1 |
< |
#include <stdlib.h> |
2 |
< |
#include <string.h> |
3 |
< |
#include <math.h> |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
> |
* notice, this list of conditions and the following disclaimer. |
11 |
> |
* |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
> |
* notice, this list of conditions and the following disclaimer in the |
14 |
> |
* documentation and/or other materials provided with the |
15 |
> |
* distribution. |
16 |
> |
* |
17 |
> |
* This software is provided "AS IS," without a warranty of any |
18 |
> |
* kind. All express or implied conditions, representations and |
19 |
> |
* warranties, including any implied warranty of merchantability, |
20 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
> |
* be liable for any damages suffered by licensee as a result of |
23 |
> |
* using, modifying or distributing the software or its |
24 |
> |
* derivatives. In no event will the University of Notre Dame or its |
25 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
> |
* direct, indirect, special, consequential, incidental or punitive |
27 |
> |
* damages, however caused and regardless of the theory of liability, |
28 |
> |
* arising out of the use of or inability to use software, even if the |
29 |
> |
* University of Notre Dame has been advised of the possibility of |
30 |
> |
* such damages. |
31 |
> |
* |
32 |
> |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
> |
* research, please cite the appropriate papers when you publish your |
34 |
> |
* work. Good starting points are: |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
> |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
> |
*/ |
41 |
> |
|
42 |
> |
/** |
43 |
> |
* @file SimInfo.cpp |
44 |
> |
* @author tlin |
45 |
> |
* @date 11/02/2004 |
46 |
> |
* @version 1.0 |
47 |
> |
*/ |
48 |
|
|
49 |
< |
#include <iostream> |
50 |
< |
using namespace std; |
49 |
> |
#include <algorithm> |
50 |
> |
#include <set> |
51 |
> |
#include <map> |
52 |
|
|
53 |
< |
#include "SimInfo.hpp" |
54 |
< |
#define __C |
55 |
< |
#include "fSimulation.h" |
56 |
< |
#include "simError.h" |
53 |
> |
#include "brains/SimInfo.hpp" |
54 |
> |
#include "math/Vector3.hpp" |
55 |
> |
#include "primitives/Molecule.hpp" |
56 |
> |
#include "primitives/StuntDouble.hpp" |
57 |
> |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
> |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
59 |
> |
#include "UseTheForce/doForces_interface.h" |
60 |
> |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
61 |
> |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
62 |
> |
#include "utils/MemoryUtils.hpp" |
63 |
> |
#include "utils/simError.h" |
64 |
> |
#include "selection/SelectionManager.hpp" |
65 |
> |
#include "io/ForceFieldOptions.hpp" |
66 |
> |
#include "UseTheForce/ForceField.hpp" |
67 |
> |
#include "nonbonded/InteractionManager.hpp" |
68 |
|
|
13 |
– |
#include "fortranWrappers.hpp" |
69 |
|
|
15 |
– |
#include "MatVec3.h" |
16 |
– |
|
70 |
|
#ifdef IS_MPI |
71 |
< |
#include "mpiSimulation.hpp" |
72 |
< |
#endif |
71 |
> |
#include "UseTheForce/mpiComponentPlan.h" |
72 |
> |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
73 |
> |
#endif |
74 |
|
|
75 |
< |
inline double roundMe( double x ){ |
76 |
< |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
77 |
< |
} |
78 |
< |
|
79 |
< |
inline double min( double a, double b ){ |
80 |
< |
return (a < b ) ? a : b; |
81 |
< |
} |
75 |
> |
using namespace std; |
76 |
> |
namespace OpenMD { |
77 |
> |
|
78 |
> |
SimInfo::SimInfo(ForceField* ff, Globals* simParams) : |
79 |
> |
forceField_(ff), simParams_(simParams), |
80 |
> |
ndf_(0), fdf_local(0), ndfRaw_(0), ndfTrans_(0), nZconstraint_(0), |
81 |
> |
nGlobalMols_(0), nGlobalAtoms_(0), nGlobalCutoffGroups_(0), |
82 |
> |
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
83 |
> |
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
84 |
> |
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
85 |
> |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
86 |
> |
calcBoxDipole_(false), useAtomicVirial_(true) { |
87 |
> |
|
88 |
> |
MoleculeStamp* molStamp; |
89 |
> |
int nMolWithSameStamp; |
90 |
> |
int nCutoffAtoms = 0; // number of atoms belong to cutoff groups |
91 |
> |
int nGroups = 0; //total cutoff groups defined in meta-data file |
92 |
> |
CutoffGroupStamp* cgStamp; |
93 |
> |
RigidBodyStamp* rbStamp; |
94 |
> |
int nRigidAtoms = 0; |
95 |
> |
|
96 |
> |
vector<Component*> components = simParams->getComponents(); |
97 |
> |
|
98 |
> |
for (vector<Component*>::iterator i = components.begin(); i !=components.end(); ++i) { |
99 |
> |
molStamp = (*i)->getMoleculeStamp(); |
100 |
> |
nMolWithSameStamp = (*i)->getNMol(); |
101 |
> |
|
102 |
> |
addMoleculeStamp(molStamp, nMolWithSameStamp); |
103 |
> |
|
104 |
> |
//calculate atoms in molecules |
105 |
> |
nGlobalAtoms_ += molStamp->getNAtoms() *nMolWithSameStamp; |
106 |
> |
|
107 |
> |
//calculate atoms in cutoff groups |
108 |
> |
int nAtomsInGroups = 0; |
109 |
> |
int nCutoffGroupsInStamp = molStamp->getNCutoffGroups(); |
110 |
> |
|
111 |
> |
for (int j=0; j < nCutoffGroupsInStamp; j++) { |
112 |
> |
cgStamp = molStamp->getCutoffGroupStamp(j); |
113 |
> |
nAtomsInGroups += cgStamp->getNMembers(); |
114 |
> |
} |
115 |
> |
|
116 |
> |
nGroups += nCutoffGroupsInStamp * nMolWithSameStamp; |
117 |
> |
|
118 |
> |
nCutoffAtoms += nAtomsInGroups * nMolWithSameStamp; |
119 |
> |
|
120 |
> |
//calculate atoms in rigid bodies |
121 |
> |
int nAtomsInRigidBodies = 0; |
122 |
> |
int nRigidBodiesInStamp = molStamp->getNRigidBodies(); |
123 |
> |
|
124 |
> |
for (int j=0; j < nRigidBodiesInStamp; j++) { |
125 |
> |
rbStamp = molStamp->getRigidBodyStamp(j); |
126 |
> |
nAtomsInRigidBodies += rbStamp->getNMembers(); |
127 |
> |
} |
128 |
> |
|
129 |
> |
nGlobalRigidBodies_ += nRigidBodiesInStamp * nMolWithSameStamp; |
130 |
> |
nRigidAtoms += nAtomsInRigidBodies * nMolWithSameStamp; |
131 |
> |
|
132 |
> |
} |
133 |
> |
|
134 |
> |
//every free atom (atom does not belong to cutoff groups) is a cutoff |
135 |
> |
//group therefore the total number of cutoff groups in the system is |
136 |
> |
//equal to the total number of atoms minus number of atoms belong to |
137 |
> |
//cutoff group defined in meta-data file plus the number of cutoff |
138 |
> |
//groups defined in meta-data file |
139 |
> |
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
140 |
> |
|
141 |
> |
//every free atom (atom does not belong to rigid bodies) is an |
142 |
> |
//integrable object therefore the total number of integrable objects |
143 |
> |
//in the system is equal to the total number of atoms minus number of |
144 |
> |
//atoms belong to rigid body defined in meta-data file plus the number |
145 |
> |
//of rigid bodies defined in meta-data file |
146 |
> |
nGlobalIntegrableObjects_ = nGlobalAtoms_ - nRigidAtoms |
147 |
> |
+ nGlobalRigidBodies_; |
148 |
> |
|
149 |
> |
nGlobalMols_ = molStampIds_.size(); |
150 |
> |
molToProcMap_.resize(nGlobalMols_); |
151 |
> |
} |
152 |
> |
|
153 |
> |
SimInfo::~SimInfo() { |
154 |
> |
map<int, Molecule*>::iterator i; |
155 |
> |
for (i = molecules_.begin(); i != molecules_.end(); ++i) { |
156 |
> |
delete i->second; |
157 |
> |
} |
158 |
> |
molecules_.clear(); |
159 |
> |
|
160 |
> |
delete sman_; |
161 |
> |
delete simParams_; |
162 |
> |
delete forceField_; |
163 |
> |
} |
164 |
|
|
29 |
– |
SimInfo* currentInfo; |
165 |
|
|
166 |
< |
SimInfo::SimInfo(){ |
167 |
< |
|
168 |
< |
n_constraints = 0; |
169 |
< |
nZconstraints = 0; |
170 |
< |
n_oriented = 0; |
171 |
< |
n_dipoles = 0; |
172 |
< |
ndf = 0; |
173 |
< |
ndfRaw = 0; |
174 |
< |
nZconstraints = 0; |
175 |
< |
the_integrator = NULL; |
176 |
< |
setTemp = 0; |
177 |
< |
thermalTime = 0.0; |
178 |
< |
currentTime = 0.0; |
179 |
< |
rCut = 0.0; |
180 |
< |
rSw = 0.0; |
181 |
< |
|
182 |
< |
haveRcut = 0; |
183 |
< |
haveRsw = 0; |
184 |
< |
boxIsInit = 0; |
166 |
> |
bool SimInfo::addMolecule(Molecule* mol) { |
167 |
> |
MoleculeIterator i; |
168 |
> |
|
169 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
170 |
> |
if (i == molecules_.end() ) { |
171 |
> |
|
172 |
> |
molecules_.insert(make_pair(mol->getGlobalIndex(), mol)); |
173 |
> |
|
174 |
> |
nAtoms_ += mol->getNAtoms(); |
175 |
> |
nBonds_ += mol->getNBonds(); |
176 |
> |
nBends_ += mol->getNBends(); |
177 |
> |
nTorsions_ += mol->getNTorsions(); |
