54 |
|
#include "math/Vector3.hpp" |
55 |
|
#include "primitives/Molecule.hpp" |
56 |
|
#include "primitives/StuntDouble.hpp" |
57 |
– |
#include "UseTheForce/fCutoffPolicy.h" |
58 |
– |
#include "UseTheForce/DarkSide/fSwitchingFunctionType.h" |
59 |
– |
#include "UseTheForce/doForces_interface.h" |
60 |
– |
#include "UseTheForce/DarkSide/neighborLists_interface.h" |
61 |
– |
#include "UseTheForce/DarkSide/switcheroo_interface.h" |
57 |
|
#include "utils/MemoryUtils.hpp" |
58 |
|
#include "utils/simError.h" |
59 |
|
#include "selection/SelectionManager.hpp" |
60 |
|
#include "io/ForceFieldOptions.hpp" |
61 |
|
#include "UseTheForce/ForceField.hpp" |
62 |
< |
#include "nonbonded/InteractionManager.hpp" |
62 |
> |
#include "nonbonded/SwitchingFunction.hpp" |
63 |
|
|
69 |
– |
|
70 |
– |
#ifdef IS_MPI |
71 |
– |
#include "UseTheForce/mpiComponentPlan.h" |
72 |
– |
#include "UseTheForce/DarkSide/simParallel_interface.h" |
73 |
– |
#endif |
74 |
– |
|
64 |
|
using namespace std; |
65 |
|
namespace OpenMD { |
66 |
|
|
71 |
|
nGlobalIntegrableObjects_(0), nGlobalRigidBodies_(0), |
72 |
|
nAtoms_(0), nBonds_(0), nBends_(0), nTorsions_(0), nInversions_(0), |
73 |
|
nRigidBodies_(0), nIntegrableObjects_(0), nCutoffGroups_(0), |
74 |
< |
nConstraints_(0), sman_(NULL), fortranInitialized_(false), |
74 |
> |
nConstraints_(0), sman_(NULL), topologyDone_(false), |
75 |
|
calcBoxDipole_(false), useAtomicVirial_(true) { |
76 |
|
|
77 |
|
MoleculeStamp* molStamp; |
125 |
|
//equal to the total number of atoms minus number of atoms belong to |
126 |
|
//cutoff group defined in meta-data file plus the number of cutoff |
127 |
|
//groups defined in meta-data file |
128 |
+ |
std::cerr << "nGA = " << nGlobalAtoms_ << "\n"; |
129 |
+ |
std::cerr << "nCA = " << nCutoffAtoms << "\n"; |
130 |
+ |
std::cerr << "nG = " << nGroups << "\n"; |
131 |
+ |
|
132 |
|
nGlobalCutoffGroups_ = nGlobalAtoms_ - nCutoffAtoms + nGroups; |
133 |
+ |
|
134 |
+ |
std::cerr << "nGCG = " << nGlobalCutoffGroups_ << "\n"; |
135 |
|
|
136 |
|
//every free atom (atom does not belong to rigid bodies) is an |
137 |
|
//integrable object therefore the total number of integrable objects |
651 |
|
molStampIds_.insert(molStampIds_.end(), nmol, curStampId); |
652 |
|
} |
653 |
|
|
659 |
– |
void SimInfo::update() { |
654 |
|
|
655 |
< |
setupSimType(); |
656 |
< |
setupCutoffRadius(); |
657 |
< |
setupSwitchingRadius(); |
658 |
< |
setupCutoffMethod(); |
659 |
< |
setupSkinThickness(); |
660 |
< |
setupSwitchingFunction(); |
661 |
< |
setupAccumulateBoxDipole(); |
662 |
< |
|
663 |
< |
#ifdef IS_MPI |
670 |
< |
setupFortranParallel(); |
671 |
< |
#endif |
672 |
< |
setupFortranSim(); |
673 |
< |
fortranInitialized_ = true; |
674 |
< |
|
655 |
> |
/** |
656 |
> |
* update |
657 |
> |
* |
658 |
> |
* Performs the global checks and variable settings after the |
659 |
> |
* objects have been created. |
660 |
> |
* |
661 |
> |
*/ |
662 |
> |
void SimInfo::update() { |
663 |
> |
setupSimVariables(); |
664 |
|
calcNdf(); |
665 |
|
calcNdfRaw(); |
666 |
|
calcNdfTrans(); |
667 |
|
} |
668 |
|
|
669 |
+ |
/** |
670 |
