz;
1411 inertiaTensor(2,0) = -xz;
1412 inertiaTensor(2,1) = -yz;
1413 inertiaTensor(2,2) = xx + yy;
1414
1415 #ifdef IS_MPI
1416 Mat3x3d tmpI(inertiaTensor);
1417 Vector3d tmpAngMom;
1418 MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1419 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1420 #endif
1421
1422 return;
1423 }
1424
1425 //Returns the angular momentum of the system
1426 Vector3d SimInfo::getAngularMomentum(){
1427
1428 Vector3d com(0.0);
1429 Vector3d comVel(0.0);
1430 Vector3d angularMomentum(0.0);
1431
1432 getComAll(com,comVel);
1433
1434 SimInfo::MoleculeIterator i;
1435 Molecule* mol;
1436
1437 Vector3d thisr(0.0);
1438 Vector3d thisp(0.0);
1439
1440 RealType thisMass;
1441
1442 for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) {
1443 thisMass = mol->getMass();
1444 thisr = mol->getCom()-com;
1445 thisp = (mol->getComVel()-comVel)*thisMass;
1446
1447 angularMomentum += cross( thisr, thisp );
1448
1449 }
1450
1451 #ifdef IS_MPI
1452 Vector3d tmpAngMom;
1453 MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD);
1454 #endif
1455
1456 return angularMomentum;
1457 }
1458
1459 StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) {
1460 return IOIndexToIntegrableObject.at(index);
1461 }
1462
1463 void SimInfo::setIOIndexToIntegrableObject(const std::vector<StuntDouble*>& v) {
1464 IOIndexToIntegrableObject= v;
1465 }
1466
1467 /* Returns the Volume of the simulation based on a ellipsoid with semi-axes
1468 based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
1469 where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to
1470 V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
1471 */
1472 void SimInfo::getGyrationalVolume(RealType &volume){
1473 Mat3x3d intTensor;
1474 RealType det;
1475 Vector3d dummyAngMom;
1476 RealType sysconstants;
1477 RealType geomCnst;
1478
1479 geomCnst = 3.0/2.0;
1480 /* Get the inertial tensor and angular momentum for free*/
1481 getInertiaTensor(intTensor,dummyAngMom);
1482
1483 det = intTensor.determinant();
1484 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1485 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det);
1486 return;
1487 }
1488
1489 void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){
1490 Mat3x3d intTensor;
1491 Vector3d dummyAngMom;
1492 RealType sysconstants;
1493 RealType geomCnst;
1494
1495 geomCnst = 3.0/2.0;
1496 /* Get the inertial tensor and angular momentum for free*/
1497 getInertiaTensor(intTensor,dummyAngMom);
1498
1499 detI = intTensor.determinant();
1500 sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_;
1501 volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI);
1502 return;
1503 }
1504 /*
1505 void SimInfo::setStuntDoubleFromGlobalIndex(std::vector<StuntDouble*> v) {
1506 assert( v.size() == nAtoms_ + nRigidBodies_);
1507 sdByGlobalIndex_ = v;
1508 }
1509
1510 StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) {
1511 //assert(index < nAtoms_ + nRigidBodies_);
1512 return sdByGlobalIndex_.at(index);
1513 }
1514 */
1515 }//end namespace oopse
1516