178 |
> |
nInversions_ += mol->getNInversions(); |
179 |
> |
nRigidBodies_ += mol->getNRigidBodies(); |
180 |
> |
nIntegrableObjects_ += mol->getNIntegrableObjects(); |
181 |
> |
nCutoffGroups_ += mol->getNCutoffGroups(); |
182 |
> |
nConstraints_ += mol->getNConstraintPairs(); |
183 |
> |
|
184 |
> |
addInteractionPairs(mol); |
185 |
> |
|
186 |
> |
return true; |
187 |
> |
} else { |
188 |
> |
return false; |
189 |
> |
} |
190 |
> |
} |
191 |
|
|
192 |
< |
resetTime = 1e99; |
192 |
> |
bool SimInfo::removeMolecule(Molecule* mol) { |
193 |
> |
MoleculeIterator i; |
194 |
> |
i = molecules_.find(mol->getGlobalIndex()); |
195 |
|
|
196 |
< |
orthoRhombic = 0; |
54 |
< |
orthoTolerance = 1E-6; |
55 |
< |
useInitXSstate = true; |
196 |
> |
if (i != molecules_.end() ) { |
197 |
|
|
198 |
< |
usePBC = 0; |
199 |
< |
useLJ = 0; |
200 |
< |
useSticky = 0; |
201 |
< |
useCharges = 0; |
202 |
< |
useDipoles = 0; |
203 |
< |
useReactionField = 0; |
204 |
< |
useGB = 0; |
205 |
< |
useEAM = 0; |
206 |
< |
useSolidThermInt = 0; |
207 |
< |
useLiquidThermInt = 0; |
198 |
> |
assert(mol == i->second); |
199 |
> |
|
200 |
> |
nAtoms_ -= mol->getNAtoms(); |
201 |
> |
nBonds_ -= mol->getNBonds(); |
202 |
> |
nBends_ -= mol->getNBends(); |
203 |
> |
nTorsions_ -= mol->getNTorsions(); |
204 |
> |
nInversions_ -= mol->getNInversions(); |
205 |
> |
nRigidBodies_ -= mol->getNRigidBodies(); |
206 |
> |
nIntegrableObjects_ -= mol->getNIntegrableObjects(); |
207 |
> |
nCutoffGroups_ -= mol->getNCutoffGroups(); |
208 |
> |
nConstraints_ -= mol->getNConstraintPairs(); |
209 |
|
|
210 |
< |
haveCutoffGroups = false; |
210 |
> |
removeInteractionPairs(mol); |
211 |
> |
molecules_.erase(mol->getGlobalIndex()); |
212 |
|
|
213 |
< |
excludes = Exclude::Instance(); |
214 |
< |
|
215 |
< |
myConfiguration = new SimState(); |
216 |
< |
|
217 |
< |
has_minimizer = false; |
218 |
< |
the_minimizer =NULL; |
213 |
> |
delete mol; |
214 |
> |
|
215 |
> |
return true; |
216 |
> |
} else { |
217 |
> |
return false; |
218 |
> |
} |
219 |
> |
} |
220 |
|
|
221 |
< |
ngroup = 0; |
221 |
> |
|
222 |
> |
Molecule* SimInfo::beginMolecule(MoleculeIterator& i) { |
223 |
> |
i = molecules_.begin(); |
224 |
> |
return i == molecules_.end() ? NULL : i->second; |
225 |
> |
} |
226 |
|
|
227 |
< |
wrapMeSimInfo( this ); |
228 |
< |
} |
227 |
> |
Molecule* SimInfo::nextMolecule(MoleculeIterator& i) { |
228 |
> |
++i; |
229 |
> |
return i == molecules_.end() ? NULL : i->second; |
230 |
> |
} |
231 |
|
|
232 |
|
|
233 |
< |
SimInfo::~SimInfo(){ |
233 |
> |
void SimInfo::calcNdf() { |
234 |
> |
int ndf_local; |
235 |
> |
MoleculeIterator i; |
236 |
> |
vector<StuntDouble*>::iterator j; |
237 |
> |
Molecule* mol; |
238 |
> |
StuntDouble* integrableObject; |
239 |
|
|
240 |
< |
delete myConfiguration; |
240 |
> |
ndf_local = 0; |
241 |
> |
|
242 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
243 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
244 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
245 |
|
|
246 |
< |
map<string, GenericData*>::iterator i; |
88 |
< |
|
89 |
< |
for(i = properties.begin(); i != properties.end(); i++) |
90 |
< |
delete (*i).second; |
246 |
> |
ndf_local += 3; |
247 |
|
|
248 |
< |
} |
248 |
> |
if (integrableObject->isDirectional()) { |
249 |
> |
if (integrableObject->isLinear()) { |
250 |
> |
ndf_local += 2; |
251 |
> |
} else { |
252 |
> |
ndf_local += 3; |
253 |
> |
} |
254 |
> |
} |
255 |
> |
|
256 |
> |
} |
257 |
> |
} |
258 |
> |
|
259 |
> |
// n_constraints is local, so subtract them on each processor |
260 |
> |
ndf_local -= nConstraints_; |
261 |
|
|
262 |
< |
void SimInfo::setBox(double newBox[3]) { |
263 |
< |
|
264 |
< |
int i, j; |
265 |
< |
double tempMat[3][3]; |
262 |
> |
#ifdef IS_MPI |
263 |
> |
MPI_Allreduce(&ndf_local,&ndf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
264 |
> |
#else |
265 |
> |
ndf_ = ndf_local; |
266 |
> |
#endif |
267 |
|
|
268 |
< |
for(i=0; i<3; i++) |
269 |
< |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
268 |
> |
// nZconstraints_ is global, as are the 3 COM translations for the |
269 |
> |
// entire system: |
270 |
> |
ndf_ = ndf_ - 3 - nZconstraint_; |
271 |
|
|
272 |
< |
tempMat[0][0] = newBox[0]; |
103 |
< |
tempMat[1][1] = newBox[1]; |
104 |
< |
tempMat[2][2] = newBox[2]; |
272 |
> |
} |
273 |
|
|
274 |
< |
setBoxM( tempMat ); |
274 |
> |
int SimInfo::getFdf() { |
275 |
> |
#ifdef IS_MPI |
276 |
> |
MPI_Allreduce(&fdf_local,&fdf_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
277 |
> |
#else |
278 |
> |
fdf_ = fdf_local; |
279 |
> |
#endif |
280 |
> |
return fdf_; |
281 |
> |
} |
282 |
> |
|
283 |
> |
void SimInfo::calcNdfRaw() { |
284 |
> |
int ndfRaw_local; |
285 |
|
|
286 |
< |
} |
286 |
> |
MoleculeIterator i; |
287 |
> |
vector<StuntDouble*>::iterator j; |
288 |
> |
Molecule* mol; |
289 |
> |
StuntDouble* integrableObject; |
290 |
|
|
291 |
< |
void SimInfo::setBoxM( double theBox[3][3] ){ |
292 |
< |
|
293 |
< |
int i, j; |
294 |
< |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
295 |
< |
// ordering in the array is as follows: |
296 |
< |
// [ 0 3 6 ] |
116 |
< |
// [ 1 4 7 ] |
117 |
< |
// [ 2 5 8 ] |
118 |
< |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
291 |
> |
// Raw degrees of freedom that we have to set |
292 |
> |
ndfRaw_local = 0; |
293 |
> |
|
294 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
295 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
296 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
297 |
|
|
298 |
< |
if( !boxIsInit ) boxIsInit = 1; |
298 |
> |
ndfRaw_local += 3; |
299 |
|
|
300 |
< |
for(i=0; i < 3; i++) |
301 |
< |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
302 |
< |
|
303 |
< |
calcBoxL(); |
304 |
< |
calcHmatInv(); |
305 |
< |
|
306 |
< |
for(i=0; i < 3; i++) { |
307 |
< |
for (j=0; j < 3; j++) { |
308 |
< |
FortranHmat[3*j + i] = Hmat[i][j]; |
131 |
< |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
300 |
> |
if (integrableObject->isDirectional()) { |
301 |
> |
if (integrableObject->isLinear()) { |
302 |
> |
ndfRaw_local += 2; |
303 |
> |
} else { |
304 |
> |
ndfRaw_local += 3; |
305 |
> |
} |
306 |
> |
} |
307 |
> |
|
308 |
> |
} |
309 |
|
} |
310 |
+ |
|
311 |
+ |
#ifdef IS_MPI |
312 |
+ |
MPI_Allreduce(&ndfRaw_local,&ndfRaw_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
313 |
+ |
#else |
314 |
+ |
ndfRaw_ = ndfRaw_local; |
315 |
+ |
#endif |
316 |
|
} |
317 |
|
|
318 |
< |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
319 |
< |
|
137 |
< |
} |
138 |
< |
|
318 |
> |
void SimInfo::calcNdfTrans() { |
319 |
> |
int ndfTrans_local; |
320 |
|
|
321 |
< |
void SimInfo::getBoxM (double theBox[3][3]) { |
321 |
> |
ndfTrans_local = 3 * nIntegrableObjects_ - nConstraints_; |
322 |
|
|
142 |
– |
int i, j; |
143 |
– |
for(i=0; i<3; i++) |
144 |
– |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
145 |
– |
} |
323 |
|
|
324 |
+ |
#ifdef IS_MPI |
325 |
+ |
MPI_Allreduce(&ndfTrans_local,&ndfTrans_,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
326 |
+ |
#else |
327 |
+ |
ndfTrans_ = ndfTrans_local; |
328 |
+ |
#endif |
329 |
|
|
330 |
< |
void SimInfo::scaleBox(double scale) { |
331 |
< |
double theBox[3][3]; |
332 |
< |
int i, j; |
330 |
> |
ndfTrans_ = ndfTrans_ - 3 - nZconstraint_; |
331 |
> |
|
332 |
> |
} |
333 |
|
|
334 |
< |
// cerr << "Scaling box by " << scale << "\n"; |
334 |
> |
void SimInfo::addInteractionPairs(Molecule* mol) { |
335 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
336 |
> |
vector<Bond*>::iterator bondIter; |
337 |
> |
vector<Bend*>::iterator bendIter; |
338 |
> |
vector<Torsion*>::iterator torsionIter; |
339 |
> |
vector<Inversion*>::iterator inversionIter; |
340 |
> |
Bond* bond; |
341 |
> |
Bend* bend; |
342 |
> |
Torsion* torsion; |
343 |
> |
Inversion* inversion; |
344 |
> |
int a; |
345 |
> |
int b; |
346 |
> |
int c; |
347 |
> |
int d; |
348 |
|
|
349 |
< |
for(i=0; i<3; i++) |
350 |
< |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
349 |
> |
// atomGroups can be used to add special interaction maps between |
350 |
> |
// groups of atoms that are in two separate rigid bodies. |
351 |
> |
// However, most site-site interactions between two rigid bodies |
352 |
> |
// are probably not special, just the ones between the physically |
353 |
> |
// bonded atoms. Interactions *within* a single rigid body should |