+ |
* getSimulatedAtomTypes |
671 |
+ |
* |
672 |
+ |
* Returns an STL set of AtomType* that are actually present in this |
673 |
+ |
* simulation. Must query all processors to assemble this information. |
674 |
+ |
* |
675 |
+ |
*/ |
676 |
|
set<AtomType*> SimInfo::getSimulatedAtomTypes() { |
677 |
|
SimInfo::MoleculeIterator mi; |
678 |
|
Molecule* mol; |
685 |
|
atomTypes.insert(atom->getAtomType()); |
686 |
|
} |
687 |
|
} |
692 |
– |
return atomTypes; |
693 |
– |
} |
694 |
– |
|
695 |
– |
/** |
696 |
– |
* setupCutoffRadius |
697 |
– |
* |
698 |
– |
* If the cutoffRadius was explicitly set, use that value. |
699 |
– |
* If the cutoffRadius was not explicitly set: |
700 |
– |
* Are there electrostatic atoms? Use 12.0 Angstroms. |
701 |
– |
* No electrostatic atoms? Poll the atom types present in the |
702 |
– |
* simulation for suggested cutoff values (e.g. 2.5 * sigma). |
703 |
– |
* Use the maximum suggested value that was found. |
704 |
– |
*/ |
705 |
– |
void SimInfo::setupCutoffRadius() { |
706 |
– |
|
707 |
– |
if (simParams_->haveCutoffRadius()) { |
708 |
– |
cutoffRadius_ = simParams_->getCutoffRadius(); |
709 |
– |
} else { |
710 |
– |
if (usesElectrostaticAtoms_) { |
711 |
– |
sprintf(painCave.errMsg, |
712 |
– |
"SimInfo Warning: No value was set for the cutoffRadius.\n" |
713 |
– |
"\tOpenMD will use a default value of 12.0 angstroms" |
714 |
– |
"\tfor the cutoffRadius.\n"); |
715 |
– |
painCave.isFatal = 0; |
716 |
– |
simError(); |
717 |
– |
cutoffRadius_ = 12.0; |
718 |
– |
} else { |
719 |
– |
RealType thisCut; |
720 |
– |
set<AtomType*>::iterator i; |
721 |
– |
set<AtomType*> atomTypes; |
722 |
– |
atomTypes = getSimulatedAtomTypes(); |
723 |
– |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) { |
724 |
– |
thisCut = InteractionManager::Instance()->getSuggestedCutoffRadius((*i)); |
725 |
– |
cutoffRadius_ = max(thisCut, cutoffRadius_); |
726 |
– |
} |
727 |
– |
sprintf(painCave.errMsg, |
728 |
– |
"SimInfo Warning: No value was set for the cutoffRadius.\n" |
729 |
– |
"\tOpenMD will use %lf angstroms.\n", |
730 |
– |
cutoffRadius_); |
731 |
– |
painCave.isFatal = 0; |
732 |
– |
simError(); |
733 |
– |
} |
734 |
– |
} |
688 |
|
|
689 |
< |
InteractionManager::Instance()->setCutoffRadius(cutoffRadius_); |
737 |
< |
} |
738 |
< |
|
739 |
< |
/** |
740 |
< |
* setupSwitchingRadius |
741 |
< |
* |
742 |
< |
* If the switchingRadius was explicitly set, use that value (but check it) |
743 |
< |
* If the switchingRadius was not explicitly set: use 0.85 * cutoffRadius_ |
744 |
< |
*/ |
745 |
< |
void SimInfo::setupSwitchingRadius() { |
746 |
< |
|
747 |
< |
if (simParams_->haveSwitchingRadius()) { |
748 |
< |
switchingRadius_ = simParams_->getSwitchingRadius(); |
749 |
< |
if (switchingRadius_ > cutoffRadius_) { |
750 |
< |
sprintf(painCave.errMsg, |
751 |
< |
"SimInfo Error: switchingRadius (%f) is larger than cutoffRadius(%f)\n", |
752 |
< |
switchingRadius_, cutoffRadius_); |
753 |
< |
painCave.isFatal = 1; |
754 |
< |
simError(); |
689 |
> |
#ifdef IS_MPI |
690 |
|
|
691 |
< |
} |
692 |
< |
} else { |
758 |
< |
switchingRadius_ = 0.85 * cutoffRadius_; |
759 |
< |
sprintf(painCave.errMsg, |
760 |
< |
"SimInfo Warning: No value was set for the switchingRadius.\n" |
761 |
< |
"\tOpenMD will use a default value of 85 percent of the cutoffRadius.\n" |
762 |
< |
"\tswitchingRadius = %f. for this simulation\n", switchingRadius_); |
763 |
< |
painCave.isFatal = 0; |
764 |
< |
simError(); |
765 |
< |
} |
766 |
< |
InteractionManager::Instance()->setSwitchingRadius(switchingRadius_); |
767 |
< |
} |
691 |
> |
// loop over the found atom types on this processor, and add their |
692 |
> |
// numerical idents to a vector: |
693 |
|
|
694 |
< |
/** |
770 |
< |
* setupSkinThickness |
771 |
< |
* |
772 |
< |
* If the skinThickness was explicitly set, use that value (but check it) |
773 |
< |
* If the skinThickness was not explicitly set: use 1.0 angstroms |
774 |
< |
*/ |
775 |
< |
void SimInfo::setupSkinThickness() { |
776 |
< |
if (simParams_->haveSkinThickness()) { |
777 |
< |
skinThickness_ = simParams_->getSkinThickness(); |
778 |
< |
} else { |
779 |
< |
skinThickness_ = 1.0; |
780 |
< |
sprintf(painCave.errMsg, |
781 |
< |
"SimInfo Warning: No value was set for the skinThickness.\n" |
782 |
< |
"\tOpenMD will use a default value of %f Angstroms\n" |
783 |
< |
"\tfor this simulation\n", skinThickness_); |
784 |
< |
painCave.isFatal = 0; |
785 |
< |
simError(); |
786 |
< |
} |
787 |
< |
} |
788 |
< |
|
789 |
< |
void SimInfo::setupSimType() { |
694 |
> |
vector<int> foundTypes; |
695 |
|
set<AtomType*>::iterator i; |
696 |
< |
set<AtomType*> atomTypes; |
697 |
< |
atomTypes = getSimulatedAtomTypes(); |
696 |
> |
for (i = atomTypes.begin(); i != atomTypes.end(); ++i) |
697 |
> |
foundTypes.push_back( (*i)->getIdent() ); |
698 |
|
|
699 |
+ |
// count_local holds the number of found types on this processor |
700 |
+ |
int count_local = foundTypes.size(); |
701 |
+ |
|
702 |
+ |
// count holds the total number of found types on all processors |
703 |
+ |
// (some will be redundant with the ones found locally): |
704 |
+ |
int count; |
705 |
+ |
MPI::COMM_WORLD.Allreduce(&count_local, &count, 1, MPI::INT, MPI::SUM); |
706 |
+ |
|
707 |
+ |
// create a vector to hold the globally found types, and resize it: |
708 |
+ |
vector<int> ftGlobal; |
709 |
+ |
ftGlobal.resize(count); |
710 |
+ |
vector<int> counts; |
711 |
+ |
|
712 |
+ |
int nproc = MPI::COMM_WORLD.Get_size(); |
713 |
+ |
counts.resize(nproc); |
714 |
+ |
vector<int> disps; |
715 |
+ |
disps.resize(nproc); |
716 |
+ |
|
717 |
+ |
// now spray out the foundTypes to all the other processors: |
718 |
+ |
|
719 |
+ |
MPI::COMM_WORLD.Allgatherv(&foundTypes[0], count_local, MPI::INT, |
720 |
+ |
&ftGlobal[0], &counts[0], &disps[0], MPI::INT); |
721 |
+ |
|
722 |
+ |
// foundIdents is a stl set, so inserting an already found ident |
723 |
+ |
// will have no effect. |
724 |
+ |
set<int> foundIdents; |
725 |
+ |
vector<int>::iterator j; |
726 |
+ |
for (j = ftGlobal.begin(); j != ftGlobal.end(); ++j) |
727 |
+ |
foundIdents.insert((*j)); |
728 |
+ |
|
729 |
+ |
// now iterate over the foundIdents and get the actual atom types |
730 |
+ |