354 |
> |
// always be excluded. These are done at the bottom of this |
355 |
> |
// function. |
356 |
|
|
357 |
< |
setBoxM(theBox); |
358 |
< |
|
359 |
< |
} |
360 |
< |
|
361 |
< |
void SimInfo::calcHmatInv( void ) { |
362 |
< |
|
363 |
< |
int oldOrtho; |
364 |
< |
int i,j; |
365 |
< |
double smallDiag; |
366 |
< |
double tol; |
367 |
< |
double sanity[3][3]; |
368 |
< |
|
369 |
< |
invertMat3( Hmat, HmatInv ); |
370 |
< |
|
371 |
< |
// check to see if Hmat is orthorhombic |
372 |
< |
|
373 |
< |
oldOrtho = orthoRhombic; |
374 |
< |
|
375 |
< |
smallDiag = fabs(Hmat[0][0]); |
376 |
< |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
377 |
< |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
378 |
< |
tol = smallDiag * orthoTolerance; |
379 |
< |
|
380 |
< |
orthoRhombic = 1; |
181 |
< |
|
182 |
< |
for (i = 0; i < 3; i++ ) { |
183 |
< |
for (j = 0 ; j < 3; j++) { |
184 |
< |
if (i != j) { |
185 |
< |
if (orthoRhombic) { |
186 |
< |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
187 |
< |
} |
357 |
> |
map<int, set<int> > atomGroups; |
358 |
> |
Molecule::RigidBodyIterator rbIter; |
359 |
> |
RigidBody* rb; |
360 |
> |
Molecule::IntegrableObjectIterator ii; |
361 |
> |
StuntDouble* integrableObject; |
362 |
> |
|
363 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
364 |
> |
integrableObject != NULL; |
365 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
366 |
> |
|
367 |
> |
if (integrableObject->isRigidBody()) { |
368 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
369 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
370 |
> |
set<int> rigidAtoms; |
371 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
372 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
373 |
> |
} |
374 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
375 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
376 |
> |
} |
377 |
> |
} else { |
378 |
> |
set<int> oneAtomSet; |
379 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
380 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
381 |
|
} |
382 |
< |
} |
383 |
< |
} |
382 |
> |
} |
383 |
> |
|
384 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
385 |
> |
bond = mol->nextBond(bondIter)) { |
386 |
|
|
387 |
< |
if( oldOrtho != orthoRhombic ){ |
387 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
388 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
389 |
|
|
390 |
< |
if( orthoRhombic ) { |
391 |
< |
sprintf( painCave.errMsg, |
392 |
< |
"OOPSE is switching from the default Non-Orthorhombic\n" |
393 |
< |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
394 |
< |
"\tThis is usually a good thing, but if you wan't the\n" |
199 |
< |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
200 |
< |
"\tvariable ( currently set to %G ) smaller.\n", |
201 |
< |
orthoTolerance); |
202 |
< |
painCave.severity = OOPSE_INFO; |
203 |
< |
simError(); |
390 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
391 |
> |
oneTwoInteractions_.addPair(a, b); |
392 |
> |
} else { |
393 |
> |
excludedInteractions_.addPair(a, b); |
394 |
> |
} |
395 |
|
} |
205 |
– |
else { |
206 |
– |
sprintf( painCave.errMsg, |
207 |
– |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
208 |
– |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
209 |
– |
"\tThis is usually because the box has deformed under\n" |
210 |
– |
"\tNPTf integration. If you wan't to live on the edge with\n" |
211 |
– |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
212 |
– |
"\tvariable ( currently set to %G ) larger.\n", |
213 |
– |
orthoTolerance); |
214 |
– |
painCave.severity = OOPSE_WARNING; |
215 |
– |
simError(); |
216 |
– |
} |
217 |
– |
} |
218 |
– |
} |
396 |
|
|
397 |
< |
void SimInfo::calcBoxL( void ){ |
397 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
398 |
> |
bend = mol->nextBend(bendIter)) { |
399 |
|
|
400 |
< |
double dx, dy, dz, dsq; |
400 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
401 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
402 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
403 |
> |
|
404 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
405 |
> |
oneTwoInteractions_.addPair(a, b); |
406 |
> |
oneTwoInteractions_.addPair(b, c); |
407 |
> |
} else { |
408 |
> |
excludedInteractions_.addPair(a, b); |
409 |
> |
excludedInteractions_.addPair(b, c); |
410 |
> |
} |
411 |
|
|
412 |
< |
// boxVol = Determinant of Hmat |
412 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
413 |
> |
oneThreeInteractions_.addPair(a, c); |
414 |
> |
} else { |
415 |
> |
excludedInteractions_.addPair(a, c); |
416 |
> |
} |
417 |
> |
} |
418 |
|
|
419 |
< |
boxVol = matDet3( Hmat ); |
419 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
420 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
421 |
|
|
422 |
< |
// boxLx |
423 |
< |
|
424 |
< |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
425 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
232 |
< |
boxL[0] = sqrt( dsq ); |
233 |
< |
//maxCutoff = 0.5 * boxL[0]; |
422 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
423 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
424 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
425 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
426 |
|
|
427 |
< |
// boxLy |
428 |
< |
|
429 |
< |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
430 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
431 |
< |
boxL[1] = sqrt( dsq ); |
432 |
< |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
427 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
428 |
> |
oneTwoInteractions_.addPair(a, b); |
429 |
> |
oneTwoInteractions_.addPair(b, c); |
430 |
> |
oneTwoInteractions_.addPair(c, d); |
431 |
> |
} else { |
432 |
> |
excludedInteractions_.addPair(a, b); |
433 |
> |
excludedInteractions_.addPair(b, c); |
434 |
> |
excludedInteractions_.addPair(c, d); |
435 |
> |
} |
436 |
|
|
437 |
+ |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
438 |
+ |
oneThreeInteractions_.addPair(a, c); |
439 |
+ |
oneThreeInteractions_.addPair(b, d); |
440 |
+ |
} else { |
441 |
+ |
excludedInteractions_.addPair(a, c); |
442 |
+ |
excludedInteractions_.addPair(b, d); |
443 |
+ |
} |
444 |
|
|
445 |
< |
// boxLz |
446 |
< |
|
447 |
< |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
448 |
< |
dsq = dx*dx + dy*dy + dz*dz; |
449 |
< |
boxL[2] = sqrt( dsq ); |
450 |
< |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
445 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
446 |
> |
oneFourInteractions_.addPair(a, d); |
447 |
> |
} else { |
448 |
> |
excludedInteractions_.addPair(a, d); |
449 |
> |
} |
450 |
> |
} |
451 |
|
|
452 |
< |
//calculate the max cutoff |
453 |
< |
maxCutoff = calcMaxCutOff(); |
252 |
< |
|
253 |
< |
checkCutOffs(); |
452 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
453 |
> |
inversion = mol->nextInversion(inversionIter)) { |
454 |
|
|
455 |
< |
} |
455 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
456 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
457 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
458 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
459 |
|
|
460 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
461 |
+ |
oneTwoInteractions_.addPair(a, b); |
462 |
+ |
oneTwoInteractions_.addPair(a, c); |
463 |
+ |
oneTwoInteractions_.addPair(a, d); |
464 |
+ |
} else { |
465 |
+ |
excludedInteractions_.addPair(a, b); |
466 |
+ |
excludedInteractions_.addPair(a, c); |
467 |
+ |
excludedInteractions_.addPair(a, d); |
468 |
+ |
} |
469 |
|
|
470 |
< |
double SimInfo::calcMaxCutOff(){ |
470 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
471 |
> |
oneThreeInteractions_.addPair(b, c); |
472 |
> |
oneThreeInteractions_.addPair(b, d); |
473 |
> |
oneThreeInteractions_.addPair(c, d); |
474 |
> |
} else { |
475 |
> |
excludedInteractions_.addPair(b, c); |
476 |
> |
excludedInteractions_.addPair(b, d); |
477 |
> |
excludedInteractions_.addPair(c, d); |
478 |
> |
} |
479 |
> |
} |
480 |
|
|
481 |
< |
double ri[3], rj[3], rk[3]; |
482 |
< |
double rij[3], rjk[3], rki[3]; |
483 |
< |
double minDist; |
481 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
482 |
> |
rb = mol->nextRigidBody(rbIter)) { |
483 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
484 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
485 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