// that correspond to these: |
731 |
+ |
set<int>::iterator it; |
732 |
+ |
for (it = foundIdents.begin(); it != foundIdents.end(); ++it) |
733 |
+ |
atomTypes.insert( forceField_->getAtomType((*it)) ); |
734 |
+ |
|
735 |
+ |
#endif |
736 |
+ |
|
737 |
+ |
return atomTypes; |
738 |
+ |
} |
739 |
+ |
|
740 |
+ |
void SimInfo::setupSimVariables() { |
741 |
|
useAtomicVirial_ = simParams_->getUseAtomicVirial(); |
742 |
+ |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
743 |
+ |
calcBoxDipole_ = false; |
744 |
+ |
if ( simParams_->haveAccumulateBoxDipole() ) |
745 |
+ |
if ( simParams_->getAccumulateBoxDipole() ) { |
746 |
+ |
calcBoxDipole_ = true; |
747 |
+ |
} |
748 |
|
|
749 |
+ |
set<AtomType*>::iterator i; |
750 |
+ |
set<AtomType*> atomTypes; |
751 |
+ |
atomTypes = getSimulatedAtomTypes(); |
752 |
|
int usesElectrostatic = 0; |
753 |
|
int usesMetallic = 0; |
754 |
|
int usesDirectional = 0; |
770 |
|
temp = usesElectrostatic; |
771 |
|
MPI_Allreduce(&temp, &usesElectrostaticAtoms_, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
772 |
|
#endif |
817 |
– |
fInfo_.SIM_uses_PBC = usesPeriodicBoundaries_; |
818 |
– |
fInfo_.SIM_uses_DirectionalAtoms = usesDirectionalAtoms_; |
819 |
– |
fInfo_.SIM_uses_MetallicAtoms = usesMetallicAtoms_; |
820 |
– |
fInfo_.SIM_requires_SkipCorrection = usesElectrostaticAtoms_; |
821 |
– |
fInfo_.SIM_requires_SelfCorrection = usesElectrostaticAtoms_; |
822 |
– |
fInfo_.SIM_uses_AtomicVirial = usesAtomicVirial_; |
773 |
|
} |
774 |
|
|
825 |
– |
void SimInfo::setupFortranSim() { |
826 |
– |
int isError; |
827 |
– |
int nExclude, nOneTwo, nOneThree, nOneFour; |
828 |
– |
vector<int> fortranGlobalGroupMembership; |
829 |
– |
|
830 |
– |
notifyFortranSkinThickness(&skinThickness_); |
775 |
|
|
776 |
< |
int ljsp = cutoffMethod_ == SHIFTED_POTENTIAL ? 1 : 0; |
777 |
< |
int ljsf = cutoffMethod_ == SHIFTED_FORCE ? 1 : 0; |
778 |
< |
notifyFortranCutoffs(&cutoffRadius_, &switchingRadius_, &ljsp, &ljsf); |
779 |
< |
|
780 |
< |
isError = 0; |
776 |
> |
vector<int> SimInfo::getGlobalAtomIndices() { |
777 |
> |
SimInfo::MoleculeIterator mi; |
778 |
> |
Molecule* mol; |
779 |
> |
Molecule::AtomIterator ai; |
780 |
> |
Atom* atom; |
781 |
|
|
782 |
< |
//globalGroupMembership_ is filled by SimCreator |
783 |
< |
for (int i = 0; i < nGlobalAtoms_; i++) { |
784 |
< |
fortranGlobalGroupMembership.push_back(globalGroupMembership_[i] + 1); |
782 |
> |
vector<int> GlobalAtomIndices(getNAtoms(), 0); |
783 |
> |
|
784 |
> |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
785 |
> |
|
786 |
> |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
787 |
> |
GlobalAtomIndices[atom->getLocalIndex()] = atom->getGlobalIndex(); |
788 |
> |
} |
789 |
|
} |
790 |
+ |
return GlobalAtomIndices; |
791 |
+ |
} |
792 |
|
|
793 |
+ |
|
794 |
+ |
vector<int> SimInfo::getGlobalGroupIndices() { |
795 |
+ |
SimInfo::MoleculeIterator mi; |
796 |
+ |
Molecule* mol; |
797 |
+ |
Molecule::CutoffGroupIterator ci; |
798 |
+ |
CutoffGroup* cg; |
799 |
+ |
|
800 |
+ |
vector<int> GlobalGroupIndices; |
801 |
+ |
|
802 |
+ |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
803 |
+ |
|
804 |
+ |
//local index of cutoff group is trivial, it only depends on the |
805 |
+ |
//order of travesing |
806 |
+ |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
807 |
+ |
cg = mol->nextCutoffGroup(ci)) { |
808 |
+ |
GlobalGroupIndices.push_back(cg->getGlobalIndex()); |
809 |
+ |
} |
810 |
+ |
} |
811 |
+ |
return GlobalGroupIndices; |
812 |
+ |
} |
813 |
+ |
|
814 |
+ |
|
815 |
+ |
void SimInfo::prepareTopology() { |
816 |
+ |
int nExclude, nOneTwo, nOneThree, nOneFour; |
817 |
+ |
|
818 |
|
//calculate mass ratio of cutoff group |
844 |
– |
vector<RealType> mfact; |
819 |
|
SimInfo::MoleculeIterator mi; |
820 |
|
Molecule* mol; |
821 |
|
Molecule::CutoffGroupIterator ci; |
824 |
|
Atom* atom; |
825 |
|
RealType totalMass; |
826 |
|
|
827 |
< |
//to avoid memory reallocation, reserve enough space for mfact |
828 |
< |
mfact.reserve(getNCutoffGroups()); |
827 |
> |
//to avoid memory reallocation, reserve enough space for massFactors_ |
828 |
> |
massFactors_.clear(); |
829 |
> |
massFactors_.reserve(getNCutoffGroups()); |
830 |
|
|
831 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
832 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
832 |
> |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; |
833 |
> |
cg = mol->nextCutoffGroup(ci)) { |
834 |
|
|
835 |
|
totalMass = cg->getMass(); |
836 |
|
for(atom = cg->beginAtom(ai); atom != NULL; atom = cg->nextAtom(ai)) { |
837 |
|
// Check for massless groups - set mfact to 1 if true |
838 |
|
if (totalMass != 0) |
839 |
< |
mfact.push_back(atom->getMass()/totalMass); |
839 |
> |
massFactors_.push_back(atom->getMass()/totalMass); |
840 |
|
else |
841 |
< |
mfact.push_back( 1.0 ); |
841 |
> |
massFactors_.push_back( 1.0 ); |
842 |
|
} |
843 |
|
} |
844 |
|
} |
845 |
|
|
846 |
< |
//fill ident array of local atoms (it is actually ident of AtomType, it is so confusing !!!) |
871 |
< |
vector<int> identArray; |
846 |
> |
// Build the identArray_ |
847 |
|
|
848 |
< |
//to avoid memory reallocation, reserve enough space identArray |
849 |
< |
identArray.reserve(getNAtoms()); |
875 |
< |
|
848 |
> |
identArray_.clear(); |
849 |
> |
identArray_.reserve(getNAtoms()); |
850 |
|
for(mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
851 |
|
for(atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
852 |
< |
identArray.push_back(atom->getIdent()); |
852 |
> |
identArray_.push_back(atom->getIdent()); |
853 |
|
} |
854 |
|
} |
881 |
– |
|
882 |
– |
//fill molMembershipArray |
883 |
– |
//molMembershipArray is filled by SimCreator |
884 |
– |
vector<int> molMembershipArray(nGlobalAtoms_); |
885 |
– |
for (int i = 0; i < nGlobalAtoms_; i++) { |
886 |
– |
molMembershipArray[i] = globalMolMembership_[i] + 1; |
887 |
– |
} |
855 |
|
|
856 |
< |
//setup fortran simulation |
856 |
> |
//scan topology |
857 |
|
|
858 |
|
nExclude = excludedInteractions_.getSize(); |
859 |
|
nOneTwo = oneTwoInteractions_.getSize(); |
865 |
|
int* oneThreeList = oneThreeInteractions_.getPairList(); |
866 |
|
int* oneFourList = oneFourInteractions_.getPairList(); |
867 |
|
|
868 |