486 |
> |
a = atoms[i]->getGlobalIndex(); |
487 |
> |
b = atoms[j]->getGlobalIndex(); |
488 |
> |
excludedInteractions_.addPair(a, b); |
489 |
> |
} |
490 |
> |
} |
491 |
> |
} |
492 |
|
|
493 |
< |
ri[0] = Hmat[0][0]; |
265 |
< |
ri[1] = Hmat[1][0]; |
266 |
< |
ri[2] = Hmat[2][0]; |
493 |
> |
} |
494 |
|
|
495 |
< |
rj[0] = Hmat[0][1]; |
496 |
< |
rj[1] = Hmat[1][1]; |
497 |
< |
rj[2] = Hmat[2][1]; |
495 |
> |
void SimInfo::removeInteractionPairs(Molecule* mol) { |
496 |
> |
ForceFieldOptions& options_ = forceField_->getForceFieldOptions(); |
497 |
> |
vector<Bond*>::iterator bondIter; |
498 |
> |
vector<Bend*>::iterator bendIter; |
499 |
> |
vector<Torsion*>::iterator torsionIter; |
500 |
> |
vector<Inversion*>::iterator inversionIter; |
501 |
> |
Bond* bond; |
502 |
> |
Bend* bend; |
503 |
> |
Torsion* torsion; |
504 |
> |
Inversion* inversion; |
505 |
> |
int a; |
506 |
> |
int b; |
507 |
> |
int c; |
508 |
> |
int d; |
509 |
|
|
510 |
< |
rk[0] = Hmat[0][2]; |
511 |
< |
rk[1] = Hmat[1][2]; |
512 |
< |
rk[2] = Hmat[2][2]; |
510 |
> |
map<int, set<int> > atomGroups; |
511 |
> |
Molecule::RigidBodyIterator rbIter; |
512 |
> |
RigidBody* rb; |
513 |
> |
Molecule::IntegrableObjectIterator ii; |
514 |
> |
StuntDouble* integrableObject; |
515 |
|
|
516 |
< |
crossProduct3(ri, rj, rij); |
517 |
< |
distXY = dotProduct3(rk,rij) / norm3(rij); |
516 |
> |
for (integrableObject = mol->beginIntegrableObject(ii); |
517 |
> |
integrableObject != NULL; |
518 |
> |
integrableObject = mol->nextIntegrableObject(ii)) { |
519 |
> |
|
520 |
> |
if (integrableObject->isRigidBody()) { |
521 |
> |
rb = static_cast<RigidBody*>(integrableObject); |
522 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
523 |
> |
set<int> rigidAtoms; |
524 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
525 |
> |
rigidAtoms.insert(atoms[i]->getGlobalIndex()); |
526 |
> |
} |
527 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()); ++i) { |
528 |
> |
atomGroups.insert(map<int, set<int> >::value_type(atoms[i]->getGlobalIndex(), rigidAtoms)); |
529 |
> |
} |
530 |
> |
} else { |
531 |
> |
set<int> oneAtomSet; |
532 |
> |
oneAtomSet.insert(integrableObject->getGlobalIndex()); |
533 |
> |
atomGroups.insert(map<int, set<int> >::value_type(integrableObject->getGlobalIndex(), oneAtomSet)); |
534 |
> |
} |
535 |
> |
} |
536 |
|
|
537 |
< |
crossProduct3(rj,rk, rjk); |
538 |
< |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
537 |
> |
for (bond= mol->beginBond(bondIter); bond != NULL; |
538 |
> |
bond = mol->nextBond(bondIter)) { |
539 |
> |
|
540 |
> |
a = bond->getAtomA()->getGlobalIndex(); |
541 |
> |
b = bond->getAtomB()->getGlobalIndex(); |
542 |
> |
|
543 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
544 |
> |
oneTwoInteractions_.removePair(a, b); |
545 |
> |
} else { |
546 |
> |
excludedInteractions_.removePair(a, b); |
547 |
> |
} |
548 |
> |
} |
549 |
|
|
550 |
< |
crossProduct3(rk,ri, rki); |
551 |
< |
distZX = dotProduct3(rj,rki) / norm3(rki); |
550 |
> |
for (bend= mol->beginBend(bendIter); bend != NULL; |
551 |
> |
bend = mol->nextBend(bendIter)) { |
552 |
|
|
553 |
< |
minDist = min(min(distXY, distYZ), distZX); |
554 |
< |
return minDist/2; |
555 |
< |
|
556 |
< |
} |
553 |
> |
a = bend->getAtomA()->getGlobalIndex(); |
554 |
> |
b = bend->getAtomB()->getGlobalIndex(); |
555 |
> |
c = bend->getAtomC()->getGlobalIndex(); |
556 |
> |
|
557 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
558 |
> |
oneTwoInteractions_.removePair(a, b); |
559 |
> |
oneTwoInteractions_.removePair(b, c); |
560 |
> |
} else { |
561 |
> |
excludedInteractions_.removePair(a, b); |
562 |
> |
excludedInteractions_.removePair(b, c); |
563 |
> |
} |
564 |
|
|
565 |
< |
void SimInfo::wrapVector( double thePos[3] ){ |
565 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
566 |
> |
oneThreeInteractions_.removePair(a, c); |
567 |
> |
} else { |
568 |
> |
excludedInteractions_.removePair(a, c); |
569 |
> |
} |
570 |
> |
} |
571 |
|
|
572 |
< |
int i; |
573 |
< |
double scaled[3]; |
572 |
> |
for (torsion= mol->beginTorsion(torsionIter); torsion != NULL; |
573 |
> |
torsion = mol->nextTorsion(torsionIter)) { |
574 |
|
|
575 |
< |
if( !orthoRhombic ){ |
576 |
< |
// calc the scaled coordinates. |
575 |
> |
a = torsion->getAtomA()->getGlobalIndex(); |
576 |
> |
b = torsion->getAtomB()->getGlobalIndex(); |
577 |
> |
c = torsion->getAtomC()->getGlobalIndex(); |
578 |
> |
d = torsion->getAtomD()->getGlobalIndex(); |
579 |
|
|
580 |
+ |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
581 |
+ |
oneTwoInteractions_.removePair(a, b); |
582 |
+ |
oneTwoInteractions_.removePair(b, c); |
583 |
+ |
oneTwoInteractions_.removePair(c, d); |
584 |
+ |
} else { |
585 |
+ |
excludedInteractions_.removePair(a, b); |
586 |
+ |
excludedInteractions_.removePair(b, c); |
587 |
+ |
excludedInteractions_.removePair(c, d); |
588 |
+ |
} |
589 |
|
|
590 |
< |
matVecMul3(HmatInv, thePos, scaled); |
591 |
< |
|
592 |
< |
for(i=0; i<3; i++) |
593 |
< |
scaled[i] -= roundMe(scaled[i]); |
594 |
< |
|
595 |
< |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
596 |
< |
|
306 |
< |
matVecMul3(Hmat, scaled, thePos); |
590 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
591 |
> |
oneThreeInteractions_.removePair(a, c); |
592 |
> |
oneThreeInteractions_.removePair(b, d); |
593 |
> |
} else { |
594 |
> |
excludedInteractions_.removePair(a, c); |
595 |
> |
excludedInteractions_.removePair(b, d); |
596 |
> |
} |
597 |
|
|
598 |
< |
} |
599 |
< |
else{ |
600 |
< |
// calc the scaled coordinates. |
598 |
> |
if (options_.havevdw14scale() || options_.haveelectrostatic14scale()) { |
599 |
> |
oneFourInteractions_.removePair(a, d); |
600 |
> |
} else { |
601 |
> |
excludedInteractions_.removePair(a, d); |
602 |
> |
} |
603 |
> |
} |
604 |
> |
|
605 |
> |
for (inversion= mol->beginInversion(inversionIter); inversion != NULL; |
606 |
> |
inversion = mol->nextInversion(inversionIter)) { |
607 |
> |
|
608 |
> |
a = inversion->getAtomA()->getGlobalIndex(); |
609 |
> |
b = inversion->getAtomB()->getGlobalIndex(); |
610 |
> |
c = inversion->getAtomC()->getGlobalIndex(); |
611 |
> |
d = inversion->getAtomD()->getGlobalIndex(); |
612 |
> |
|
613 |
> |
if (options_.havevdw12scale() || options_.haveelectrostatic12scale()) { |
614 |
> |
oneTwoInteractions_.removePair(a, b); |
615 |
> |
oneTwoInteractions_.removePair(a, c); |
616 |
> |
oneTwoInteractions_.removePair(a, d); |
617 |
> |
} else { |
618 |
> |
excludedInteractions_.removePair(a, b); |
619 |
> |
excludedInteractions_.removePair(a, c); |
620 |
> |
excludedInteractions_.removePair(a, d); |
621 |
> |
} |
622 |
> |
|
623 |
> |
if (options_.havevdw13scale() || options_.haveelectrostatic13scale()) { |
624 |
> |
oneThreeInteractions_.removePair(b, c); |
625 |
> |
oneThreeInteractions_.removePair(b, d); |
626 |
> |
oneThreeInteractions_.removePair(c, d); |
627 |
> |
} else { |
628 |
> |
excludedInteractions_.removePair(b, c); |
629 |
> |
excludedInteractions_.removePair(b, d); |
630 |
> |
excludedInteractions_.removePair(c, d); |
631 |
> |
} |
632 |
> |
} |
633 |
> |
|
634 |
> |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; |
635 |
> |
rb = mol->nextRigidBody(rbIter)) { |
636 |
> |
vector<Atom*> atoms = rb->getAtoms(); |
637 |
> |
for (int i = 0; i < static_cast<int>(atoms.size()) -1 ; ++i) { |
638 |
> |
for (int j = i + 1; j < static_cast<int>(atoms.size()); ++j) { |
639 |
> |
a = atoms[i]->getGlobalIndex(); |
640 |
> |
b = atoms[j]->getGlobalIndex(); |
641 |
> |
excludedInteractions_.removePair(a, b); |
642 |
> |
} |
643 |
> |
} |
644 |
> |
} |
645 |
|
|
312 |
– |
for(i=0; i<3; i++) |
313 |
– |
scaled[i] = thePos[i]*HmatInv[i][i]; |
314 |
– |
|
315 |
– |
// wrap the scaled coordinates |
316 |
– |
|
317 |
– |
for(i=0; i<3; i++) |
318 |
– |
scaled[i] -= roundMe(scaled[i]); |
319 |
– |
|
320 |
– |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
321 |
– |
|
322 |
– |
for(i=0; i<3; i++) |
323 |
– |
thePos[i] = scaled[i]*Hmat[i][i]; |
646 |
|
} |
647 |
+ |
|
648 |
+ |
|
649 |
+ |
void SimInfo::addMoleculeStamp(MoleculeStamp* molStamp, int nmol) { |
650 |
+ |
int curStampId; |
651 |
|
|
652 |
< |
} |
652 |
> |
//index from 0 |
653 |
> |
curStampId = moleculeStamps_.size(); |
654 |
|
|
655 |
+ |
moleculeStamps_.push_back(molStamp); |
656 |
+ |
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
657 |
+ |
} |
658 |
|
|
659 |
< |
int SimInfo::getNDF(){ |
330 |
< |
int ndf_local; |
659 |
> |
void SimInfo::update() { |
660 |
|
|
661 |
< |
ndf_local = 0; |
661 |
> |
setupSimType(); |
662 |
> |
setupCutoffRadius(); |
663 |
> |
setupSwitchingRadius(); |
664 |
> |
setupCutoffMethod(); |
665 |
> |
setupSkinThickness(); |
666 |
> |
setupSwitchingFunction(); |
667 |
> |
setupAccumulateBoxDipole(); |
668 |
> |
|
669 |
> |
#ifdef IS_MPI |
670 |
> |
setupFortranParallel(); |
671 |
> |
#endif |
672 |
> |
setupFortranSim(); |
673 |
> |
fortranInitialized_ = true; |
674 |
> |
|
675 |
> |
calcNdf(); |
676 |
> |
calcNdfRaw(); |
677 |
> |
calcNdfTrans(); |
678 |
> |
} |
679 |
|
|
680 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
681 |
< |
ndf_local += 3; |
682 |
< |
if (integrableObjects[i]->isDirectional()) { |
683 |
< |
if (integrableObjects[i]->isLinear()) |
684 |
< |
ndf_local += 2; |
685 |
< |
else |
686 |
< |
ndf_local += 3; |
680 |
> |
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
681 |
> |
SimInfo::MoleculeIterator mi; |
682 |
> |
Molecule* mol; |
683 |
> |
Molecule::AtomIterator ai; |
684 |
> |
Atom* atom; |
685 |
> |
set<AtomType*> atomTypes; |
686 |
> |
|
687 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
688 |
> |
|
689 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
690 |
> |
atomTypes.insert(atom->getAtomType()); |
691 |
> |
} |
692 |
> |
|
693 |
> |
} |
694 |
> |
|
695 |
> |
return atomTypes; |
696 |
> |
} |
697 |
> |
|
698 |
> |
/** |
699 |
> |
* setupCutoffRadius |
700 |
> |
* |
701 |
> |
* If the cutoffRadius was explicitly set, use that value. |
702 |
> |
* If the cutoffRadius was not explicitly set: |
703 |
> |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
704 |
> |
* No electrostatic atoms? Poll the atom types present in the |
705 |
> |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
706 |
> |
* Use the maximum suggested value that was found. |
707 |
> |
*/ |
708 |
> |
void SimInfo::setupCutoffRadius() { |
709 |
> |
|
710 |
> |
if (simParams_->haveCutoffRadius()) { |
711 |
> |
cutoffRadius_ = simParams_->getCutoffRadius(); |
712 |
> |
} else { |
713 |
> |
if (usesElectrostaticAtoms_) { |
714 |
> |
sprintf(painCave.errMsg, |
715 |
> |
"SimInfo Warning: No value was set for the cutoffRadius.\n" |
716 |
> |
"\tOpenMD will use a default value of 12.0 angstroms" |
717 |
> |
"\tfor the cutoffRadius.\n"); |
718 |
> |
painCave.isFatal = 0; |
719 |
> |
simError(); |
720 |
> |
cutoffRadius_ = 12.0; |
721 |
> |
} else { |
722 |
> |
RealType thisCut; |
723 |
> |
set<AtomType*>::iterator i; |
724 |
> |
set<AtomType*> atomTypes; |
725 |
> |
atomTypes = getSimulatedAtomTypes(); |
726 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
727 |
> |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
728 |
> |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
729 |
> |
} |
730 |
> |
sprintf(painCave.errMsg, |
731 |
> |
"SimInfo Warning: No value was set for the cutoffRadius.\n" |
732 |
> |
"\tOpenMD will use %lf angstroms.\n", |
733 |
> |
cutoffRadius_); |
734 |
> |
painCave.isFatal = 0; |
735 |
> |
simError(); |
736 |
> |
} |
737 |
|
} |
738 |
+ |
|
739 |
+ |
InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
740 |
|
} |
741 |
+ |
|
742 |
+ |
/** |
743 |
+ |
* setupSwitchingRadius |
744 |
+ |
* |
745 |
+ |
* If the switchingRadius was explicitly set, use that value (but check it) |
746 |
+ |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
747 |
+ |
*/ |
748 |
+ |
void SimInfo::setupSwitchingRadius() { |
749 |
+ |
|
750 |
+ |
if (simParams_->haveSwitchingRadius()) { |
751 |
+ |
switchingRadius_ = simParams_->getSwitchingRadius(); |
752 |
+ |
if (switchingRadius_ > cutoffRadius_) { |
753 |
+ |
sprintf(painCave.errMsg, |
754 |
+ |
"SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
755 |
+ |
switchingRadius_, cutoffRadius_); |
756 |
+ |
painCave.isFatal = 1; |
757 |
+ |
simError(); |
758 |
|
|
759 |
< |
// n_constraints is local, so subtract them on each processor: |
759 |
> |
} |
760 |
> |
} else { |
761 |
> |
switchingRadius_ = 0.85 * cutoffRadius_; |
762 |
> |
sprintf(painCave.errMsg, |
763 |
> |
"SimInfo Warning: No value was set for the switchingRadius.\n" |
764 |
> |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
765 |
> |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
766 |
> |
painCave.isFatal = 0; |
767 |
> |
simError(); |
768 |
> |
} |
769 |
> |
InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
770 |
> |
} |
771 |
|
|
772 |
< |
ndf_local -= n_constraints; |
772 |
> |
/** |
773 |
> |
* setupSkinThickness |
774 |
> |
* |
775 |
> |
* If the skinThickness was explicitly set, use that value (but check it) |
776 |
> |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
777 |
> |
*/ |
778 |
> |
void SimInfo::setupSkinThickness() { |
779 |
> |
if (simParams_->haveSkinThickness()) { |
780 |
> |
skinThickness_ = simParams_->getSkinThickness(); |
781 |
> |
} else { |
782 |
> |
skinThickness_ = 1.0; |
783 |
> |
sprintf(painCave.errMsg, |
784 |
> |
"SimInfo Warning: No value was set for the skinThickness.\n" |
785 |
> |
"\tOpenMD will use a default value of %f Angstroms\n" |
786 |
> |
"\tfor this simulation\n", skinThickness_); |
787 |
> |
painCave.isFatal = 0; |
788 |
> |
simError(); |
789 |
> |
} |
790 |
> |
} |
791 |
|
|
792 |
< |
#ifdef IS_MPI |
793 |
< |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
794 |
< |
#else |
795 |
< |
ndf = ndf_local; |
352 |
< |
#endif |
792 |
> |
void SimInfo::setupSimType() { |
793 |
> |
set<AtomType*>::iterator i; |
794 |
> |
set<AtomType*> atomTypes; |
795 |
> |
atomTypes = getSimulatedAtomTypes(); |
796 |
|
|
797 |
< |
// nZconstraints is global, as are the 3 COM translations for the |
355 |
< |
// entire system: |
797 |
> |
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
798 |
|
|
799 |
< |
ndf = ndf - 3 - nZconstraints; |
799 |
> |
int usesElectrostatic = 0; |
800 |
> |
int usesMetallic = 0; |
801 |
> |
int usesDirectional = 0; |
802 |
> |
//loop over all of the atom types |
803 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
804 |
> |
usesElectrostatic |= (*i)->isElectrostatic(); |
805 |
> |
usesMetallic |= (*i)->isMetal(); |
806 |
> |
usesDirectional |= (*i)->isDirectional(); |
807 |
> |
} |
808 |
|
|
809 |
< |
return ndf; |
810 |
< |
} |
809 |
> |
#ifdef IS_MPI |
810 |
> |
int temp; |
811 |
> |
temp = usesDirectional; |
812 |
> |
MPI_Allreduce(&temp, &usesDirectionalAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
813 |
|
|
814 |
< |
int SimInfo::getNDFraw() { |
815 |
< |
int ndfRaw_local; |
814 |
> |
temp = usesMetallic; |
815 |
> |
MPI_Allreduce(&temp, &usesMetallicAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
816 |
|
|
817 |
< |
// Raw degrees of freedom that we have to set |
818 |
< |
ndfRaw_local = 0; |
819 |
< |
|
820 |
< |
for(int i = 0; i < integrableObjects.size(); i++){ |
821 |
< |
ndfRaw_local += 3; |
822 |
< |
if (integrableObjects[i]->isDirectional()) { |
823 |
< |
if (integrableObjects[i]->isLinear()) |
824 |
< |
ndfRaw_local += 2; |
825 |
< |
else |
374 |
< |
ndfRaw_local += 3; |
375 |
< |
} |
817 |
> |
temp = usesElectrostatic; |
818 |
> |
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
819 |
> |
#endif |
820 |
> |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
821 |
> |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
822 |
> |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
823 |
> |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
824 |
> |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
825 |
> |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
826 |
|
} |
827 |
+ |
|
828 |
+ |
void SimInfo::setupFortranSim() { |
829 |
+ |
int isError; |
830 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
831 |
+ |
vector<int> fortranGlobalGroupMembership; |
832 |
|
|
833 |
< |
#ifdef IS_MPI |
379 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
380 |
< |
#else |
381 |
< |
ndfRaw = ndfRaw_local; |
382 |
< |
#endif |
833 |
> |
notifyFortranSkinThickness(&skinThickness_); |
834 |
|
|
835 |
< |
return ndfRaw; |
836 |
< |
} |
835 |
> |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
836 |
> |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
837 |
> |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
838 |
|
|
839 |
< |
int SimInfo::getNDFtranslational() { |
388 |
< |
int ndfTrans_local; |
839 |
> |
isError = 0; |
840 |
|
|
841 |