< |
setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray[0], |
869 |
< |
&nExclude, excludeList, |
870 |
< |
&nOneTwo, oneTwoList, |
871 |
< |
&nOneThree, oneThreeList, |
872 |
< |
&nOneFour, oneFourList, |
873 |
< |
&molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 |
< |
&fortranGlobalGroupMembership[0], &isError); |
868 |
> |
//setFortranSim( &fInfo_, &nGlobalAtoms_, &nAtoms_, &identArray_[0], |
869 |
> |
// &nExclude, excludeList, |
870 |
> |
// &nOneTwo, oneTwoList, |
871 |
> |
// &nOneThree, oneThreeList, |
872 |
> |
// &nOneFour, oneFourList, |
873 |
> |
// &molMembershipArray[0], &mfact[0], &nCutoffGroups_, |
874 |
> |
// &fortranGlobalGroupMembership[0], &isError); |
875 |
|
|
876 |
< |
if( isError ){ |
910 |
< |
|
911 |
< |
sprintf( painCave.errMsg, |
912 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
913 |
< |
painCave.isFatal = 1; |
914 |
< |
painCave.severity = OPENMD_ERROR; |
915 |
< |
simError(); |
916 |
< |
} |
917 |
< |
|
918 |
< |
|
919 |
< |
sprintf( checkPointMsg, |
920 |
< |
"succesfully sent the simulation information to fortran.\n"); |
921 |
< |
|
922 |
< |
errorCheckPoint(); |
923 |
< |
|
924 |
< |
// Setup number of neighbors in neighbor list if present |
925 |
< |
if (simParams_->haveNeighborListNeighbors()) { |
926 |
< |
int nlistNeighbors = simParams_->getNeighborListNeighbors(); |
927 |
< |
setNeighbors(&nlistNeighbors); |
928 |
< |
} |
929 |
< |
|
930 |
< |
|
931 |
< |
} |
932 |
< |
|
933 |
< |
|
934 |
< |
void SimInfo::setupFortranParallel() { |
935 |
< |
#ifdef IS_MPI |
936 |
< |
//SimInfo is responsible for creating localToGlobalAtomIndex and localToGlobalGroupIndex |
937 |
< |
vector<int> localToGlobalAtomIndex(getNAtoms(), 0); |
938 |
< |
vector<int> localToGlobalCutoffGroupIndex; |
939 |
< |
SimInfo::MoleculeIterator mi; |
940 |
< |
Molecule::AtomIterator ai; |
941 |
< |
Molecule::CutoffGroupIterator ci; |
942 |
< |
Molecule* mol; |
943 |
< |
Atom* atom; |
944 |
< |
CutoffGroup* cg; |
945 |
< |
mpiSimData parallelData; |
946 |
< |
int isError; |
947 |
< |
|
948 |
< |
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
949 |
< |
|
950 |
< |
//local index(index in DataStorge) of atom is important |
951 |
< |
for (atom = mol->beginAtom(ai); atom != NULL; atom = mol->nextAtom(ai)) { |
952 |
< |
localToGlobalAtomIndex[atom->getLocalIndex()] = atom->getGlobalIndex() + 1; |
953 |
< |
} |
954 |
< |
|
955 |
< |
//local index of cutoff group is trivial, it only depends on the order of travesing |
956 |
< |
for (cg = mol->beginCutoffGroup(ci); cg != NULL; cg = mol->nextCutoffGroup(ci)) { |
957 |
< |
localToGlobalCutoffGroupIndex.push_back(cg->getGlobalIndex() + 1); |
958 |
< |
} |
959 |
< |
|
960 |
< |
} |
961 |
< |
|
962 |
< |
//fill up mpiSimData struct |
963 |
< |
parallelData.nMolGlobal = getNGlobalMolecules(); |
964 |
< |
parallelData.nMolLocal = getNMolecules(); |
965 |
< |
parallelData.nAtomsGlobal = getNGlobalAtoms(); |
966 |
< |
parallelData.nAtomsLocal = getNAtoms(); |
967 |
< |
parallelData.nGroupsGlobal = getNGlobalCutoffGroups(); |
968 |
< |
parallelData.nGroupsLocal = getNCutoffGroups(); |