< |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
841 |
> |
//globalGroupMembership_ is filled by SimCreator |
842 |
> |
for (int i = 0; i < nGlobalAtoms_; i++) { |
843 |
> |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
844 |
> |
} |
845 |
|
|
846 |
+ |
//calculate mass ratio of cutoff group |
847 |
+ |
vector<RealType> mfact; |
848 |
+ |
SimInfo::MoleculeIterator mi; |
849 |
+ |
Molecule* mol; |
850 |
+ |
Molecule::CutoffGroupIterator ci; |
851 |
+ |
CutoffGroup* cg; |
852 |
+ |
Molecule::AtomIterator ai; |
853 |
+ |
Atom* atom; |
854 |
+ |
RealType totalMass; |
855 |
|
|
856 |
< |
#ifdef IS_MPI |
857 |
< |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
858 |
< |
#else |
859 |
< |
ndfTrans = ndfTrans_local; |
860 |
< |
#endif |
856 |
> |
//to avoid memory reallocation, reserve enough space for mfact |
857 |
> |
mfact.reserve(getNCutoffGroups()); |
858 |
> |
|
859 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
860 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
861 |
|
|
862 |
< |
ndfTrans = ndfTrans - 3 - nZconstraints; |
862 |
> |
totalMass = cg->getMass(); |
863 |
> |
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
864 |
> |
// Check for massless groups - set mfact to 1 if true |
865 |
> |
if (totalMass != 0) |
866 |
> |
mfact.push_back(atom->getMass()/totalMass); |
867 |
> |
else |
868 |
> |
mfact.push_back( 1.0 ); |
869 |
> |
} |
870 |
> |
} |
871 |
> |
} |
872 |
|
|
873 |
< |
return ndfTrans; |
874 |
< |
} |
873 |
> |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
874 |
> |
vector<int> identArray; |
875 |
|
|
876 |
< |
int SimInfo::getTotIntegrableObjects() { |
877 |
< |
int nObjs_local; |
878 |
< |
int nObjs; |
876 |
> |
//to avoid memory reallocation, reserve enough space identArray |
877 |
> |
identArray.reserve(getNAtoms()); |
878 |
> |
|
879 |
> |
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
880 |
> |
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
881 |
> |
identArray.push_back(atom->getIdent()); |
882 |
> |
} |
883 |
> |
} |
884 |
|
|
885 |
< |
nObjs_local = integrableObjects.size(); |
885 |
> |
//fill molMembershipArray |
886 |
> |
//molMembershipArray is filled by SimCreator |
887 |
> |
vector<int> molMembershipArray(nGlobalAtoms_); |
888 |
> |
for (int i = 0; i < nGlobalAtoms_; i++) { |
889 |
> |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
890 |
> |
} |
891 |
> |
|
892 |
> |
//setup fortran simulation |
893 |
|
|
894 |
+ |
nExclude = excludedInteractions_.getSize(); |
895 |
+ |
nOneTwo = oneTwoInteractions_.getSize(); |
896 |
+ |
nOneThree = oneThreeInteractions_.getSize(); |
897 |
+ |
nOneFour = oneFourInteractions_.getSize(); |
898 |
|
|
899 |
< |
#ifdef IS_MPI |
900 |
< |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
901 |
< |
#else |
902 |
< |
nObjs = nObjs_local; |
415 |
< |
#endif |
899 |
> |
int* excludeList = excludedInteractions_.getPairList(); |
900 |
> |
int* oneTwoList = oneTwoInteractions_.getPairList(); |
901 |
> |
int* oneThreeList = oneThreeInteractions_.getPairList(); |
902 |
> |
int* oneFourList = oneFourInteractions_.getPairList(); |
903 |
|
|
904 |
+ |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
905 |
+ |
&nExclude, excludeList, |
906 |
+ |
&nOneTwo, oneTwoList, |
907 |
+ |
&nOneThree, oneThreeList, |
908 |
+ |
&nOneFour, oneFourList, |
909 |
+ |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
910 |
+ |
&fortranGlobalGroupMembership[0], &isError); |
911 |
+ |
|
912 |
+ |
if( isError ){ |
913 |
+ |
|
914 |
+ |
sprintf( painCave.errMsg, |
915 |
+ |
"There was an error setting the simulation information in fortran.\n" ); |
916 |
+ |
painCave.isFatal = 1; |
917 |
+ |
painCave.severity = OPENMD_ERROR; |
918 |
+ |
simError(); |
919 |
+ |
} |
920 |
+ |
|
921 |
+ |
|
922 |
+ |
sprintf( checkPointMsg, |
923 |
+ |
"succesfully sent the simulation information to fortran.\n"); |
924 |
+ |
|
925 |
+ |
errorCheckPoint(); |
926 |
+ |
|
927 |
+ |
// Setup number of neighbors in neighbor list if present |
928 |
+ |
if (simParams_->haveNeighborListNeighbors()) { |
929 |
+ |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
930 |
+ |
setNeighbors(&nlistNeighbors); |
931 |
+ |
} |
932 |
+ |
|
933 |
|
|
418 |
– |
return nObjs; |
419 |
– |
} |
420 |
– |
|
421 |
– |
void SimInfo::refreshSim(){ |
422 |
– |
|
423 |
– |
simtype fInfo; |
424 |
– |
int isError; |
425 |
– |
int n_global; |
426 |
– |
int* excl; |
427 |
– |
|
428 |
– |
fInfo.dielect = 0.0; |
429 |
– |
|
430 |
– |
if( useDipoles ){ |
431 |
– |
if( useReactionField )fInfo.dielect = dielectric; |
934 |
|
} |
935 |
|
|
434 |
– |
fInfo.SIM_uses_PBC = usePBC; |
435 |
– |
//fInfo.SIM_uses_LJ = 0; |
436 |
– |
fInfo.SIM_uses_LJ = useLJ; |
437 |
– |
fInfo.SIM_uses_sticky = useSticky; |
438 |
– |
//fInfo.SIM_uses_sticky = 0; |
439 |
– |
fInfo.SIM_uses_charges = useCharges; |
440 |
– |
fInfo.SIM_uses_dipoles = useDipoles; |
441 |
– |
//fInfo.SIM_uses_dipoles = 0; |
442 |
– |
fInfo.SIM_uses_RF = useReactionField; |
443 |
– |
//fInfo.SIM_uses_RF = 0; |
444 |
– |
fInfo.SIM_uses_GB = useGB; |
445 |
– |
fInfo.SIM_uses_EAM = useEAM; |
936 |
|
|
937 |
< |
n_exclude = excludes->getSize(); |
938 |
< |
excl = excludes->getFortranArray(); |
939 |
< |
|
940 |
< |
#ifdef IS_MPI |
941 |
< |
n_global = mpiSim->getNAtomsGlobal(); |
942 |
< |
#else |
943 |
< |
n_global = n_atoms; |
944 |
< |
#endif |
945 |
< |
|
946 |
< |
isError = 0; |
947 |
< |
|
948 |
< |
getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
949 |
< |
//it may not be a good idea to pass the address of first element in vector |
460 |
< |
//since c++ standard does not require vector to be stored continuously in meomory |
461 |
< |
//Most of the compilers will organize the memory of vector continuously |
462 |
< |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
463 |
< |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
464 |
< |
&mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
937 |
> |
void SimInfo::setupFortranParallel() { |
938 |
> |
#ifdef IS_MPI |
939 |
> |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
940 |
> |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
941 |
> |
vector<int> localToGlobalCutoffGroupIndex; |
942 |
> |
SimInfo::MoleculeIterator mi; |
943 |
> |
Molecule::AtomIterator ai; |
944 |
> |
Molecule::CutoffGroupIterator ci; |
945 |
> |
Molecule* mol; |
946 |
> |
Atom* atom; |
947 |
> |
CutoffGroup* cg; |
948 |
> |
mpiSimData parallelData; |
949 |
> |
int isError; |
950 |
|
|
951 |
< |
if( isError ){ |
467 |
< |
|
468 |
< |
sprintf( painCave.errMsg, |
469 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
470 |
< |
painCave.isFatal = 1; |
471 |
< |
painCave.severity = OOPSE_ERROR; |
472 |
< |
simError(); |
473 |
< |
} |
474 |
< |
|
475 |
< |
#ifdef IS_MPI |
476 |
< |
sprintf( checkPointMsg, |
477 |
< |
"succesfully sent the simulation information to fortran.\n"); |
478 |
< |
MPIcheckPoint(); |
479 |
< |
#endif // is_mpi |
480 |
< |
|
481 |
< |
this->ndf = this->getNDF(); |
482 |
< |
this->ndfRaw = this->getNDFraw(); |
483 |
< |
this->ndfTrans = this->getNDFtranslational(); |
484 |
< |
} |
951 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
952 |
|
|
953 |
< |
void SimInfo::setDefaultRcut( double theRcut ){ |
954 |
< |
|
955 |
< |
haveRcut = 1; |
956 |
< |
rCut = theRcut; |
490 |
< |
rList = rCut + 1.0; |
491 |
< |
|
492 |
< |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
493 |
< |
} |
953 |
> |
//local index(index in DataStorge) of atom is important |
954 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
955 |
> |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
956 |
> |
} |
957 |
|
|
958 |
< |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
958 |
> |
//local index of cutoff group is trivial, it only depends on the order of travesing |
959 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
960 |
> |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
961 |
> |
} |
962 |
> |
|
963 |
> |
} |
964 |
|
|
965 |
< |
rSw = theRsw; |
966 |
< |
setDefaultRcut( theRcut ); |
967 |
< |
} |
965 |
> |
//fill up mpiSimData struct |
966 |
> |
parallelData.nMolGlobal = getNGlobalMolecules(); |
967 |
> |
parallelData.nMolLocal = getNMolecules(); |
968 |
> |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
969 |
> |
parallelData.nAtomsLocal = getNAtoms(); |
970 |
> |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
971 |
> |
parallelData.nGroupsLocal = getNCutoffGroups(); |
972 |
> |
parallelData.myNode = worldRank; |
973 |
> |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
974 |
|
|
975 |
+ |
//pass mpiSimData struct and index arrays to fortran |
976 |
+ |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
977 |
+ |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
978 |
+ |
&localToGlobalCutoffGroupIndex[0], &isError); |
979 |
|
|
980 |
< |
void SimInfo::checkCutOffs( void ){ |
981 |
< |
|
982 |
< |
if( boxIsInit ){ |
505 |
< |
|
506 |
< |
//we need to check cutOffs against the box |
507 |
< |
|
508 |
< |
if( rCut > maxCutoff ){ |
509 |
< |
sprintf( painCave.errMsg, |
510 |
< |
"cutoffRadius is too large for the current periodic box.\n" |
511 |
< |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
512 |
< |
"\tThis is larger than half of at least one of the\n" |
513 |
< |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
514 |
< |
"\n" |
515 |
< |
"\t[ %G %G %G ]\n" |
516 |
< |
"\t[ %G %G %G ]\n" |
517 |
< |
"\t[ %G %G %G ]\n", |
518 |
< |
rCut, currentTime, |
519 |
< |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
520 |
< |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
521 |
< |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
522 |
< |
painCave.severity = OOPSE_ERROR; |
980 |
> |
if (isError) { |
981 |
> |
sprintf(painCave.errMsg, |
982 |
> |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
983 |
|
painCave.isFatal = 1; |
984 |
|
simError(); |
985 |
< |
} |
986 |
< |
} else { |
987 |
< |
// initialize this stuff before using it, OK? |
988 |
< |
sprintf( painCave.errMsg, |
989 |
< |
"Trying to check cutoffs without a box.\n" |
990 |
< |
"\tOOPSE should have better programmers than that.\n" ); |
531 |
< |
painCave.severity = OOPSE_ERROR; |
532 |
< |
painCave.isFatal = 1; |
533 |
< |
simError(); |
985 |
> |
} |
986 |
> |
|
987 |
> |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
988 |
> |
errorCheckPoint(); |
989 |
> |
|
990 |
> |
#endif |
991 |
|
} |
535 |
– |
|
536 |
– |
} |
992 |
|
|
538 |
– |
void SimInfo::addProperty(GenericData* prop){ |
993 |
|
|
994 |
< |
map<string, GenericData*>::iterator result; |
995 |
< |
result = properties.find(prop->getID()); |
542 |
< |
|
543 |
< |
//we can't simply use properties[prop->getID()] = prop, |
544 |
< |
//it will cause memory leak if we already contain a propery which has the same name of prop |
545 |
< |
|
546 |
< |
if(result != properties.end()){ |
994 |
> |
void SimInfo::setupSwitchingFunction() { |
995 |
> |
int ft = CUBIC; |
996 |
|
|
997 |
< |
delete (*result).second; |
998 |
< |
(*result).second = prop; |
999 |
< |
|
997 |
> |
if (simParams_->haveSwitchingFunctionType()) { |
998 |
> |
string funcType = simParams_->getSwitchingFunctionType(); |
999 |
> |
toUpper(funcType); |
1000 |
> |
if (funcType == "CUBIC") { |
1001 |
> |
ft = CUBIC; |
1002 |
> |
} else { |
1003 |
> |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1004 |
> |
ft = FIFTH_ORDER_POLY; |
1005 |
> |
} else { |
1006 |
> |
// throw error |
1007 |
> |
sprintf( painCave.errMsg, |
1008 |
> |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", funcType.c_str() ); |
1009 |
> |
painCave.isFatal = 1; |
1010 |
> |
simError(); |
1011 |
> |
} |
1012 |
> |
} |
1013 |
> |
} |
1014 |
> |
|
1015 |
> |
// send switching function notification to switcheroo |
1016 |
> |
setFunctionType(&ft); |
1017 |
> |
|
1018 |
|
} |
552 |
– |
else{ |
1019 |
|
|
1020 |
< |
properties[prop->getID()] = prop; |
1020 |
> |
void SimInfo::setupAccumulateBoxDipole() { |
1021 |
|
|
1022 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1023 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
1024 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
1025 |
+ |
calcBoxDipole_ = true; |
1026 |
+ |
} |
1027 |
+ |
|
1028 |
|
} |
1029 |
+ |
|
1030 |
+ |
void SimInfo::addProperty(GenericData* genData) { |
1031 |
+ |
properties_.addProperty(genData); |
1032 |
+ |
} |
1033 |
+ |
|
1034 |
+ |
void SimInfo::removeProperty(const string& propName) { |
1035 |
+ |
properties_.removeProperty(propName); |
1036 |
+ |
} |
1037 |
+ |
|
1038 |
+ |
void SimInfo::clearProperties() { |
1039 |
+ |
properties_.clearProperties(); |
1040 |
+ |
} |
1041 |
+ |
|
1042 |
+ |
vector<string> SimInfo::getPropertyNames() { |
1043 |
+ |
return properties_.getPropertyNames(); |
1044 |
+ |
} |
1045 |
+ |
|
1046 |
+ |
vector<GenericData*> SimInfo::getProperties() { |
1047 |
+ |
return properties_.getProperties(); |
1048 |
+ |
} |
1049 |
+ |
|
1050 |
+ |
GenericData* SimInfo::getPropertyByName(const string& propName) { |
1051 |
+ |
return properties_.getPropertyByName(propName); |
1052 |
+ |
} |
1053 |
+ |
|
1054 |
+ |
void SimInfo::setSnapshotManager(SnapshotManager* sman) { |
1055 |
+ |
if (sman_ == sman) { |
1056 |
+ |
return; |
1057 |
+ |
} |
1058 |
+ |
delete sman_; |
1059 |
+ |
sman_ = sman; |
1060 |
+ |
|
1061 |
+ |
Molecule* mol; |
1062 |
+ |
RigidBody* rb; |
1063 |
+ |
Atom* atom; |
1064 |
+ |
SimInfo::MoleculeIterator mi; |
1065 |
+ |
Molecule::RigidBodyIterator rbIter; |
1066 |
+ |
Molecule::AtomIterator atomIter;; |
1067 |
+ |
|
1068 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
1069 |
+ |
|
1070 |
+ |
for (atom = mol->beginAtom(atomIter); atom != NULL; atom = mol->nextAtom(atomIter)) { |
1071 |
+ |
atom->setSnapshotManager(sman_); |
1072 |
+ |
} |
1073 |
+ |
|
1074 |
+ |
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
1075 |
+ |
rb->setSnapshotManager(sman_); |
1076 |
+ |
} |
1077 |
+ |
} |
1078 |
|
|
1079 |
< |
} |
1079 |
> |
} |
1080 |
|
|
1081 |
< |
GenericData* SimInfo::getProperty(const string& propName){ |
1081 |
> |
Vector3d SimInfo::getComVel(){ |
1082 |
> |
SimInfo::MoleculeIterator i; |
1083 |
> |
Molecule* mol; |
1084 |
> |
|
1085 |
> |
Vector3d comVel(0.0); |
1086 |
> |
RealType totalMass = 0.0; |
1087 |
> |
|
1088 |
|
|
1089 |
< |
map<string, GenericData*>::iterator result; |
1090 |
< |
|
1091 |
< |
//string lowerCaseName = (); |
1092 |
< |
|
1093 |
< |
result = properties.find(propName); |
567 |
< |
|
568 |
< |
if(result != properties.end()) |
569 |
< |
return (*result).second; |
570 |
< |
else |
571 |
< |
return NULL; |
572 |
< |
} |
1089 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1090 |
> |
RealType mass = mol->getMass(); |
1091 |
> |
totalMass += mass; |
1092 |
> |
comVel += mass * mol->getComVel(); |
1093 |
> |
} |
1094 |
|
|
1095 |
+ |
#ifdef IS_MPI |
1096 |
+ |
RealType tmpMass = totalMass; |
1097 |
+ |
Vector3d tmpComVel(comVel); |
1098 |
+ |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1099 |
+ |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1100 |
+ |
#endif |
1101 |
|
|
1102 |
< |
void SimInfo::getFortranGroupArrays(SimInfo* info, |
576 |
< |
vector<int>& FglobalGroupMembership, |
577 |
< |
vector<double>& mfact){ |
578 |
< |
|
579 |
< |
Molecule* myMols; |
580 |
< |
Atom** myAtoms; |
581 |
< |
int numAtom; |
582 |
< |
double mtot; |
583 |
< |
int numMol; |
584 |
< |
int numCutoffGroups; |
585 |
< |
CutoffGroup* myCutoffGroup; |
586 |
< |
vector<CutoffGroup*>::iterator iterCutoff; |
587 |
< |
Atom* cutoffAtom; |
588 |
< |
vector<Atom*>::iterator iterAtom; |
589 |
< |
int atomIndex; |
590 |
< |
double totalMass; |
591 |
< |
|
592 |
< |
mfact.clear(); |
593 |
< |
FglobalGroupMembership.clear(); |
594 |
< |
|
1102 |
> |
comVel /= totalMass; |
1103 |
|
|
1104 |
< |
// Fix the silly fortran indexing problem |
1104 |
> |
return comVel; |
1105 |
> |
} |
1106 |
> |
|
1107 |
> |
Vector3d SimInfo::getCom(){ |
1108 |
> |
SimInfo::MoleculeIterator i; |
1109 |
> |
Molecule* mol; |
1110 |
> |
|
1111 |
> |
Vector3d com(0.0); |
1112 |
> |
RealType totalMass = 0.0; |
1113 |
> |
|
1114 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1115 |
> |
RealType mass = mol->getMass(); |
1116 |
> |
totalMass += mass; |
1117 |
> |
com += mass * mol->getCom(); |
1118 |
> |
} |
1119 |
> |
|
1120 |
|
#ifdef IS_MPI |
1121 |
< |
numAtom = mpiSim->getNAtomsGlobal(); |
1122 |
< |
#else |
1123 |
< |
numAtom = n_atoms; |
1121 |
> |
RealType tmpMass = totalMass; |
1122 |
> |
Vector3d tmpCom(com); |
1123 |
> |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1124 |
> |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1125 |
|
#endif |
602 |
– |
for (int i = 0; i < numAtom; i++) |
603 |
– |
FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
604 |
– |
|
1126 |
|
|
1127 |
< |
myMols = info->molecules; |
607 |
< |
numMol = info->n_mol; |