969 |
< |
parallelData.myNode = worldRank; |
970 |
< |
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData.nProcessors)); |
971 |
< |
|
972 |
< |
//pass mpiSimData struct and index arrays to fortran |
973 |
< |
setFsimParallel(¶llelData, &(parallelData.nAtomsLocal), |
974 |
< |
&localToGlobalAtomIndex[0], &(parallelData.nGroupsLocal), |
975 |
< |
&localToGlobalCutoffGroupIndex[0], &isError); |
976 |
< |
|
977 |
< |
if (isError) { |
978 |
< |
sprintf(painCave.errMsg, |
979 |
< |
"mpiRefresh errror: fortran didn't like something we gave it.\n"); |
980 |
< |
painCave.isFatal = 1; |
981 |
< |
simError(); |
982 |
< |
} |
983 |
< |
|
984 |
< |
sprintf(checkPointMsg, " mpiRefresh successful.\n"); |
985 |
< |
errorCheckPoint(); |
986 |
< |
|
987 |
< |
#endif |
988 |
< |
} |
989 |
< |
|
990 |
< |
|
991 |
< |
void SimInfo::setupSwitchingFunction() { |
992 |
< |
int ft = CUBIC; |
993 |
< |
|
994 |
< |
if (simParams_->haveSwitchingFunctionType()) { |
995 |
< |
string funcType = simParams_->getSwitchingFunctionType(); |
996 |
< |
toUpper(funcType); |
997 |
< |
if (funcType == "CUBIC") { |
998 |
< |
ft = CUBIC; |
999 |
< |
} else { |
1000 |
< |
if (funcType == "FIFTH_ORDER_POLYNOMIAL") { |
1001 |
< |
ft = FIFTH_ORDER_POLY; |
1002 |
< |
} else { |
1003 |
< |
// throw error |
1004 |
< |
sprintf( painCave.errMsg, |
1005 |
< |
"SimInfo error: Unknown switchingFunctionType. (Input file specified %s .)\n" |
1006 |
< |
"\tswitchingFunctionType must be one of: \"cubic\" or \"fifth_order_polynomial\".", |
1007 |
< |
funcType.c_str() ); |
1008 |
< |
painCave.isFatal = 1; |
1009 |
< |
simError(); |
1010 |
< |
} |
1011 |
< |
} |
1012 |
< |
} |
1013 |
< |
|
1014 |
< |
// send switching function notification to switcheroo |
1015 |
< |
setFunctionType(&ft); |
1016 |
< |
|
876 |
> |
topologyDone_ = true; |
877 |
|
} |
878 |
|
|
1019 |
– |
void SimInfo::setupAccumulateBoxDipole() { |
1020 |
– |
|
1021 |
– |
// we only call setAccumulateBoxDipole if the accumulateBoxDipole parameter is true |
1022 |
– |
if ( simParams_->haveAccumulateBoxDipole() ) |
1023 |
– |
if ( simParams_->getAccumulateBoxDipole() ) { |
1024 |
– |
calcBoxDipole_ = true; |
1025 |
– |
} |
1026 |
– |
|
1027 |
– |
} |
1028 |
– |
|
879 |
|
void SimInfo::addProperty(GenericData* genData) { |
880 |
|
properties_.addProperty(genData); |
881 |
|
} |
910 |
|
Molecule* mol; |
911 |
|
RigidBody* rb; |
912 |
|
Atom* atom; |
913 |
+ |
CutoffGroup* cg; |
914 |
|
SimInfo::MoleculeIterator mi; |
915 |
|
Molecule::RigidBodyIterator rbIter; |
916 |
< |
Molecule::AtomIterator atomIter;; |
916 |
> |
Molecule::AtomIterator atomIter; |
917 |
> |
Molecule::CutoffGroupIterator cgIter; |
918 |
|
|
919 |
|
for (mol = beginMolecule(mi); mol != NULL; mol = nextMolecule(mi)) { |
920 |
|
|
925 |
|
for (rb = mol->beginRigidBody(rbIter); rb != NULL; rb = mol->nextRigidBody(rbIter)) { |
926 |
|
rb->setSnapshotManager(sman_); |
927 |
|
} |
928 |
+ |
|
929 |
+ |
for (cg = mol->beginCutoffGroup(cgIter); cg != NULL; cg = mol->nextCutoffGroup(cgIter)) { |
930 |
+ |
cg->setSnapshotManager(sman_); |
931 |
+ |
} |
932 |
|
} |
933 |
|
|
934 |
|
} |