608 |
< |
for(int i = 0; i < numMol; i++){ |
609 |
< |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
610 |
< |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
611 |
< |
myCutoffGroup != NULL; |
612 |
< |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
1127 |
> |
com /= totalMass; |
1128 |
|
|
1129 |
< |
totalMass = myCutoffGroup->getMass(); |
1129 |
> |
return com; |
1130 |
> |
|
1131 |
> |
} |
1132 |
> |
|
1133 |
> |
ostream& operator <<(ostream& o, SimInfo& info) { |
1134 |
> |
|
1135 |
> |
return o; |
1136 |
> |
} |
1137 |
> |
|
1138 |
> |
|
1139 |
> |
/* |
1140 |
> |
Returns center of mass and center of mass velocity in one function call. |
1141 |
> |
*/ |
1142 |
> |
|
1143 |
> |
void SimInfo::getComAll(Vector3d &com, Vector3d &comVel){ |
1144 |
> |
SimInfo::MoleculeIterator i; |
1145 |
> |
Molecule* mol; |
1146 |
|
|
1147 |
< |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
1148 |
< |
cutoffAtom != NULL; |
1149 |
< |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
1150 |
< |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
1147 |
> |
|
1148 |
> |
RealType totalMass = 0.0; |
1149 |
> |
|
1150 |
> |
|
1151 |
> |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1152 |
> |
RealType mass = mol->getMass(); |
1153 |
> |
totalMass += mass; |
1154 |
> |
com += mass * mol->getCom(); |
1155 |
> |
comVel += mass * mol->getComVel(); |
1156 |
|
} |
1157 |
+ |
|
1158 |
+ |
#ifdef IS_MPI |
1159 |
+ |
RealType tmpMass = totalMass; |
1160 |
+ |
Vector3d tmpCom(com); |
1161 |
+ |
Vector3d tmpComVel(comVel); |
1162 |
+ |
MPI_Allreduce(&tmpMass,&totalMass,1,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1163 |
+ |
MPI_Allreduce(tmpCom.getArrayPointer(), com.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1164 |
+ |
MPI_Allreduce(tmpComVel.getArrayPointer(), comVel.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1165 |
+ |
#endif |
1166 |
+ |
|
1167 |
+ |
com /= totalMass; |
1168 |
+ |
comVel /= totalMass; |
1169 |
+ |
} |
1170 |
+ |
|
1171 |
+ |
/* |
1172 |
+ |
Return intertia tensor for entire system and angular momentum Vector. |
1173 |
+ |
|
1174 |
+ |
|
1175 |
+ |
[ Ixx -Ixy -Ixz ] |
1176 |
+ |
J =| -Iyx Iyy -Iyz | |
1177 |
+ |
[ -Izx -Iyz Izz ] |
1178 |
+ |
*/ |
1179 |
+ |
|
1180 |
+ |
void SimInfo::getInertiaTensor(Mat3x3d &inertiaTensor, Vector3d &angularMomentum){ |
1181 |
+ |
|
1182 |
+ |
|
1183 |
+ |
RealType xx = 0.0; |
1184 |
+ |
RealType yy = 0.0; |
1185 |
+ |
RealType zz = 0.0; |
1186 |
+ |
RealType xy = 0.0; |
1187 |
+ |
RealType xz = 0.0; |
1188 |
+ |
RealType yz = 0.0; |
1189 |
+ |
Vector3d com(0.0); |
1190 |
+ |
Vector3d comVel(0.0); |
1191 |
+ |
|
1192 |
+ |
getComAll(com, comVel); |
1193 |
+ |
|
1194 |
+ |
SimInfo::MoleculeIterator i; |
1195 |
+ |
Molecule* mol; |
1196 |
+ |
|
1197 |
+ |
Vector3d thisq(0.0); |
1198 |
+ |
Vector3d thisv(0.0); |
1199 |
+ |
|
1200 |
+ |
RealType thisMass = 0.0; |
1201 |
+ |
|
1202 |
+ |
|
1203 |
+ |
|
1204 |
+ |
|
1205 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1206 |
+ |
|
1207 |
+ |
thisq = mol->getCom()-com; |
1208 |
+ |
thisv = mol->getComVel()-comVel; |
1209 |
+ |
thisMass = mol->getMass(); |
1210 |
+ |
// Compute moment of intertia coefficients. |
1211 |
+ |
xx += thisq[0]*thisq[0]*thisMass; |
1212 |
+ |
yy += thisq[1]*thisq[1]*thisMass; |
1213 |
+ |
zz += thisq[2]*thisq[2]*thisMass; |
1214 |
+ |
|
1215 |
+ |
// compute products of intertia |
1216 |
+ |
xy += thisq[0]*thisq[1]*thisMass; |
1217 |
+ |
xz += thisq[0]*thisq[2]*thisMass; |
1218 |
+ |
yz += thisq[1]*thisq[2]*thisMass; |
1219 |
+ |
|
1220 |
+ |
angularMomentum += cross( thisq, thisv ) * thisMass; |
1221 |
+ |
|
1222 |
+ |
} |
1223 |
+ |
|
1224 |
+ |
|
1225 |
+ |
inertiaTensor(0,0) = yy + zz; |
1226 |
+ |
inertiaTensor(0,1) = -xy; |
1227 |
+ |
inertiaTensor(0,2) = -xz; |
1228 |
+ |
inertiaTensor(1,0) = -xy; |
1229 |
+ |
inertiaTensor(1,1) = xx + zz; |
1230 |
+ |
inertiaTensor(1,2) = -yz; |
1231 |
+ |
inertiaTensor(2,0) = -xz; |
1232 |
+ |
inertiaTensor(2,1) = -yz; |
1233 |
+ |
inertiaTensor(2,2) = xx + yy; |
1234 |
+ |
|
1235 |
+ |
#ifdef IS_MPI |
1236 |
+ |
Mat3x3d tmpI(inertiaTensor); |
1237 |
+ |
Vector3d tmpAngMom; |
1238 |
+ |
MPI_Allreduce(tmpI.getArrayPointer(), inertiaTensor.getArrayPointer(),9,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1239 |
+ |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1240 |
+ |
#endif |
1241 |
+ |
|
1242 |
+ |
return; |
1243 |
+ |
} |
1244 |
+ |
|
1245 |
+ |
//Returns the angular momentum of the system |
1246 |
+ |
Vector3d SimInfo::getAngularMomentum(){ |
1247 |
+ |
|
1248 |
+ |
Vector3d com(0.0); |
1249 |
+ |
Vector3d comVel(0.0); |
1250 |
+ |
Vector3d angularMomentum(0.0); |
1251 |
+ |
|
1252 |
+ |
getComAll(com,comVel); |
1253 |
+ |
|
1254 |
+ |
SimInfo::MoleculeIterator i; |
1255 |
+ |
Molecule* mol; |
1256 |
+ |
|
1257 |
+ |
Vector3d thisr(0.0); |
1258 |
+ |
Vector3d thisp(0.0); |
1259 |
+ |
|
1260 |
+ |
RealType thisMass; |
1261 |
+ |
|
1262 |
+ |
for (mol = beginMolecule(i); mol != NULL; mol = nextMolecule(i)) { |
1263 |
+ |
thisMass = mol->getMass(); |
1264 |
+ |
thisr = mol->getCom()-com; |
1265 |
+ |
thisp = (mol->getComVel()-comVel)*thisMass; |
1266 |
+ |
|
1267 |
+ |
angularMomentum += cross( thisr, thisp ); |
1268 |
+ |
|
1269 |
+ |
} |
1270 |
+ |
|
1271 |
+ |
#ifdef IS_MPI |
1272 |
+ |
Vector3d tmpAngMom; |
1273 |
+ |
MPI_Allreduce(tmpAngMom.getArrayPointer(), angularMomentum.getArrayPointer(),3,MPI_REALTYPE,MPI_SUM, MPI_COMM_WORLD); |
1274 |
+ |
#endif |
1275 |
+ |
|
1276 |
+ |
return angularMomentum; |
1277 |
+ |
} |
1278 |
+ |
|
1279 |
+ |
StuntDouble* SimInfo::getIOIndexToIntegrableObject(int index) { |
1280 |
+ |
return IOIndexToIntegrableObject.at(index); |
1281 |
+ |
} |
1282 |
+ |
|
1283 |
+ |
void SimInfo::setIOIndexToIntegrableObject(const vector<StuntDouble*>& v) { |
1284 |
+ |
IOIndexToIntegrableObject= v; |
1285 |
+ |
} |
1286 |
+ |
|
1287 |
+ |
/* Returns the Volume of the simulation based on a ellipsoid with semi-axes |
1288 |
+ |
based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
1289 |
+ |
where R_i are related to the principle inertia moments R_i = sqrt(C*I_i/N), this reduces to |
1290 |
+ |
V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
1291 |
+ |
*/ |
1292 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume){ |
1293 |
+ |
Mat3x3d intTensor; |
1294 |
+ |
RealType det; |
1295 |
+ |
Vector3d dummyAngMom; |
1296 |
+ |
RealType sysconstants; |
1297 |
+ |
RealType geomCnst; |
1298 |
+ |
|
1299 |
+ |
geomCnst = 3.0/2.0; |
1300 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1301 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1302 |
+ |
|
1303 |
+ |
det = intTensor.determinant(); |
1304 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1305 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(det); |
1306 |
+ |
return; |
1307 |
+ |
} |
1308 |
+ |
|
1309 |
+ |
void SimInfo::getGyrationalVolume(RealType &volume, RealType &detI){ |
1310 |
+ |
Mat3x3d intTensor; |
1311 |
+ |
Vector3d dummyAngMom; |
1312 |
+ |
RealType sysconstants; |
1313 |
+ |
RealType geomCnst; |
1314 |
+ |
|
1315 |
+ |
geomCnst = 3.0/2.0; |
1316 |
+ |
/* Get the inertial tensor and angular momentum for free*/ |
1317 |
+ |
getInertiaTensor(intTensor,dummyAngMom); |
1318 |
+ |
|
1319 |
+ |
detI = intTensor.determinant(); |
1320 |
+ |
sysconstants = geomCnst/(RealType)nGlobalIntegrableObjects_; |
1321 |
+ |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,3.0/2.0)*sqrt(detI); |
1322 |
+ |
return; |
1323 |
+ |
} |
1324 |
+ |
/* |
1325 |
+ |
void SimInfo::setStuntDoubleFromGlobalIndex(vector<StuntDouble*> v) { |
1326 |
+ |
assert( v.size() == nAtoms_ + nRigidBodies_); |
1327 |
+ |
sdByGlobalIndex_ = v; |
1328 |
|
} |
1329 |
+ |
|
1330 |
+ |
StuntDouble* SimInfo::getStuntDoubleFromGlobalIndex(int index) { |
1331 |
+ |
//assert(index < nAtoms_ + nRigidBodies_); |
1332 |
+ |
return sdByGlobalIndex_.at(index); |
1333 |
+ |
} |
1334 |
+ |
*/ |
1335 |
+ |
int SimInfo::getNGlobalConstraints() { |
1336 |
+ |
int nGlobalConstraints; |
1337 |
+ |
#ifdef IS_MPI |
1338 |
+ |
MPI_Allreduce(&nConstraints_, &nGlobalConstraints, 1, MPI_INT, MPI_SUM, |
1339 |
+ |
MPI_COMM_WORLD); |
1340 |
+ |
#else |
1341 |
+ |
nGlobalConstraints = nConstraints_; |
1342 |
+ |
#endif |
1343 |
+ |
return nGlobalConstraints; |
1344 |
|
} |
1345 |
|
|
1346 |
< |
} |
1346 |
> |
}//end namespace OpenMD |
1347 |
> |
|